1Eva_2023PAOII_T2 Trayectoria de buque en puerto

1ra Evaluación 2023-2024 PAO II. 21/Noviembre/2023

Tema 2. (40 puntos) El DPS (Dynamic Positioning System) controla automáticamente la posición y el rumbo de un barco usando propulsión activa mediante un ordenador y una variedad de sistemas y funciones.

trayectoria buque 01En el caso de entradas a puertos comerciales de alto tráfico y limitado espacio se convierten el una herramienta indispensable para gestionar las recorridos de ingreso o salida.

Suponga que como primer paso para planificar una ruta de un barco de contenedores, minimizando el gasto de energía usando la inercia del barco se planifica una ruta siguiendo los puntos de marca indicados en la tabla.

Puntos referenciales para la ruta
x 0.1 2.0 4.0 5.0 7.0
y 1.0 8.0 0.0 -1.0 3.0

a. Plantee el ejercicio usando un polinomio de interpolación y un sistema de ecuaciones.

b. Establezca la forma matricial del sistema de ecuaciones (Vandermonde) y como matriz aumentada

c. De ser necesario realice el pivoteo parcial por filas

d. Use el método directo Gauss, desarrolle todas las expresiones de las operaciones que realiza el algoritmo numérico. Estime la tolerancia y justifique.

e. Comente sobre la convergencia del método si usara un método iterativo. (número de condición)

f. Adjunte los archivos: algoritmos.py, resultados.txt y gráfica.png del polinomio.

x = [0.1,2.0,4.0,5.0,7.0]
y = [1.0,8.0,0.0,-1.0,3.0]

Rúbrica: literal a (5 puntos), literal b (5 puntos), literal c (5 puntos), literal d (15 puntos), literal e (5 puntos), literal f (5 puntos).

Referencia: [1] Gigante buque ingresa a las terminales portuarias de Guayaquil. El Universo. 18 Ene 2020. https://youtu.be/X5S9x53Z_mY?
[2] Reportan congestión de buques de carga en puertos de EE.UU. Noticias Telemundo. 22 sept 2021.

[3] Colisiones y errores de barcos jamás capturados en cámara. 21 oct 2023.

 

3Eva_2023PAOI_T1 Matriz cadena de Markov

3ra Evaluación 2023-2024 PAO I. 12/Septiembre/2023

Tema 1 (25 puntos) Un call-center para soporte técnico de una mediana empresa se conforma de una recepcionista y dos técnicos. Se considera como “satisfecho” al cliente si su llamada fue procesada por la recepcionista y cualquiera de los técnicos.

call center diagrama Markov

La probabilidad PRT de atención a llamadas se modelan con un sistema de ecuaciones (cadena de Markov) que al ser resuelta muestra probabilidad de encontrarse en cada estado.

λ P00 = μT P01

T + λ) P01 = 2 μT P02 + μR P10

(2 μT + λ) P02 = μR P11 + μR P12

μR P10 = λ P00 + μT P11

R + μT) P11 = λ P01 +  2 μT P12

R + 2 μT) P12 = λ P02

La suma de probabilidades es uno.

P00 + P01 + P02 + P10 + P11+ P12 = 1

λ = 1/10, μR = 1/3, μT =1/15

Los estados descritos en la gráfica y ecuaciones expresan el proceso de atención:
– En una llamada, los clientes son atendidos por la recepcionista que toma los datos y redirige la llamada a uno de los técnicos disponible (libre).
– Si un cliente llama mientras la recepcionista está ocupada, el cliente recibe tono de ocupado y cierra.
– Si ambos técnicos están disponibles, se selecciona uno con igual probabilidad.
– Si solo hay un técnico disponible, se le asigna la llamada.
– Si los dos técnicos están ocupados, se pierde la llamada.

Los tiempos de atención y llamadas siguen distribuciones exponenciales: recepcionista es de 3 minutos (μR = 1/3), por técnico es de 15 minutos (μT =1/15). Los clientes llaman a intervalos de 10 minutos (λ = 1/10).

a. Plantee el sistema de ecuaciones, reemplazando la última ecuación con la que indica que la suma de probabilidades por cada estado PRT suma 1.

b. Establezca la forma matricial del sistema de ecuaciones y como matriz aumentada

c. De ser necesario realice el pivoteo parcial por filas.

d. Comente sobre la convergencia del sistema de ecuaciones y justifique sus observaciones usando los errores entre iteraciones o número de condición.

e. Use un método directo, realizando al menos 3 iteraciones con todas las expresiones.

Rúbrica: literal a (2 puntos), literal b (5 puntos), literal c (3puntos), literal d (5 puntos), literal e (10 puntos).

Referencia: [1] 1Eva_IT2017_T3 Call Center Operadora y Dos Técnicos. ESTG1003-Blog de procesos estocásticos. http://blog.espol.edu.ec/estg1003/1eva_it2017_t3-call-center-operadora-y-dos-tecnicos/
[2] Cadenas de Markov 01 Introducción. Goal Project. 30 agosto 2021.

1Eva_2022PAOI_T3 Interpolar crecimiento de contagios

1ra Evaluación 2022-2023 PAO I. 5/Julio/2022

Tema 3. (35 puntos). Según los reportes epidemiológicos para el mes de junio-2022, se presenta un aumento de resultados positivos de COVID-19.

Un médico especialista indica que entre los motivos para transmisión y contagio se encuentran que no se usan las mascarilla y las aglomeraciones como las presentadas durante el paro nacional.

Para las últimas semanas, los resultados han pasado desde 1%, 5.6 %, 27 % y hasta 43.5 %.

Día del mes 1 8 15 22
Contagios 1 5.6 27 43.5

Para un análisis de comportamiento de contagios durante el mes, se requiere disponer de un polinomio de interpolación de grado 3 que describa el comportamiento de los contagios.

a) Realice el planteamiento del sistema de ecuaciones que se usaría usando el método de interpolación polinómica.

b) Realice el planteamiento del sistema de ecuaciones en su forma matricial y muestre la matriz aumentada.

c) Desarrolle el pivoteo parcial por filas, indicando las operaciones realizadas en éste proceso

d) Usando el método directo de Gauss-Jordan, muestre las expresiones necesarias para el algoritmo.

e) Para el día 19 se encuentra que el valor correspondiente a contagios es de 37%. Estime el error presentado del modelo para ese día.

f) Desarrolle el ejercicio usando otro método para encontrar el polinomio de interpolación.

Rúbrica: literal a (5 puntos), literal b (2 puntos), literal c (5 puntos), eliminación hacia adelante (5 puntos), eliminación hacia atrás (5 puntos) literal e (3 puntos), literal f (10 puntos).

Referencias: El nivel de positividad para COVID-19 llega a un 40 %; ingresos hospitalarios son pocos, pero aglomeraciones por el paro ponen en alerta a epidemiólogos. Eluniverso.com 4-julio-2022.

https://www.eluniverso.com/noticias/ecuador/nivel-de-positividad-para-covid-19-llega-a-un-40-ingresos-hospitalarios-son-pocos-pero-aglomeraciones-en-el-paro-indigena-ponen-en-alerta-a-epidemiologos-nota/?modulo=destacadas-dos

Ligero incremento de casos de covid-19 en Ecuador. elcomercio.com 17-mayo-2022. https://www.elcomercio.com/tendencias/sociedad/ligero-incremento-casos-covid19-ecuador.html

3Eva_2021PAOI_T1 Tensiones en cables por carga variable

3ra Evaluación 2021-2022 PAO I. 14/Septiembre/2021

Tema 1 (20 puntos) Una carga P está sostenida por dos cables como se muestra en la figura.

Las ecuaciones de equilibrio del sistema corresponden a:

\sum^n{F_x = 0} -T_{CA} \cos (\alpha) + T_{CB} \cos (\beta) + P \sin (\theta) = 0 \sum^n{F_y = 0} T_{CA} \sin (\alpha) + T_{CB} \sin (\beta) - P \cos (\theta) = 0

Se requiere determinar la tensión en cada cable para cualquiera de los valores de P y θ que se encuentran desde θ1=β-90° hasta θ2=90°- α , con incrementos dados Δθ.

Usando un algoritmo numérico con método directo para solución de un sistema de ecuaciones, determine para los siguientes conjuntos de  números: La tensión en cada cable para los valores de θ  que van de θ1 a θ2.

α = 35°, β = 75°, P = 400 lb, Δθ = 5°
α = 50°, β = 30°, P = 600 lb, Δθ = 5°
α = 40°, β = 60°, P = 2500 lb, Δθ = 5°

Nota: Observe que los valores de ángulos están presentados en grados sexagesimales

Referencia: Ferdinand P. Beer, E. Johnston, E. Eisenberg. 9va Ed. Cap2. Ejercicio 2.C4 Mecánica vectorial para ingenieros – Estática

Rúbrica: Planteamiento del problema (5 puntos), desarrollo del método directo (10 puntos), algoritmo (5 puntos)

1Eva_2021PAOI_T2 Atención hospitalaria con medicamentos limitados

1ra Evaluación 2021-2022 PAO I. 6/Julio/2021

Tema 2 (35 puntos) Durante el año 2020, ante el aumento de atención hospitalaria estatal en la región y el limitado acceso a medicamentos, como una primera estrategia de manejo de recursos se derivan el exceso de pacientes hacia la atención en hospitales privados.

En la tabla  se muestra la cantidad de los tres medicamentos (mg, ml) que se administran al atender a cada paciente clasificado por grupo etario: niños, adolescentes, adultos y adultos mayores.

También se dispone del total de medicamentos existente en bodegas en cada semana.

Niños Adolescentes Adultos Adultos Mayores Medicamentos /semana
Medicamento_A 0.3 0.4 1.1 4.7 3500
Medicamento_B 1 3.9 0.15 0.25 3450
Medicamento_C 0 2.1 5.6 1.0 6500

Es de interés conocer la cantidad de pacientes de cada grupo que se podría atender con los recursos disponibles.

a.  Realice el planteamiento de un sistema de ecuaciones que permita determinar la cantidad máxima de pacientes de cada grupo etario que podrían ser atendidos usando todos los medicamentos disponibles.

Una vez planteadas las ecuaciones, se le indica que la capacidad K para pacientes niños sea una variable libre, por consumir menos recursos y se podrían derivar al sistema privado.

b.  Escriba el conjunto de soluciones posibles en función de la variable libre, considerando la cantidad de niños a atender como máximo de K=100.

c. Determine la capacidad de atención usando un método Iterativo con una tolerancia de 10-2. Realice tres iteraciones completas y revise la convergencia del método. Se estima atender al inicio de semana al menos 100 pacientes de cada grupo.

d. Suponga que la cantidad de pacientes en cada grupo para una semana dada es: [350, 1400, 1500, 1040]. ¿Hay suficiente cantidad de medicamentos para atender el promedio actual de pacientes? Analice y describa los resultados encontrados.

e. Si se decide vacunar primero a todos los niños, entonces ya no requieren atención hospitalaria (K=0) ¿Cuál es el número máximo de pacientes de cada grupo que podría incrementarse dadas las condiciones actuales? Resuelva usando un método directo.

Rúbrica: literal a (3 puntos), literal b (2 puntos), pivoteo por filas(5 puntos), iteraciones (10 puntos), análisis de convergencia (4 puntos), literal d (5 puntos) literal e (6 puntos)

Referencias:
– BBC News Mundo. El país que está vacunando contra el covid-19 primero a los jóvenes y no a los ancianos. 16/enero/2021. https://youtu.be/oo2itoBBwyY

– Manejo clínico de la COVID-19, orientaciones provisionales 27/mayo/2020. https://apps.who.int/iris/bitstream/handle/10665/332638/WHO-2019-nCoV-clinical-2020.5-spa.pdf

1Eva_IT2019_T3 Vector perpendicular a plano

1ra Evaluación I Término 2019-2020. 2/Julio/2019. MATG1013

Tema 2. ( 30 puntos) Considere los siguientes vectores:
V1 = (2,-3,a)
V2=(b,1,-4)
V3= (3,c,2)

Se sabe que V1 es perpendicular a V y V3.

También se sabe que V2.V3=2.

Use un método para encontrar el valor de las incógnitas a,b,c

a) Plantee el sistema

b) Resuelva con el método de eliminación de Gauss

c) Vuelva a resolver con el método de Jacobi con x(0) = [0,0,0], realice tres iteraciones

d) Encuentre el residuo, cota del error absoluto y relativo

Rúbrica: literal a (5 puntos), literal b, ordenar las ecuaciones(5 puntos), método Gauss (10 puntos);  literal c, aplicarJacobi (5 puntos), literal d (5 puntos)


Notas:
– Todos los temas deben mostrar evidencia del desarrollo del método numérico planteado.
– En geometría euclídea se tiene, dos vectores v1 y v2 que son ortogonales forman un ángulo recto, por lo tanto v1 ⋅ v2 = 0. https://es.wikipedia.org/wiki/Ortogonalidad_(matem%C3%A1ticas)

Referencia: Chapra 5ed. problema 10.18 p304, pdf 328.

3Eva_IIT2008_T2_MN Sistema de ecuaciones

3ra Evaluación II Término 2008-2009. 3/Marzo/2009. ICM02188 Métodos Numéricos

Tema 2. (30 puntos) Dado el sistema de ecuaciones lineales AX=B:

A = [a_{i,j}], B = [b_i] a_{i,j} = \frac{1}{i+j-1}, b_i = i^{2} 1\leq i,j\leq 3

a. Determine el nivel de mal condicionamiento de A con la definición:

cond(A) = ||A|| ||A-1||

b. Obtenga el vector solución X e indique si esta solución es confiable.

Use el método de Gauss-Jordan partiendo de la matriz aumentada, A|B|I. Al transformar la matriz A en I, las transformaciones aplicadas simultáneamente al vector B, lo convertirán en la solución. El proceso también afecta a la matriz I que se convierte en A-1 .

Use 4 decimales sin redondear en sus cálculos.

1Eva_IT2015_T4 Lingotes metales

1ra Evaluación I Término 2015-2016. 7/julio/2015. ICM00158

Tema 4. (25 puntos) Se tienen cuatro lingotes de 100 gramos, cada uno  compuesto de la forma mostrada en la tabla.

Se requiere determinar el peso en gramos que debe tomarse de cada uno de los cuatro lingotes anteriores para formar un nuevo lingote de 100 gramos que contenga:

27 gramos de oro, 39.5 gramos de plata, 14 gramos de cobre y 19.5 gramos de estaño.

Composición (gramos)
Oro Plata Cobre Estaño
Lingote 1 20 50 20 10
Lingote 2 30 40 10 20
Lingote 3 20 40 10 30
Lingote 4 50 20 20 10

a) Plantee un modelo matemático para describir este problema

b) Describa un método numérico directo para encontrar la solución.
Muestre evidencia suficiente del uso del método numérico

c) Encuentre una cota para el error en la solución calculada y comente.

Rúbrica: literal a (7 puntos), literal b (10 puntos), literal c (8 puntos)


compuesto = np.array([[ 20, 50, 20, 10],
                      [ 30, 40, 10, 20],
                      [ 20, 40, 10, 30],
                      [ 50, 20, 20, 10]])
proporcion = np.array([ 27, 39.5, 14, 19.5])

1Eva_IT2012_T3_MN Resolver con Gauss-Jordan

1ra Evaluación I Término 2012-2013. 3/Julio/2012. ICM02188 Métodos Numéricos

TEMA 3. (35 puntos) Con los mismos datos de las matrices T y D del problema anterior, se decide resolver el sistema mediante el método de Gauss-Jordan, para lo cual la ecuación inicial X = TX + D se la reescribe en la siguiente forma:

(IT)X = D

en donde I es la matriz identidad.

a) Obtenga la solución transformando la matriz de coeficientes IT aumentada con el vector D.
Adjunte adicionalmente una matriz identidad que al ser transformada simultáneamente proporcione la inversa de la matriz de coeficientes

b) Calcule el número de condición de la matriz de coeficientes y comente al respecto. Use la norma de fila.

1Eva_IIT2011_T3_MN Producir un producto adicional

1ra Evaluación II Término 2011-2012. 29/Noviembre/2011. ICM02188 Métodos Numéricos

Tema 3. En el problema anterior, la empresa ha decidido fabricar un producto adicional D con la siguiente composición y con la misma cantidad de insumos disponibles semanales.

Sea t la cantidad del producto D que se producirá semanalmente (t≥0)

Insumo1 Insumo2 Insumo3
Producto D  3 2  2

a) encuentre el conjunto solución para x, y ,z, en términos de la variable independiente t

b) Encuentre el rango de producción posible del producto D, y con éste rango encuentre el rango de producción posible para los otros tres productos.