Fórmulas simbólicas – Sympy

Para construir una expresión matemática, por ejemplo un polinomio de Taylor, se puede usar la forma simbólica de la expresión.

Es necesario definir la variable como un símbolo, en el ejemplo es la letra ‘x‘.
La expresión fx se escribe como el polinomio del ejemplo, con lo que se puede gestionar la expresión en su forma algebraica.


Ejemplo

f(x) = (1-x)^5 + 5 x ((1-x)^4) - 0.4
import sympy as sym
x = sym.Symbol('x')
fx = (1-x)**5 + 5*x*((1-x)**4) - 0.4

Simplificar términos

De la expresión se pueden simplificar los términos aplicando la instrucción expand(). Para observar el resultado se muestra el resultado de la expresión fx.

fx = fx.expand()
print(fx)

con lo que se obtiene los coeficientes para cada término.

4*x**5 - 15*x**4 + 20*x**3 - 10*x**2 + 0.6

Evaluación con un valor

para evaluar el polinomio en x = 0.1

k = fx.subs(x,0.1)
print(k)
0.518540000000000

Conversión a forma numérica lambda

Para evaluar varios puntos en la expresión se convierte a la forma numérica lambda. La instrucción es sym.lambdify(x,fx)

>>> formula = sym.lambdify(x,fx)
>>> formula(0.1)
0.51854

Referencia: https://www.sympy.org/es/