1Eva_IIT2019_T3 Circuito eléctrico

1ra Evaluación II Término 2019-2020. 26/Noviembre/2019. MATG1013

Tema 3. (30 puntos) El sistema de ecuaciones que sigue se generó por medio de aplicar la ley de malla de corriente al circuito de la figura.

\begin{cases} 55 I_1 - 25 I_4 = -200 \\ -37 I_3 - 4 I_4 = -250 \\ -25 I_1 - 4 I_3 + 29 I_4 = 100 \end{cases}

a) Use el método de eliminación de Gauss para calcular I1, I3, I4, I1 observando que
I2 = -10

b) Encuentre la norma infinita de la matriz de transición T en el método de Jacobi y comente.

c) Con el método de Gauss-Seidel realice tres iteraciones comenzando con el vector cero. Además en la tercera iteración, encuentre una cota para el error relativo.

Rúbrica: literal a (12 puntos), literal b (6 puntos), literal c (12 puntos)


A = [[ 55.0, 0,  0, -25],
     [  0  , 0,-37,  -4],
     [-25  , 0, -4,  29],
     [  0  ,  1, 0,   0]]

B = [-200,-250,100,-10]

3Eva_IIT2009_T3 Sistema de ecuaciones

3ra Evaluación II Término 2009-2010. 23/Febrero/2010. ICM00158

Tema 4. (25 puntos) Enunciar el teorema de convergencia del método iterativo para resolver un sistema de ecuaciones lineales AX=B.

Exponer el método iterativo de Gauss-Seidel para sistemas ecuaciones lineales.

Construir un ejemplo de un sistema de 3×3, cuya diagonal principal sea estrictamente dominante y realizar cuatro iteraciones con el método de Gauss-Seidel, comenzando con el vector cero.

1Eva_IIT2014_T2 Componentes eléctricos

1ra Evaluación II Término 2014-2015. 9/Diciembre/2013. ICM00158

Tema 2. Un ingeniero eléctrico supervisa la producción de tres tipos de componentes eléctricos.

Para cada componente se se requieren tres clases de materiales:
metal 1, metal 2 y caucho.

Gramos por componente Metal 1 Metal 2 Caucho
Componente 1 15 0.25 1.0
Componente 2 17 0.33 1.2
Componente 3 19 0.42 1.6

Se requieren disponer de componentes con el mismo desempeño, pero de menor tamaño y no se dispone de mas gramos de material que:

materiales = [2.63, 0.0534, 0.202]

a) Plantee el sistema de ecuaciones

b) Utilice el método de eliminación de Gauss para resolver el sistema

c) Encuentre la matriz de Jacobi y comente sobre la convergencia

d) Realice tres iteraciones con Gauss Seidel y estime el error de la segunda iteración.

e) Encuentre el número de condición y comente.


A = np.array([[15, 0.25, 1.0],
              [17, 0.33, 1.2],
              [19, 0.42, 1.6]])
B = np.array([2.63, 0.0534, 0.202])

1Eva_IIT2011_T2 Sistema de Ecuaciones, diagonal dominante

1ra Evaluación II Término 2011-2012. 29/Noviembre/2011. ICM00158

Tema 2. Considere el sistema AX = B dado por

\begin{cases} -2x+5y+9z=1\\7x+y+z=6\\-3x+7y-z=-26\end{cases}

Arregle el sistema de tal manera que la diagonal de A sea estrictamente dominante.

a) Calcular el valor de ||T||

b) Escribir el algoritmo de Gauss-Seidel.

c) Dado X(0) = 0, iterar hasta que

\frac{||X^{(k)} - X^{(k-1)}||}{||X^{(k)}||} \lt 10^{-4}

Escriba una tabla de resultados.


A = np.array([[-2, 5, 9],
              [ 7, 1, 1],
              [-3, 7,-1]])
B = np.array([1,6,-26])

1Eva_IIT2010_T2 Sistema ecuaciones, X0 = unos

1ra Evaluación II Término 2010-2011. 7/Diciembre/2010. ICM00158

Tema 2. Considere el sistema AX = B dado por:

\begin {cases} 0.4 x + 1.1 y +3.1z = 7.5 \\ 4x + 0.15y + 0.25z = 4.45\\ 2x+5.6y+3.1z=0.1\end{cases}

De ser posible, manipule el sistema de tal forma que se garantice la convergencia del método de Gauss-Seidel, determine la norma de la matriz T.

Determine la solución con éste método con el vector inicial (1,1,1) y con una tolerancia 10-4.


A = np.array([[0.4, 1.1 ,  3.1],
              [4.0, 0.15, 0.25],
              [2.0, 5.6 , 3.1]])
B = np.array([7.5, 4.45, 0.1])
X = np.array([1.0, 1.0, 1.0])
tolera = 1e-4
iteramax = 100

1Eva_IIT2007_T2 Aplicar Gauss-Seidel 6×6

1ra Evaluación II Término 2007-2008. 4/Diciembre/2007. ICM00158

Tema 2. Dadas las matrices:

A = [[7.63, 0.30, 0.15,  0.50, 0.34, 0.84],
     [0.38, 6.40, 0.70,  0.90, 0.29, 0.57],
     [0.83, 0.19, 8.33,  0.82, 0.34, 0.37],
     [0.50, 0.68, 0.86, 10.21, 0.53, 0.70],
     [0.71, 0.30, 0.85,  0.82, 5.95, 0.55],
     [0.43, 0.54, 0.59,  0.66, 0.31, 9.25]]

B = [ -9.44, 25.27, -48.01, 19.76, -23.63, 62.59]

a) Escribir los sistemas AX=B y X=TX+C

b) Determine ||A||, y ||T||

c) Establezca la solución con el método de Gauss-Seidel con una tolerancia de 10-5