2Eva_IT2011_T1_MN Ganancias anual

2da Evaluación I Término 2011-2012. 29/Agosto/2011. ICM02188 Métodos Numéricos

Tema 1. La siguiente tabla indica la ganancia neta g, medida en millones de dólares, de una empresa multinacional con respeto al tiempo t medido en años.

t  1 2 4 5
g 6.4 6.2 7.4  7.2

a. Encuentre el polinomio de interpolación que incluye a los cuatro puntos. Trace el gráfico aproximado de los puntos y del polinomio.

b. Con el polinomio encuentre la ganancia cuando t=3

c. Con el polinomio enuentre t cuando la ganancia fué de 7.0 millones de dólares.

d. Con el polinomio encuentre el monto y el tiempo correspondientes a la mayor ganancia.


t = [ 1  , 2  , 4  , 5  ]
g = [ 6.4, 6.2, 7.4, 7.2]

2Eva_IT2011_T3 Valor inicial Runge-Kutta 4to orden dy/dx

2da Evaluación I Término 2011-2012. 30/Agosto/2011. ICM00158

Tema 3. Resolver el siguiente problema de valor inicial, usando el método de Runge-Kutta de cuarto orden:

x\frac{\delta y}{\delta x} + 2y = \frac{\sin (x)}{x} y(2) =1 , h = \frac{1}{10} 2\leq x \leq 3

a. Escribir el algoritmo para la función f(x, y(x)) específica.

b. Presentar la tabla de resultados.

Nota: Todos los temas tienen igual valor.

2Eva_IT2011_T2 EDO Valor de frontera

2da Evaluación I Término 2011-2012. 30/Agosto/2011. ICM00158

Tema 2. Resolver el siguiente problema de valor de frontera:

y'' - \frac{1}{1+x^2} y'- e^x y = \cos (x) y(0) = 1, y(1) = -1

con h = 1/4

2Eva_IT2011_T1 Integral con Simpson

2da Evaluación I Término 2011-2012. 30/Agosto/2011. ICM00158

Tema 1. Dada la integral

\int_0^1 \frac{a^x}{(x-1)^{2/5}} \delta x

Determine:
a. Si la integral converge, justifique adecuadamente

b. Su valor aproximado, en caso de que la integral converja, usando Simpson compuesta con n=4

2Eva_IIT2010_T3 Integral impropia

2da Evaluación II Término 2010-2011. 1/Febrero/2011. ICM00158

Tema 3. Determinar el valor de la integral impropia:

\int_0^{1/2} \frac{1}{(2x-1)^{1/3}} \delta x

Con Simpson, n=4

2Eva_IIT2010_T2 Calcular volumen

2da Evaluación II Término 2010-2011. 1/Febrero/2011. ICM00158

Tema 2. Calcule el volumen

\int\int u(x,y) \delta x \delta y

en el que u(x,y) está definido con la ecuación diferencial

\frac{\delta ^2 u}{\delta x^2} + \frac{\delta ^2 u}{\delta y^2} = 4 u = u(x,y) 0\leq x \leq 2 0 \leq y \leq 1

con las condiciones en los bordes:

u(0,y) = 40 , 0\lt y \lt 1 u(2,y) = 50 , 0\lt y \lt 1 u(x,0) = 40 + 5x , 0\lt x \lt 2 u(x,1) = 40 + 5x , 0\lt x \lt 2

Use el método de diferencias finitas para resolver la ecuación diferencial y la fórmula de Simpson para calcular el integral. En todos los cálculos use Δx = Δy = 0.5

2Eva_IIT2010_T1 Problema valor inicial

2da Evaluación II Término 2010-2011. 1/Febrero/2011. ICM00158

Tema 1. Resolver el siguiente problema de valor inicial:

y'+ \frac{2}{t}y = \frac{\cos (t)}{t^2} y(\pi)=0, t\gt 0

a. Determinar f(t,y)

b. Escribir el algoritmo de Runge-Kutta de 4to orden para la función definida en el literal a.

c. Presentar la tabla de resultados para el tamaño de paso h=0.2, con i = [0,9]

2Eva_IT2010_T1_AN Perímetro de región

2da Evaluación I Término 2010-2011. 31/Agosto/2010. Análisis Numérico

Tema 1. Aproximar el perímetro de la región ubicada en el primer cuadrante, acotada por los ejes coordenados y la curva

\begin{cases} x = 2 cos(t) \\ y = \sqrt{3} \sin{(t)} \end{cases} t \in \Big[0, \frac{\pi}{2}\Big]

Utilice la regla compuesta de Simpson con n=8

2Eva_IT2009_T3_AN Circuito RLC

2da Evaluación I Término 2009-2010. 1/Septiembre/2009. Análisis Numérico

Tema 3. (20 puntos) Determine la corriente I(t) de un circuito «LRC» en serie, cuando L=0.005 Henrios, R = 2 Ohm y C=0.02 Faradios, donde E(t) se regula en el tiempo y es igual a:

E(t)=1000\frac{[[t+1]]}{\sin ^2 (t) +2}

En el instante inicial la corriente I(0) es cero y la ecuación del circuito puede aproximarse por:

L\frac{\delta I}{\delta t} +RI + \frac{1}{C} \int_0^t e^{-t^2} \delta t = E(t) I(0) = 0

Determine la corriente en los instantes π/4 y π/2 utilizando el método de Runge-Kutta de cuarto orden para resolver la ecuación diferencial y Simpson con una parábola para determinar las integrales que se generen.

Rúbrica: Aproximación de I(t) en t = π/4 (10 puntos), aproximación de I(t) en t = π/2 (10 puntos)

2Eva_IT2009_T2_AN EDP hiperbólica

2da Evaluación I Término 2009-2010. 1/Septiembre/2009. Análisis Numérico

Tema 2. (20 puntos) Dada la ecuación hiperbólica

\frac{\partial ^2 u}{\partial t^2} - \frac{\partial ^2 u}{\partial x^2} = 0 0 \lt x \lt 1, t\gt 0 \begin{cases} u(0,t) = u(1,t) = 0 , & t\gt 0 \\ u(x,0) = \sin (2\pi x), & 0 \leq x \leq 1 \\ \frac{\delta u}{\delta t} (x,0) = 2 \pi \sin (2\pi x) , & 0 \leq x \leq 1\end{cases}

Aproximar u(x,t) para t=0.8, con h=k=0.2

Rúbrica: Establecer el método de diferencia centrada y condiciones de frontera (5 puntos), determinar ωi1 (5 puntos), aproximación de u(x,t) en t=0.8 (10 puntos)