2Eva_2024PAOI_T2 Salto Bungee longitud total de cuerda

2da Evaluación 2024-2025 PAO I. 28/Agosto/2024

Tema 2. (40 puntos) Bungee Jumping 02
Para el salto del Bungee del ejercicio del tema anterior se toman lecturas con un sensor de velocidad sujetado a la persona.

2.1 De la tabla de datos obtenida, se observa que los tamaños de paso en tiempo no siempre son equidistantes.
Se requiere encontrar la distancia recorrida en el intervalo de [0,2.55] usando fórmulas de integración compuestas.

ti vi
0 0.0000
0.25 2.4479
0.5 4.8849
0.75 7.3001
1 9.6832
1.375 13.1763
1.75 16.5451
2.125 19.7641
2.4 22.0193
2.55 23.2075

2.2 Usando los datos de la tabla para el intervalo [2.55, 5.175] donde la velocidad de la caída de la persona al primer salto ha llegado a casi cero, o antes del primer rebote, se ha obtenido un polinomio de interpolación:

v = -3.979t2 + 21.557t – 5.3997

Obtenga la distancia recorrida en el segundo intervalo usando el método de Cuadratura de Gauss.

a. Realice el planteamiento de las ecuaciones para cada sección del ejercicio.

b. Describa el criterio usado para determinar el número de tramos usado en cada caso.

c. Desarrolle las expresiones completas del ejercicio para cada sección.

d. Encuentre la distancia total (profundidad) alcanzada por la persona al dar el salto.

Rúbrica: literal a 2.1 (5 puntos), a 2.2 (5 puntos) literal b (5 puntos), literal c 2.1 (10 puntos), c 2.2 (10 puntos), literal d (5 puntos)

Referencia:[1] Chapra. capítulo 28. Ejercicio 28.41 p852.

[2] Extreme Bungy Jumping with Cliff Jump Shenanigans! Play On in New Zealand! 4K! – devinsupertramp. 23 mar 2015.

3Eva_2023PAOII_T3 Volumen por solido de revolución de un peón

3ra Evaluación 2023-2024 PAO II. 15/Febrero/2024

Tema 3 (40 puntos) Los sólidos de revolución se generan al girar una región plana alrededor de un eje.un peon 3D

El volumen generado al girar la región de una función f(x) en el intervalo [a,b], se puede calcular como el volumen del disco de radio f(x) y anchura dx.

V = \int_{a}^{b} \pi (f(x))^2 dx

Calcule el volumen de revolución generado por la región sombreada y limitada los puntos de la tabla del tema anterior y la gráfica 2D mostrada. volumen de un Peon 2D de revolucion

Realice el ejercicio usando para los integrales el método de integración por Cuadratura de Gauss para al menos lo tres primeros intervalos.

xi=[ 0, 3, 5.  , 9.985 , 14.97 , 17.97, 40.04, 43.29, 51.6449, 60]
yi=[15,15,13.25,14.1552, 9.6768,  9.67,  4.64,  4.64,  8.9768, 0.]

Para el desarrollo de cada intervalo:
a. Realice el planteamiento de las formulas de volumen de sólido de revolución.
b. Desarrolle las expresiones completas con valores numéricos que permitan revisar sus operaciones.
c. Indique el resultado obtenido para cada integral.
d. Determine el volumen de revolución generado por la región sombreada presentada en la gráfica usando el algoritmo en Python.
e. Adjunte sus resultados.txt y algoritmos.py

Rúbrica: literal a (12 puntos), literal b (12 puntos), literal c (6 puntos), literal d (5 puntos), literal e (5 puntos)

Referencia: [1] Volúmenes de sólidos de revolución. Moisés Villena Muñoz. Capítulo 4 p78. https://www.dspace.espol.edu.ec/bitstream/123456789/4800/4/7417.pdf

[2]Curso Torno Madera. Práctica de realización de peón de ajedrez. Taller Escuela Pinocho. 21 octubre 2021

2Eva_2023PAOII_T1 Volumen por solido de revolución

2da Evaluación 2023-2024 PAO II. 30/Enero/2024

Tema 1 (30 puntos) Los sólidos de revolución se generan al girar una región plana alrededor de un eje. solido de revolucion 1

V = \int_{a}^{b} \pi (f(x))^2 dx

El volumen generado al girar la región de la función f(x) en el intervalo [a,b], se puede calcular como el volumen del disco de radio f(x) y anchura dx.

f(x) = \sqrt{\sin (x/2)} g(x) = e^{x/3} - 1

Calcule el volumen de revolución generado por la región sombreada de la gráfica que ese encuentra entre: f(x) y g(x).
Las funciones se usan en el intervalo [0.1 , 1.8]:

Realice el planteamiento de las ecuaciones para el ejercicio, considerando que

a. Para el integral con f(x), use formulas de Simpson con al menos 3 tramos, mientras que

b. Para el integral con g(x) use Cuadratura de Gauss de dos puntos con al menos 2 tramos.

c. Desarrolle las expresiones completas del ejercicio para cada función.

d. Indique el resultado obtenido para el área requerida y la cota de error.

e. Determine el volumen de revolución generado por la región sombreada

Rúbrica: literal a (5 puntos), literal b (5 puntos), literal c (10 puntos), literal d (5 puntos), literal e (5 puntos)

Referencia:  [1] Volúmenes de sólidos de revolución. Moisés Villena Muñoz.Capítulo 4 p78. https://www.dspace.espol.edu.ec/bitstream/123456789/4800/4/7417.pdf
[2] 8.2.2 Gráficas en 3D en Python, sólidos de revolución. http://blog.espol.edu.ec/ccpg1001/graficas-en-3d-en-python-sistema-de-ecuaciones-y-planos/
[3] Volumes: Washer Method Animation 2. Stacey Roshan. 24 Abril 2016.

3Eva_2023PAOI_T2 Área devastada por incendios

3ra Evaluación 2023-2024 PAO I. 12/Septiembre/2023

Tema 2 (25 puntos) Se requiere determinar el área urbana a restaurar, que devastada por incendios en una isla del océano Pacífico, se encuentra delimitada por la playa y los puntos mostrados en la figura.

area devastada por incendio perfil

Se dispone de algunos puntos de referencia tomados desde imágenes de satélites mostrados en la tabla.

a. Plantear el ejercicio indicando el método de integración numérica a usar. Justifique su selección.

b. Desarrolle el método para los datos de la frontera superior

c. Realice los cálculos para la frontera inferior delimitada por playa

d. Estime la cota de error en los cálculos.

Frontera superior

X 350 300 350 420 444 484 504 534 568 620 660 720 780 740 800 800
Y 0 315 315 315 320 336 400 415 462 510 550 550 490 390 390 150

Frontera inferior

X 350 459 666 800
Y 0 63 130 150

Rúbrica: literal a (5 puntos), literal b (10 puntos), literal c (5 puntos), literal d (5 puntos)

xs = [350, 300, 350, 420, 444, 484, 504, 534, 568, 620, 660, 720, 780, 740, 800, 800]
fs = [0, 315, 315, 315, 320, 336, 400, 415, 462, 510, 550, 550, 490, 390, 390, 150]
xi = [350, 459, 666, 800]
fi = [0, 63, 130, 150]

Referencia: Incendios forestales devastan partes de la isla de Maui. DW español. 11 agosto 2023.

2Eva_2023PAOI_T1 Material para medalla de academia

2da Evaluación 2023-2024 PAO I. 29/Agosto/2023

Tema 1 (30 puntos) medalla area con integral numerico
Una academia encarga a un joyero un modelo de medalla cuyo costo unitario se determina por el área descrita entre las funciones f(x) y g(x) presentadas.

Se considera que el grosor de la medalla es único e independiente de la forma de la medalla.

f(x) = 2-8\Big( \frac{1}{2} - x \Big)^2 0 \le x \lt 1 g(x) = -\Big( 1-x\Big)\ln \Big( 1- x \Big)

Para el desarrollo numérico, use diferentes métodos de Simpson para cada función.

a. Realice el planteamiento de las ecuaciones para el ejercicio.

b. Describa el criterio usado para determinar el número de tramos usado en cada caso.

c. Desarrolle las expresiones completas del ejercicio para cada función.

d. Indique el resultado obtenido para el área requerida y la cota de error.

e. Encuentre el valor del tamaño de paso si se requiere una cota de error de 0.00032

Nota: en Python ln(x) se escribe np.log(x).

Rúbrica: literal a (5 puntos), literal b (5 puntos), literal c (10 puntos), literal d (5 puntos), literal e (5 puntos)

Referencia: Star Trek https://intl.startrek.com/
¿A quien se le ocurrió crear la moneda? | Discovery en Español Youtube.com 8 nov 2016.

2Eva_2022PAOII_T1 Altura de cohete en 30 segundos

2da Evaluación 2022-2023 PAO II. 24/Enero/2023

Tema 1. (30 puntos) La velocidad hacia arriba de un cohete se calcula con la fórmula:

v = u \ln\Big(\frac{m_0}{m_0-qt}\Big) - gt

Donde:https://www.debate.com.mx/Las-increibles-imagenes-del-lanzamiento-del-cohete-mas-potente-del-mundo-l201802060004.html
v   = velocidad hacia arriba,
u   = 1800 m/s, velocidad a que se expele el combustible en relación con el cohete,
m0 = 160 000 kg, masa inicial del cohete en el tiempo t = 0,
q    = 2 500 kg/s,  tasa de consumo de combustible y
g    = 9.8 m/s2, aceleración de la gravedad

Para determinar la altura alcanzada por el cohete en un vuelo de 30 segundos desarrolle la parte analítica con los siguientes métodos y compare los resultados.

a. Utilice la regla de Simpson, en el planteamiento incluya la cantidad de tramos o segmentos a usar

b. Use el método de cuadratura de Gauss para la misma cantidad de segmentos que el literal anterior

c. Compare y comente los resultados, sobre los errores entre los métodos.

Rúbrica: Planteamiento de tramos (5 puntos), integral con Simpson (10 puntos), cuadratura de Gauss (10 puntos), literal c (5 puntos).

Referencia: Chapra ejercicio 24.46 p701. NASA y SpaceX realizan con éxito el despegue del primer vuelo de EE. UU. hacia la Estación Espacial Internacional en nueve años. EFE 30 mayo 2020 https://youtu.be/npcgpQUKAbg

 

 

2Eva_2022PAOI_T1 Comparar integrales numéricos Simpson y Cuadratura de Gauss

2da Evaluación 2022-2023 PAO I. 30/Agosto/2022

Tema 1. (30 puntos) Determine el área bajo la curva dada por la expresión mostrada para el intervalo de x entre [0,3]:

A = \int_0^3 \frac{e^x \sin(x)}{1+x^2} \delta x

Desarrolle el ejercicio mostrando las expresiones completas para integración numérica usando:

a) Un método de Simpson aplicado al menos dos veces para el intervalo del integral. Determine el tamaño de paso propuesto y el número de puntos necesario para usar un solo método.

b) El método de Cuadratura de Gauss de dos puntos, usando dos tramos en el intervalo.

c) Estime el error de integración para los literales a y b. Compare los resultados obtenidos.

Rúbrica: Literal a. tamaño de paso (5 puntos) expresiones correctas y completas (10 puntos), literal b (10 puntos), literal c (5 puntos)

Referencia: Chapra 5Ed. ejercicio 22.14 p667

3Eva_2021PAOII_T1 Area con derrame de petroleo usando Simpson

3ra Evaluación 2021-2022 PAO II. 8/Febrero/2022

Tema 1. (30 puntos) Se reportó un derrame de petróleo del pasado 15 de enero del 2022 en una refinería en el vecino país del sur,
que contaminó al menos 24 playas de la costa central, según indicó el organismo de la Dirección General de Salud Ambiental e Inocuidad Alimentaria.

Usando fotografías aéreas, la guardia costera obtuvo las dimensiones del derrame descrita en la figura y en la tabla mostrada:

x 0 100 200 300 400 470 600 700 800 900 1000
f(x) 0 230 310 300 300 320 400 380 320 230 0
g(x) 0 -200 -200 -330 -320 -350 -400 -400 -360 -260 0

a) Estime el área afectada por el derrame de petróleo, usando principalmente los métodos Simpson
b) Justifique el uso de las formulas compuestas usadas
c) Calcule el error del integral, para toda el área

Rúbrica: literal b (5 puntos), literal a, con expresiones detalladas para cada eje (20 puntos), literal c (5 puntos)

Referencia: Tan S.T (1994). Numerical Integration 7.3 Ejercicio 5.Calculus for the managerial, life, and Social sciences.
Eluniverso.com Derrames de petróleo, una lamentable afectación que es habitual a la región. 31 de enero, 2022. https://www.eluniverso.com/noticias/internacional/derrames-de-petroleo-una-lamentable-afectacion-que-es-habitual-a-la-region-nota/

x  = [0.0, 100, 200, 300, 400, 470, 600, 700, 800, 900, 1000]
fx = [0.0, 230, 310, 300, 300, 320, 400, 380, 320, 230, 0]
gx = [0.0,-200,-200,-330,-320,-350,-400,-400,-360,-260, 0]

 

2Eva_2021PAOII_T1 Promedio de precipitación de lluvia en área

2da Evaluación 2021-2022 PAO II. 25/Enero/2022

Tema 1 (30 puntos) Un mapa asociado al clima muestra los resultados de precipitación que dejó a su paso el Huracán Karl en el año 2010.

Se registró entre 4 a 8 pulgadas de lluvia. El área en observación tiene una extensión de 300 millas de este a oeste y 250 millas de norte a sur.

f(xi,yj)
i \ j 1 2 3 4 5 6
1 0.02 0.36 0.82 0.65 1.7 1.52
2 3.15 3.57 6.25 5 3.88 1.8
3 0.98 0.98 2.4 1.83 0.04 0.01
4 0.4 0.04 0.03 0.03 0.01 0.08

Para las mediciones, se divide el área del mapa en 6 tramos para el eje x, 4 tramos para el eje y, con lo que se encuentran los valores presentados en la tabla.

a) Determine los valores para Δx, Δy.

b) Estime al promedio de precipitación lluviosa en toda el área para los datos registrados para dos días, usando la forma compuesta de Simpson.

f_{promedio} = \frac{1}{A_R} \int \int_R f(x,y) \delta x \delta y

c) Calcule el error del integral

Rúbrica: literal a (5 puntos), literal b, con expresiones detalladas para cada eje (20 puntos), literal d (5 puntos)

Referencia: Stewart. Calculus Example 15.1.10: Calculating Average Storm Rainfall.


A = [[0.02, 0.36, 0.82, 0.65, 1.7 , 1.52],
     [3.15, 3.57, 6.25, 5.  , 3.88, 1.8 ],
     [0.98, 0.98, 2.4 , 1.83, 0.04, 0.01],
     [0.4 , 0.04, 0.03, 0.03, 0.01, 0.08]]
base = 300
altura = 250

3Eva_2021PAOI_T4 Integral con Cuadratura Gaussiana

3ra Evaluación 2021-2022 PAO I. 14/Septiembre/2021

Tema 4 (30 puntos) Aproximar el siguiente integral usando Cuadratura Gaussiana

\int_0^{\pi/4} x^2 \sin (x) \delta x

a) Usado dos segmentos o tramos, y para dos puntos, n=2

b) compare sus resultados con n=3

c) Calcule error entre resultados

Referencia: Burden 8th Edition. Ejercicios 4.7 d.

Rúbrica: Planteo del ejercicio (5 puntos), literal a, con expresiones y valores completos (10 puntos), literal b, con n=3 (10 puntos). literal c (5 puntos).