1Eva_2021PAOII_T1 Interpolación para perfil de terreno

1ra Evaluación 2021-2022 PAO II. 24/Noviembre/2021

Tema 1. (30 puntos) Para el diseño de los enlaces radioeléctricos “punto a punto” se analiza “Zona de Fresnel” que para una buena propagación de señal debe estar libre de obstrucciones.

La altura o perfil del terreno muestra la sección que produce atenuación en la señal del enlace.

La tabla muestra el perfil para un enlace donde se requiere analizar el intervalo entre 0 y 1300 metros desde la antena ubicada en el extremo izquierdo.

distancia d1 0 350 700 1000 1300 1600 2000 3000 3300 3500 3700
Perfil de Terreno 85 95 90 80 75 70 20 25 42 21 71

a. Plantee y desarrolle un polinomio P3(d1) de grado 3, que describa el perfil del terreno en el intervalo [0,1300] de distancias a la primera antena d1.
b. Calcule el error sobre el o los datos que no se usaron en el intervalo
c. Desarrolle y justifique una propuesta para disminuir los errores encontrados en el literal anterior, sobre el mismo intervalo, es decir obtiene un nuevo polinomio (use algoritmo).
d. Escriba sus conclusiones y recomendaciones sobre los resultados obtenidos entre los dos polinomios.

Rúbrica: literal a (10 puntos), literal b (4 puntos), literal c (10 puntos), literal d (6 puntos)

Referencia: Zona de Fresnel. https://es.wikipedia.org/wiki/Zona_de_Fresnel

1Eva_2021PAOI_T3 Interpolar, modelo de contagios 2020

1ra Evaluación 2021-2022 PAO I. 6/Julio/2021

Tema 3 (35 puntos) Para evaluar las medidas de confinamiento aplicadas durante el año 2020 se requiere de un modelo del comportamiento de contagios por unidad de tiempo.

Se disponen de los datos de casos graves por semana mostrados en la tabla y se busca obtener un polinomio de interpolación de grado 4 semejante al mostrado en la figura.

Semana Fecha casos graves
9 2/3/2020 1435
10 9/3/2020 1645
11 16/3/2020 1503
12 23/3/2020 3728
13 30/3/2020 7154
14 6/4/2020 6344
15 13/4/2020 4417
16 20/4/2020 3439
17 27/4/2020 2791
18 4/5/2020 2576
19 11/5/2020 2290
20 18/5/2020 2123
21 25/5/2020 2023
22 1/6/2020 2067
23 8/6/2020 2163
24 15/6/2020 2120
25 22/6/2020 2125

a. Desarrolle el polinomio de interpolación usando los puntos sombreados en la tabla, correspondientes a las semanas 11, 13, 16, 18 y 20.

b. Calcule los errores en el intervalo sobre los datos que no se usaron entre las semanas [11,20]

c. Desarrolle y justifique una propuesta para disminuir los errores encontrados en el literal anterior, sobre el mismo intervalo, es decir obtiene un nuevo polinomio.

d. Calcule los errores en el intervalo para el modelo del literal c y compare con los obtenidos en el literal b.

e. Escriba sus conclusiones y recomendaciones sobre los resultados obtenidos entre los dos polinomios.

Rúbrica: literal a (7 puntos), literal b (5 puntos), literal c (10 puntos), literal d (5 puntos), literal e (8 puntos)


xi = [    9,   10,   11,   12,   13,   14,
         15,   16,   17,   18,   19,   20,
         21,   22,   23,   24,   25,   26 ]
fi = [ 1435, 1645, 1503, 3728, 7154, 6344,
       4417, 3439, 2791, 2576, 2290, 2123,
       2023, 2067, 2163, 2120, 2125, 2224 ]

Referencia:
– Eluniverso.com. 2/07/2021. Casos de coronavirus en Ecuador al viernes 2 de julio: 461.157 confirmados, 21.623 fallecidos y 1′416.916 vacunados. https://www.eluniverso.com/noticias/ecuador/coronavirus-covid-19-ecuador-cifras-vacunados-casos-contagios-muertes-9-junio-2021-nota-18/ .

https://flo.uri.sh/visualisation/5585865/embed

– BBC News Mundo. La “doble curva” del coronavirus y el “falso dilema” entre salvar vidas o la economía. 8/mayo/2020. https://youtu.be/SlTSFkTsZL8

3Eva_IIT2019_T4 completar polinomio de interpolación

3ra Evaluación II Término 2019-2020. 11/Febrero/2020. MATG1013

Tema 4. (25 puntos) Una función f(x) en el intervalo [0,1] está definida por el trazador cúbico natural S(x):

S_0(x) = 1 + 1.1186x + 0.6938 x^3

 0.0 ≤ x ≤ 0.4

S_1(x) = 1.4918 + 1.4516(x-0.4) + c(x-0.4)^2 +d(x-0.4)^3

0.4 ≤ x ≤ 0.6

S_2(x) = 1.8221 + 1.8848(x-0.6) + +1.3336(x-0.6)^2 - 1.1113(x-0.6)^3

0.6 ≤ x ≤ 1.0

Sin embargo, el papel donde se registraron los polinomios sufrió un percance que no permite leer algunos valores para S1(x).

a) Realice las operaciones necesarias para encontrar os valores: c, d
b) Use el método de Newton para resolver la ecuación S(x) = 1.6

Rúbrica: plantear las condiciones(10 puntos), resolver el sistema (5 puntos), literal b (10 puntos)

3Eva_IIT2019_T1 Lanzamiento de Cohete

3ra Evaluación II Término 2019-2020. 11/Febrero/2020. MATG1013

Tema 1. (25 Puntos)
En el lanzamiento de un cohete se midieron las alturas alcanzadas a intervalos regulares de tiempo, mostradas en la siguiente tabla:

t s 0 25 50 75 100 125
y(t) Km 0 32 58 78 92 100

Usando tres puntos, se requiere obtener el polinomio de grado 2 que describe la función de altura y(t) a partir de los datos obtenidos, usando interpolación

a) Realice la tabla de diferencias finitas
b) Plantee el polinomio de interpolación con diferencias finitas avanzadas
c) A partir del polinomio obtenido, escriba las funciones de velocidad y’(t)
y aceleración y’’(t) en cada punto de la tabla

Rúbrica: literal a (5 puntos) literal b (5 puntos), literal c (15 puntos)

Referencias: Batalla por la luna, el programa Apolo.History Latinoamérica

1Eva_IIT2019_T2 Proceso Termodinámico

1ra Evaluación II Término 2019-2020. 26/Noviembre/2019. MATG1013

Tema 2. (20 puntos).  Para simular la disminución de la temperatura en un proceso termodinámico,
un algoritmo evolutivo necesita usar un polinomio para aproximar en el intervalo [0,4] la función f con regla de correspondencia

f(x)=e^{-0.5x}

con constante k = 0.5

Para construir el mencionado polinomio, considere la tabla:

x 0 1 2 3 4
f(x) f(0) f(1) f(2) f(3) f(4)

a) Aplique interpolación polinomial y aproxime el valor de f(2.4) usando un polinomio de grado 2.

b) Encuentre una cota superior para el error de interpolación en la aproximación de f(1.7)}

Rúbrica: literal a (15 puntos), literal b (5 puntos)

3Eva_IT2019_T2 Integral con interpolación

3ra Evaluación I Término 2019-2020. 10/Septiembre/2019. MATG1013

Tema 2. (40 Puntos) Construya un polinomio que aproxime a

f(x) = sin(\pi x)

usando los puntos x=0, π/4, π/2 y aproxime la integral de 0 a π/2.

a. Realice la interpolación mediante el método de trazador cúbico fijo

b. Integre usando el método de cuadratura de Gauss

c. Estime el error para el ejercicio.

Rúbrica: Bosquejo de gráficas (5 puntos), literal a, planteo de fórmulas (5 puntos), calcula los parámetros (10 puntos), literal b (15 puntos), literal c (5 puntos).

1Eva_IT2019_T1 Oxígeno y temperatura en agua

1ra Evaluación I Término 2019-2020. 2/Julio/2019. MATG1013

Tema 1. (40 puntos) La concentración de oxígeno disuelto a nivel del mar en agua dulce es función de la temperatura o(T)

T (℃) 0 8 16 24 32 40
o (mg/L) 14.6 11.5 9.9 8.4 7.3 6.4

a) Con los siguientes datos, encuentre un modelo polinómico de grado 3 y estime la concentración para la temperatura de 15 grados y estime el error.

b) Usando el polinomio del literal a, aproxime la derivada de la concentración de oxígeno en función de la temperatura en T = 16 grados.

c) Usando el polinomio del literal a y el método de la bisección encuentre T cuando o=9 mg/L, con una tolerancia de 10-3

Rúbrica: literal a, plantear polinomio (15 puntos), interpolar (5 puntos), literal b obtener derivada (5puntos), evaluar derivada (5 puntos) literal c, selección de rángo de búsqueda (3 puntos) desarrollo de al menos tres iteraciones (7 puntos)


Nota: Todos los temas deben mostrar evidencia del desarrollo del método numérico planteado.

tm = [0.,8,16,24,32,40]
ox = [14.6,11.5,9.9,8.4,7.3,6.4]

Referencia: Chapra 5ed, problema 19.15 p576, pdf600.  1Eva_IIT2014_T3 Oxigeno y temperatura en mar,
http://blog.espol.edu.ec/analisisnumerico/1eva_iit2014_t3-oxigeno-y-temperatura-en-mar/.

La «gigantesca» reserva de agua dulce hallada bajo el océano Atlántico (y qué esperanzas brinda para las zonas áridas del planeta). eluniverso.com 25/junio/2019.
https://www.eluniverso.com/noticias/2019/06/25/nota/7394484/gigantesca-reserva-agua-dulce-hallada-bajo-oceano-atlantico-que

 

 

1Eva_IIT2018_T3 Interpolar con sistema de ecuaciones

1ra Evaluación II Término 2018-2019. 10/Noviembre/2018. MATG1013

Tema 3. Encuentre el polinomio:

p_2(x) = b_0 + b_1x + b_2 x^2

tal que se ajuste a tres puntos de y(x) para x = 1.0, 1.5 y 2.1 de la tabla presentada.
Resuelva usando un sistema de ecuaciones.

x 1.0 1.1 1.3 1.5 1.9 2.1
y(x) 1.84 1.90 2.10 2.28 2.91 3.28

a) Plantee el sistema Ax=B resultante con las variables b0, b1, b2

b) Calcule ||Tj||  y comente

c) Encuentre el número de condición K(A) =||A||||A-1||  y comente

d) Resuelva el sistema con el método de eliminación de Gauss

1Eva_IIT2018_T1 Interpolar velocidad del paracaidista

1ra Evaluación II Término 2018-2019. 10/Noviembre/2018. MATG1013

Tema 1. Un paracaidista con masa de 75 Kg salta de un globo aerostático fijo.https://www.dreamstime.com/stock-photo-skydiving-formation-group-people-image62015024

La velocidad del paracaidista se registra como se indica en la tabla.

t [s] 0 2 4 6 8
v(t) [m/s] 0.0 16.40 27.77 35.64 41.10

a) Construya un polinomio P2(t) para 0 ≤ t ≤ 8

b) Mediante integración encuentre la distancia recorrida en el tiempo de 0 a 8 segundos.


t = [0.0, 2, 4, 6, 8]
v = [0.0, 16.40, 27.77, 35.64, 41.10]

3Eva_IT2018_T2 Drenaje de estanque

3ra Evaluación I Término 2018-2019. 11/Septiembre/2018. MATG1013

Tema 2. (40 puntos) Un estanque se drena a través de un tubo como se observa en la figura.

Con suposiciones simplificadoras, la ecuación diferencial siguiente describe cómo cambia la profundidad con el tiempo:

\frac{dh}{dt} = -\frac{\pi d^2}{4A(h)}\sqrt{2g(h+e)}

 
Donde:
h = profundidad (m),
t = tiempo (s),
d = diámetro del tubo (m),
A(h) = área de la superficie del estanque como función de la profundidad (m2),
g = constante gravitacional (9,81 m/s2) y
e es la profundidad de salida del tubo por debajo del fondo del estanque (m).

Con base en la tabla siguiente de área-profundidad, resuelva esta ecuación diferencial para determinar cuánto tiempo tomaría que el estanque se vacie, dado que h(0) = 6 m, d = 0.25 m, e = 0.3 m.

h 6 5 4 3 2 1 0
A(h) 1.17 0.97 0.67 0.45 0.32 0.18 0.02

a) Con las profundidades 0, 2, 4, 6, encuentre un modelo de trazador cúbico natural para modelar el área A(h) y calcule el error en h = 5 m

b) Use el método de Taylor de segundo orden con dt=1 s para aproximar el tiempo en que la profundidad es 3 m.

Rúbrica: literal a (20 puntos), literal b (20 puntos)


hi = np.array([6, 5, 4, 3, 2, 1, 0])
Ai = np.array([1.17, 0.97, 0.67, 0.45, 0.32, 0.18, 0.02])

Referencia: Chapra Ejercicio 28.24 p849, pdf873

Video: La ambiciosa Represa Hoover – INEXPLICABLE. History Latinoamérica.