3Eva_IIT2011_T1_MN Precios mensuales

3ra Evaluación II Término 2011-2012. 14/Febrero/2012. ICM02188 Métodos Numéricos

Tema 1. (30 puntos) Suponga que el precio de un producto f(x) depende del tiempo x en el que se lo ofrece al mercado con la siguiente relacion:

f(x) = 25x e^{-0.1x} 0\leq x \leq 12

en donde x es tiempo en meses.

Se desea determinar el dia en el que el precio sube a 80.

a. Evalúe f con x en meses hasta que localice una raíz real (cambio de signo) y trace la forma aproximada de f(x)

b. Use el Método de Newton para calcular la respuesta (mes) con precisión 10-4. Exprese esta respuesta en días (1mes = 30 días)

c. Encuentre el día en el cual el precio será máximo. Use el método de Newton con precisión 10-4

1Eva_IIT2010_T3 Raíz de Polinomio

1ra Evaluación II Término 2010-2011. 7/Diciembre/2010. ICM00158

Tema 3. El polinomio P(x) tiene una única raiz positiva.

P(x) = x3 – x2 -x -1

Encuentre un intervalo donde se garantice la existencia de ésta raíz (justifique).

Utilizando el método del punto fijo, presente una tabla que contenga la sucesión de valores, el error

en = | xn – xn-1|, n≥1,

y con un criterio de interrupción del método iterativo de en ≤ 10-9

1Eva_IT2010_T2_MN Uso de televisores

1ra Evaluación I Término 2010-2011. 6/Julio/2010. ICM02188. Métodos Numéricos

Tema 2. La curva de encendido de televisores en la ciudad de Guayaquil está en función de la hora del dia y del día de la semana.

https://www.istockphoto.com/es/vector/familia-feliz-viendo-tv-ilustraci%C3%B3n-de-dibujos-animados-modernos-gente-personajes-gm909440758-250490142

Suponga que en un intervalo de 4 horas, un determinado día , el porcentaje de televisores encendidos está dado por la función:

p(x) =\frac{1}{2.5} \Big(-10 \sin \Big(\frac{12x}{7} \Big) e^{-\frac{24x}{7}} + \frac{48x}{7}e^{-\frac{8x}{7}} + 0.8 \Big)

0≤x≤4

x: Tiempo en horas
p: porcentaje en horas de televisores encendidos

a. Encuentre un intervalo en que se encuentre el máximo de la función p

b. Utilice el método de Newton para encontrar el máximo de la función p. Calcule la respuesta con un error máximo de 0.0001

c. Encuentre el mínimo de la función p en el mismo intervalo de cuatro horas con el mismo método y con la misma precisión anteriores.


Gráfica de referencia

 

1Eva_IT2010_T1_MN Demanda y producción sin,log

1ra Evaluación I Término 2010-2011. 6/Julio/2010. ICM02188 Métodos Numéricos

Tema 1. La demanda de un producto en el intervalo de tiempo [0,3] tiene forma sinusoidal.

Al detectar la demanda, una empresa puede iniciar su producción a partir del instante 1, y la cantidad producida tiene forma logaritmica natural.

Se necesita encontrar el instante a partir del cual, la producción satisface a la demanda del producto.

Use el método de la Bisección para localizar el intervalo de la respuesta y obtenga la respuesta con error menor a 0.01

3Eva_IT2010_T1 Envase cilíndrico

3ra Evaluación I Término 2010-2011. 14/Septiembre/2010. ICM00158

Tema 1. Un envase de lata con forma de cilindro circular recto, será construido para contener 1000 cm3.

Las partes superior e inferior circulares del envase deben tener un radio de 0.25 mayor que el radio de éste, de manera que el excedente pueda usarse para formar un sello con el cuerpo principal.

La hoja de material con la que se forme dicho cuerpo, debe ser también de 0.25 cm más larga que la circunferencia del envase, de manera que se pueda formar un sello.

Encuentre con un error de 10-4 la cantidad mínima de material para construir dicha lata.


Referencias:

 

3Eva_IIT2008_T4 Raices por Newton

3ra Evaluación II Término 2008-2009. 3/Marzo/2009. ICM00158

Tema 4. Con los conocimientos de cálculo diferencial y geometría analítica, deduzca el método de Newton para determinar las raíces de una función .

Luego use el teorema de convergencia del punto fijo a éste método y explique el objetivo de su aplicación.

1Eva_IIIT2007_T3 Factorar polinomio

1ra Evaluación III Término 2007-2008. 3/Marzo/2008. ICM00158

Tema 3. Se requiere factorar el polinomio:

P_3(x) = 2x^3-5x^2 + 3x-0.1 P_3(x) = (x - r_1)(x - r_2)(x - r_3)

Utilizando el siguiente procedimiento:

a. Calcule r1 resolviendo P3(x) = 0 con Newton, ε = 0.0001

b. Obtenga el polinomio cociente Q2(x), a partir de P3(x) = (x – r1)Q2(x)

c. Calcule r2 y r3 de la ecuación Q2(x) = 0

d. Escriba los otros factores de Q2(x)  = (x – r2)(x – r3)


Onserve la gráfica del problema para la solución

1Eva_IIT2017_T2 Ecuaciones no lineales

1ra Evaluación II Término 2017-2018. 28/Noviembre/2017. MATG1013

Tema 2. (25 puntos) Determine una raiz de las ecuaciones no lineales simultaneas siguientes:

y = – x2 + x + 0.75
y + 5xy = x2

a) Bosqueje una gráfica y seleccione X(0)

b) Use el método de Newton en dos variables y realice tres iteraciones.

Rúbrica: Bosquejar la gráfica hasta 5%, Plantear el método hasta 5%, Calcular el Jacobiano hasta 5% Hacer tres iteraciones, estimando el error hasta 10%.

1Eva_IT2017_T2 Tanque esférico-volumen

1ra Evaluación I Término 2017-2018. 26/junio/2017. MATG1013

Tema 2 (25 puntos). El volumen V del líquido contenido en un tanque esférico de radio r está relacionado con la profundidad h del líquido por la ecuación

http://www.que.es/ultimas-noticias/economia/fotos/tanque-almacenamiento-combustible-planta-schafik-f243687.html

V = \frac{\pi h^{2} (3r-h)}{3}

Es posible desarrollar las siguientes dos fórmulas para él método de punto fijo:

h = \sqrt{\frac{h^{3}+(3V/\pi)}{3r}} h = \sqrt[3]{3(rh^{2}-V/\pi)}


Si r=1 m y V=0.75 m3, determine si las dos alternativas son estables (convergen), realice las iteraciones para aproximar h con un error menor o igual 0.01 m.

Rúbrica: Cálculo de las derivadas (10 puntos), determinación de la estabilidad (5 puntos), iteraciones con el error (10 puntos).

1Eva_IIT2007_T1 Distribución binomial acumulada

1ra Evaluación II Término 2007-2008. 4/Diciembre/2007. ICM00158

Tema 1. Un modelo de uso frecuente en teoría de probabilidad es la distribución binomial acumulada, cuya fórmula es:

F = \sum_{t=0}^{k} \binom{n}{t} p^t (1-p)^{n-t}

Con la fórmula de Newton, calcule con cuatro decimales exactos el valor de p tal que F=0.4, dado que n=5 y k=1

Nota: El valor de p debe ser un número real entre 0 y 1