Prepráctica #2

Tema: Configurar un PowerFlex 4M usando CCW

Objetivos

Objetivo general

Elaborar aplicaciones con módulos de entradas y salidas analógicas a través del software Connected Component y un PowerFlex 4M, para la conversión de magnitudes físicas de procesos industriales.

Objetivos específicos

- 1. Analizar la conversión de magnitudes físicas a valores digitales para el uso de módulos de entradas y salidas analógicas.
- 2. Comprender el uso del bloque de escalamiento para la conversión de señales analógicas a digitales.
- 3. Elaborar una aplicación con el variador de Frecuencia PowerFlex 4M para el uso de entradas y salidas analógicas del Micro850.

¿Qué actividades realizaran?

- **1.** Realizar un diagrama de flujo del procedimiento para la configuración de un variador de Frecuencias (VFD) PowerFlex 4M desde CCW. (Revisar video 1)
- Investigue y describa como realizar la misma configuración del literal anterior (restauración de fábrica, datos de placa de motor, arranque, paro, cambio de giro) utilizando el teclado del variador. (Revisar video 2 y anexos)
- 3. Revisar y comprobar el funcionamiento de los archivos de la prepráctica 2
- 4. Realizar un proyecto en CCW donde se escalen entradas y salidas analógicas, utilizando un plc micro850 para variar la frecuencia de un powerFlex 4M. (Cada grupo colocará las condicionantes para esta aplicación)
- 5. Simular y comprobar el funcionamiento del literal anterior. Además, debe realizar una HMI en CCW.

¿Como lo realizaran?

Programas por utilizar:

- Connected Components Workbench -CCW (se recomienda versión 13)
- RsLinx Classic
- Simulador micro850

¿Cuáles son los entregables?

Realizar una infografía de manera individual/grupal (pareja) de las actividades a desarrollar en formato A3 (horizontal o vertical), el cual debe tener los siguientes elementos:

- Un tema claro y conciso: Es decir, comunicar un tema específico de manera clara y fácil de entender.
- Datos relevantes y precisos: La información presentada en la infografía debe ser precisa y relevantes a su tema.
- Diseño atractivo y llamativo: La infografía debe ser visualmente atractiva y llamar la atención del espectador.
- Estructura fácil de seguir: La información debe presentarse en una estructura clara y fácil de seguir para que el espectador no tenga problemas para entender su contenido.
- Fuentes y referencias: La infografía debe incluir las fuentes y referencias utilizadas para obtener la información presentada en ella.

Nota: Todas las preprácticas serán entregados en el aula virtual en PDF, hasta la semana de la práctica, las faltas ortográficas serán penalizadas, así como la copia ya sea con otros reportes o de internet.

Material de apoyo

Seguir el siguiente orden para la realización de la prepráctica.

- 1. <u>Programación y parametrización de un variador de frecuencia 4M por teclado</u> integrado.
- Programación y parametrización de un variador de frecuencia 4M usando un <u>1203-USB y CCW</u>
- Identificación del número de catálogo de un micro850, modos de un PLC y módulos analógicos.
- 4. Sensores y actuadores analógicos
- 5. Configurar entradas y salidas analógicas de un Micro850
- 6. <u>Cambiar el controlador simulado hacia un PLC Micro850 real en Connected</u> <u>Component Workbench</u>
- 7. Conexiones de sensor HART analógico de proximidad 873P

- 8. Entrada analógica en Micro 850 con sensor de proximidad ultrasónico
- Implementación de control de marcha, paro y cambio de giro entre PowerFlex
 <u>4M y PLC micro850</u>

Bibliografía

Controladores programables Micro830 y Micro850, Rockwell Automation Technologies, Inc., Milwaukee, Wisconsin, 2015. Disponible en:

http://literature.rockwellautomation.com/idc/groups/literature/documents/um/2080um002_-es-e.pdf

Micro800 Programmable Controllers General Instructions, Rockwell Automation Technologies, Inc., Milwaukee, Wisconsin, 2016. Disponible en:

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/2080rm001_-en-e.pdf

Micro800 Plug-in Modules, Rockwell Automation Technologies, Inc., Milwaukee, Wisconsin, 2018. Disponible en:

http://literature.rockwellautomation.com/idc/groups/literature/documents/um/2080um004_-en-e.pdf

Control del Variador mediante Teclado

Escuela Superior Politécnica del Litoral

https://literature.rockwellautomation.com/idc/groups/literature/documents/qs/22aqs001 -es-p.pdf

Anexos

Listado de módulo de expansión del Micro800

Micro800 Plug-in Modules

Escuela Superior Politécnica del Litoral

e)

Module	Туре	Description	
2080-104	Digital	4-point, 12/24V DC Sink/Source input	
2080-104084	Digital	8-point, Combo, 12/24V DC Sink/Source input 12/24V DC Source output	
2080-IQ40V4	Digital	8-point, Combo, 12/24V DC Sink/Source input 12/24V DC Sink output	
2080-0B4	Digital	4-point, 12/24V DC Source output	
2080-0V4	Digital	4-point, 12/24V DC Sink output	
2080-0W4I	Digital	4-point, AC/DC Relay output	
2080-IF2	Analog	2-channel, Non-isolated unipolar voltage/current analog input	
2080-IF4	Analog	4-channel, Non-isolated unipolar voltage/current analog input	

Micro800 Plug-in Modules

Module	Туре	Description	
2080-OF2	Analog	2-channel, Non-isolated unipolar voltage/current analog output	
2080-TC2	Specialty	2-channel, non-isolated thermocouple module	
2080-RTD2	Specialty	2-channel, non-isolated RTD module	
2080-MEMBAK-RTC ⁽¹⁾	Specialty	Memory backup and high accuracy RTC, 1 MB	
2080-MEMBAK-RTC2 ⁽¹⁾	Specialty	Memory backup and high accuracy RTC, 4 MB	
2080-TRIMPOT6	Specialty	6-channel trimpot analog input	
2080-MOT-HSC	Specialty	High speed counter	
2080-DNET20	Communication	20-node DeviceNet scanner	
2080-SERIALISOL	Communication	RS232/485 isolated serial port	

 2080-MEMBAK-RTC and 2080-MEMBAK-RTC2 are not supported on Micro820 controllers. 2080-MEMBAK RTC is not supported on Micro870 controllers.

Características técnicas del módulo de entradas analógicas

In	put \$	specificatio	ns – 2080 [.]	·IF2,	2080-IF4	ļ
----	--------	--------------	------------------------	-------	----------	---

Escuela Superior Politécnica del Litoral

espo

Attribute	2080-IF2	2080-IF4		
Number of inputs, single ended	2	4		
Analog normal operating ranges	Voltage: 010V DC Current: 020 mA			
Resolution, max.	12 bits unipolar, with software selected option for 50 Hz, 60 Hz, 250 Hz, 500 Hz			
Data range	065535			
Input impedance	Voltage Terminal: > 220K Ω , Current Terminal: 250 Ω			
Overall accuracy ⁽¹⁾	Voltage Terminal: ±1% full scale @ 25°C Current Terminal: ±1% full scale @ 25°C			
Non-linearity (in percent full scale)	± 0.1%			
Repeatability ⁽²⁾	± 0.1%			
Module error over full temperature range, -2065°C (-4149°F)	Voltage: ± 1.5% Current: ± 2.0%			
Input channel configuration	Through configuration software or the user program			
Field input calibration	Not required			
Update time	180 ms per enabled channel			

Características técnicas del módulo de salidas analógicas

Output Specifications – 2080-OF2

Attribute	2080-OF2
Number of outputs, single ended	2
Analog normal operating ranges	Voltage: 10V DC Current: 020 mA
Resolution, max.	12 bits unipolar
Output count range	065535
D/A Conversion Rate (all channels), max.	2.5 ms
Step Response to 63% ⁽¹⁾	5 ms
Current Load In voltage output, max	10 mA
Resistive load on current output	$0500 \ \Omega$ (includes wire resistance)
Load range on voltage output	> 1k Ω @ 10V DC
Max. inductive load (current outputs)	0.01 mH
Max. capacitive load (voltage outputs)	0.1 µF
Overall Accuracy ⁽²⁾	Voltage Terminal: ±1% full scale @ 25 °C Current Terminal: ±1% full scale @ 25 °C
Non-linearity (in percent full scale)	± 0.1%
Repeatability ⁽³⁾ (in percent full scale)	± 0.1%

Cableado del Módulo 2080-IF4

Wiring

The following plug-in modules have 12-pin

- female terminal blocks:
 - 2080-IQ4, 2080-IQ4OB4, 2080-IQ4OV4
- B (123456)

Back

Front Twelve-pin Female Terminal Block

- 2080-OB4, 2080-OV4, 2080-OW4I
 A
 (1)
 (2)
 (3)
 (4)
 (5)
 (6)
 Front
 Front
- 2080-TC2, 2080-RTD2

Pin Designations for 12-Pin Female Terminal Block Modules

Pin	2080-104	2080-1040B4, 2080-1040V4	2080-0B4, 2080-0V4	2080-0W4I	2080-IF2	2080-IF4	2080-TC2	2080-RTD2
A1	1-02	I-02	Not used	COM3	COM	COM	CH0+	CH0+
A2	1-03	I-03	Not used	0-3	Not used	VI-2	CH0-	CH0-
A3	COM	COM	-24V DC	Not used	Not used	CI-2	CJC+	CHOL (Sense)
A 4	COM	-24V DC	-24V DC	Not used	COM	COM	Not used	Not used
A5	Not used	0-02	0-02	Not used	Not used	VI-3	Not used	Not used
A6	Not used	0-03	0-03	Not used	Not used	CI-3	Not used	Not used
B1	1-00	1-00	Not used	COM0	VI-0	VI-0	CH1+	CH1+
B2	I-01	I-01	Not used	0-0	CI-0	CI-0	CH1-	CH1-
B3	COM	COM	+24V DC	COM1	COM	COM	CJC-	CH1L (Sense)
B4	COM	+24V DC	+24V DC	0-1	VI-1	VI-1	Not used	Not used
B5	Not used	0-00	0-00	COM2	CI-1	CI-1	Not used	Not used
B6	Not used	0-01	0-01	0-2	COM	COM	TH	Not used

Example Wiring for 2080-IF4

Escuela Superior Politécnica del Litoral

esp

Cableado del Módulo 2080-OF2

Pin Designations for 8-Pin Female Terminal Block Modules

Eight-pin female terminal block

Pin	2080-0F2	2080-SERIALISOL	2080-MOT-HSC ^{(1) (2)}
A1	COM	RS485 B+	0-
A2	COM	GND	A-
A3	COM	RS232 RTS	В-
A 4	COM	RS232 CTS	Z-
B1	V0-0	RS232 DCD	0+
B2	CO-0	RS232 RXD	A+
B3	V0-1	RS232 TXD	B+
B4	CO-1	RS485 A-	Z+

 IMPORTANT: Individually shielded, twisted-pair cable (or the type recommended by the encoder or sensor manufacturer) should be used for the 2080-MOT-HSC plug-in.

(2) Sinking Output/Sourcing Output wiring for the 2080-MOT-HSC plug-in is shown below.

Example Wiring for 2080-OF2

Cableado de las entradas del variador PowerFlex 4M

Escuela Superior Politécnica del Litoral

I/O Wiring Examples

Input	Connection Example	
Potentiometer	P108 [Speed Reference] = 2 "0-10V	Input"
1-10k Ohm Pot. Recommended (2 Watt minimum)		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Analog Input	Voltage	Current
0 to +10V, 100k ohm impedance	P108 [Speed Reference] = 2 "0-10V Input"	P108 [Speed Reference] = 3 "4-20mA Input"
4-20 mA, 100 ohm impedance		Common $\xrightarrow{-14}$

Anexo

Conexiones de un variador en el tablero de automatización.

Señales analógicas

Escuela Superior

Politécnica del Litoral

Una señal analógica es una variable continua que cambia con respecto al tiempo, al contrario de una señal binaria para el PLC, que solo puede adoptar los estados de señal "Tensión presente +24V" y "Tensión no presente 0V", en cambio las señales analógicas pueden adoptar cualquier valor dentro de un rango determinado. Ejemplo de señales analógicas: temperatura -50 ... +150 °C, caudal 0 ... 200 l/min, velocidad 500 ... 1500 rpm.

Estas magnitudes se transforman con un transductor de medida en tensiones, corrientes o resistencias eléctricas.

Escuela Superior Politécnica del Litoral

En el caso de una entrada analógica de voltaje con un rango de 0 a 10V, con una resolución de 10 bits y un rango total de 0 a 27648 (2^15).

Bloque de escalamiento

Si se desea que el valor de la variable se encuentre dentro de un rango específico se debe efectuar un proceso de escalado, en Connected Component existe la instrucción *SCALER*, cuya función realiza el escalamiento del valor de la entrada "Input" mapeándolo en un determinado rango de valores.

Parameter	Parameter type	Data type	Description
EN	Input	BOOL	Function block enable. When EN = TRUE, execute the scaling equation. When EN = FALSE, there is no scaling equation. Applies only to LD programs.
Input	Input	REAL	Input signal.
InputMin	Input	REAL	Minimum value of Input.
InputMax	Input	REAL	Maximum value of Input.
OutputMin	Input	REAL	Minimum value of Output.
OutputMax	Input	REAL	Maximum value of Output.
Output	Output	REAL	Output value.
ENO	Output	BOOL	Enable out. Applies only to LD programs.

Al ejecutar la instrucción *SCALER*, el número en coma flotante de la entrada "Input" dentro del rango definido en los parámetros: "IntputMin" e "InputMax", dicho valor se escala al rango de valores definido por los parámetros "OutputMin" y "OutputMax". El resultado de la escala es un número real que se deposita en la salida "Output".

Ejemplo:

📕 Varia	able Monitoring						
Global \	√ariables - Micro810	Local Variables - L	JntitledST	System V	'ariables	Micro810	(*)
	Name	Logical Value	Physica	alValue Lock		Data Type	
	- A*	- A*		- A+	- A*	-	A*
	input	10.0	N/A			REAL	
	InputMin	5.0	N/A		27	REAL	-
	InputMax	15.0	N/A			REAL	*
	OutputMin	1.0	N/A			REAL	-
	OutputMax	10.0	N/A			REAL	*
	output	5.5	N/A			REAL	*
+	SCALER_1					SCALER	*
	III						
				<u>D</u> K		<u>C</u> ance	

1. Procedimiento

Configuración de un variador de Frecuencias PowerFlex 4M

1. Conectar el variador de frecuencia con el computador de la siguiente manera:

2. En RsLinx comprobar la siguiente driver en la red:

3. Comprobar en Administrador de Dispositivos que un pueto COM tenga instalador el driver del 12203-USB.

4. Abrir Connected Components Workbench, ir a la ventana "Device Toolbox", en la pestaña "Discover" dar clic "Browse Connections".

5. Seleccionar la red DSI, y seleccionar "AB DSI".

6. Al dar clic en "OK", nos darmos cuenta que el variador PowerFlez 4M se ha agregado y se encuentra conectado a nuestro proyecto.

Laboratorio de Automatización de Procesos Industriales

7. Dar clic en "Wizards" donde aparecerá la pantalla "Available Wizards", y seleccionar "PowerFlex 4M Starup Wizard".

Escuela Superior

Politécnica del Litoral

* Available Wizards
Startup Wizards PowerFlex 4M Startup Wizard Diagnostic Wizards DPI/DSI Tech Support Wizard
Data Log Uploads information required by Tech Sup
Select Cancel

8. En la pantalla que sumergirá, dar clic en "Next" para ir al paso 2.

9. Dar clic en "Reset Parameters", luego en "Yes". En el display aparecerá parpadenado F048, lo cual indica de la lista de parámetro una falla que ha sido reseteado por defecto de fábrica, luego dar clic en "Next".

Escuela Superior Politécnica del Litoral

10. Finalizado el reseteo del variador, aparecerá un visto verde.

	2 of 10)
PowerFlex 4M Startup Wizard - (Wizard Step Welcome E Reset Parameters Motor Data Stop / Brake Mode Direction Test Ramp Rates / Speed Limits Speed Control Digital Inputs Relay Output Pending Changes	2 of 10) Example 1 Reset Parameters Example 2 Image: Control of the cont
	Cancel < Back Next > Finish >>

Wizard Step	Motor Data			
Reset Parameters Motor Data*	Motor OL <u>C</u> urrent:	2.5	Amps	
✓ III Stop / Brake Mode ✓ III Direction Test	Motor NP Volts:	230	Volt	
E Ramp Rates / Speed Limits	Motor NP <u>H</u> ertz:	60	Hz	
E Digital Inputs E Relay Output Pending Changes	Motor NP <u>F</u> LA:	0.2	Amps	

11. En "Motor NP FLA", ingresar "0.2", después dar "Next" hasta el paso 5.

Escuela Superior

Politécnica del Litoral

12. En "Speed Reference", ingresar "5.0", después dar clic en el botón rojo para limpiar fallar, luego en el botón verde para iniciar la marcha al motor.

Wizard Step	Direction Test	
✓ III Reset Parameters ✓ III Motor Data*	Danger: This test will cause the motor to rotate. N equipment. You should have an external safe meth feature.	Misuse may result in death, injury or damage to nod of stopping the motor nearby when using th
Sup / Brake Mode Em Direction Test Em Ramp Rates / Speed Limits Em Speed Control	Ensure that Motor Data is correct before proceeding parameters in the drive to change immediately. Whe stopped.	g with this page. Direction Test causes some en you leave this page the device will be
E Digital Inputs E Relay Output	When you leave this page the drive will be stopped	ł.
E- Pending Changes		
Pending Changes	Set the Jog Reference to a positive value and JOG the drive. direction. Verify that the direction of rotation is correct. Digital	The motor should rotate in the forward Ins will be set to NotUsed during the test.
E Pending Changes	Set the Jog Reference to a positive value and JOG the drive. direction. Verify that the direction of rotation is correct. Digital Reference 0.5 Hz	The motor should rotate in the forward Ins will be set to NotUsed during the test. Faulted
Pending Changes	Set the Jog Reference to a positive value and JOG the drive. direction. Verify that the direction of rotation is correct. Digital Reference 0.5 Hz Jog Reference 10.0 Hz	The motor should rotate in the forward Ins will be set to NotUsed during the test. Faulted 0.0 Hz
Pending Changes	Set the Jog Reference to a positive value and JOG the drive, direction. Verify that the direction of rotation is correct. Digital Reference 0.5 Hz Jog Reference 10.0 Hz Is the direction of motor rotation correct for the application	The motor should rotate in the forward Ins will be set to NotUsed during the test. Faulted 0.0 Hz

13. Cuando la ventana de velocidad de referencia se abrá, dar clic en "Yes".

14. Seleccionar "0-10V Input" desde el parámetro "Speed Reference", esto permitirá que la entrada analógica del variador pueda ser controlada desde la salida analógica del Micro850, el módulo 2080-OF2.

	7 of 10)	—
Wizard Step ✔☷ Welcome	Speed Control	
✓ ﷺ Reset Parameters ✓ ﷺ Motor Data*	Speed Reference: 0-10V Input	
✓ I Direction Test* ✓ I Ramp Rates / Speed Limits	Scaling + <u>13</u>	
Speed Control* Digital Inputs	Line <u>High</u> : 100.0 % = 60 Hz	
📰 Relay Output	Line Low: 0.0 % = 0.0 Hz 15	
Pending Changes	+ 13	
	Analog Value: 0.0	
L,	Click on wizard step name to show that step.	
	<u>Close</u> < <u>Back</u> <u>Next</u> > <u>Fin</u>	ish >>

15. Seleccionar "2-Wire" desde el parámetro "Start Source", esto permitirá que el controlador Micro 850 de marcha y paro desde sus salidas digitales al variador.

Wizard Step	Digital Inputs	
E Reset Parameters E Reset Parameters E Motor Data* E Stop / Brake Mode E Direction Test* E Ramp Rates / Speed Limits E Speed Control* E Digital inputs* E Relay Output E Pending Changes	Stop Source: Ramp CF + 1 Start Source: 2-Wire 2 Direction 3 Digital Common 4 Digital Common 4 Digital In 1: Preset Freq 6 Digital In 2: Preset Freq 6	Preset Freqs: 0 0.0 Hz 1 5.0 Hz 2 10.0 Hz 3 20.0 Hz
		Close CBack Next > Finish

Dar clic en "Next" dos veces para llegar al paso 10 y finalmente dar clic en "Finish".

Analizar el proyecto en diagrama de lógica escalera realizado en el software Connected Component Workbench y el simulador del micro 850. Además, añadir un escalamiento y bloques necesarios para enviar el dato "Herz pot" hacia una salida analógica.

		Jo_BH(DO Higtor_on
Contreguente extende una una de excelamente de una entrede envelopera fran Contreguente extende una porte en engrar o guar a 20	extents areas newcondo, se atlas etitologis Sor INIY 10 REAL entre convenient de la estada analogua UNIT en Real guera et bloque Soater (SCP) solo permite data wales SOBOR 0 SOBOR 0	
0,04,00,00 Her.,00 27,46024 11 10 10 10 11 10 10 10 10 10		JO_EM_DO Luz Pite

Programación para el escalamiento de una entrada analógica

Nota: Descargar los archivos de la práctica para completar el ejercicio propuesto.

Análisis diagrama lógica escalera.

Escuela Superior

Politécnica del Litoral

En esta primera sección, se tiene botón Start, STOP, y se realiza un enclavamiento activando la marca Motor on que habilita los demás bloques siguientes. Luego tenemos un bloque STOR que es el encargado de convertir las entradas de señal analógica a datos de tipo REAL que es el dato que puede leer el bloque ESCALER 1. ESCALER 1 permite ajustar un rango de entrada a un rango específico que en este caso si tomamos una señal analógica lo que se hace es convertir a una señal digital y se acondiciona dicha señal para trabajar de acuerdo con lo indicado.

IO EM DO 00 Matar_on 3 Herz_pot Comparador, si es mayor a 30Hz activa luz piloto 20.0 Convierte tipo REAL a tipo IUNIT ANY TO UINT ENC Herz_pd Out_analog_Real Out_analog_Real _IO_P2_AO_00 oltage_Control 0.0 60.0 Escalador para control de salida analógica, desde 0 a 60 0.0 hasta la resolución tipo REAL. 65535.0

En este caso, la filas 3 muestra la comparación de una variable con un valor, estos representan que si la frecuencia es mayor a 30Hz entonces se enciende una luz piloto. Por otro lado, se ha agregado otra línea de programación, que permite llevar los datos de las variables de 0 a 60Hz que tenemos hacia la salida analógica del PLC, con el fin de poder controlar el motor con dicha señal.

Name IJ LI0_P2_A0_00 U User Global Variables - Micro850 La Name	npe IINT ocal Variables - N/A S Alias	∽ System	Global Sco Micro850	pe	~	Local Scope N/A		
User Global Variables - Micro850 L	ocal Variables - N/A 9	System						
Name	Alias		NVariables - M	icro850	1/0 - Micro8	50 Defined Wo	rds	
	Alida		D ata Ty	pe	Dimension	Initial Value		C
		- 11	UINT		▼ IT	▼ [▼		
_I0_P1_AI_00			UINT	•				
_I0_P1_AI_01			UINT	•				
_I0_P1_AI_02			UINT	•				
_I0_P1_AI_03			UINT	•				
▶ _I0_P2_A0_00	Voltage_Control		UINT	~				
_I0_P2_A0_01			UINT	•				
*				-				
🕞 Variable Selector						_		\times
Name Ty Out_analog_Real Real	ipe EAL	~	Global Scop Micro850	e	~	Local Scope Prog1		~
User Global Variables - Micro850	ocal Variables - Prog1	Syster	m Variables - M	licro850) I/O - Micro8	50 Defined Wo	rds	
Name	Alias		Data Typ	e	Dimension	Initial¥alue		Cor
- IT	-	IT	•		▼ IT	× IT		
+ SCALER_1		1	SCALER	*				
Entrada_analog_real		I	REAL	+				
Herz_pot		1	REAL	•				
SCALER_2		1	SCALER	+				
Out_analog_Real		[REAL	-				
*				-				

Ilustración 1. Adición de variables usadas anteriormente.

Realice, y describa los cambios necesarios en la programación para descargarlo en un PLC micro850 fisico con el modulo de entrada analogico 2080-IF4 y modulo de salida analógica 2080-OF2.

Escuela Superior

Politécnica del Litoral

Nota: Se quiere realizar un control de marcha, paro y cambio de giro en el variador y PLC micro 850, utilizando entradas y salidas tanto del PLC como del VFD, con una mínima posición del potenciómetro 0 Hz y máxima posición del potenciómetro 60 HZ.

Primero, se debe cambiar el controlador al físico, por ello se selecciona "cambiar controlador" como se observa:

Ilustración 2. Cambio de controlador

Luego, debemos seleccionar el modelo del micro850 de la siguiente forma y dar en Ok.

Controller Change		~
Changing the controller typ new target controller.	e will modify, delete and invalidate controller configur	ation that is not valid for the
	Current	Target
Project Name:	Practica3_Tema3	Practica3_Tema3_1
Controller Name:	Micro850	Micro850
Controller Type:	2080-LC50-48QWB-SIM	2080-LC50-48AW/B ~
Controller Project Version:	12	12
🕑 Show Detail Comparison		OK Cancel Help

Ilustración 3. Selección de modelo de controlador micro850.

Luego, se debe verificar y realizar las configuraciones de los módulos de entradas (IF4) y salidas (OF2), en este caso solo vamos a trabajar con señales de voltaje, por tanto, cambiamos cada canal a voltaje, luego tenemos la frecuencia de muestreo que el módulo usa para tomar datos de la señal digital del sensor (en este caso potenciómetro). Finalmente, es importante habilitar cada canal a usarse (Input State = Enabled).

Escuela Superior Politécnica del Litoral

	Channel	Input Type	Frequency	Input State
	0	Voltage	50 Hz	Enabled
	Channel	Input Type	Frequency	Input State
	1	Voltage	50 Hz	Enabled
	Channel	Input Type	Frequency	Input State
	2	Voltage	50 Hz	Enabled
	Channel	Input Type	Frequency	Input State
	3	Voltage	50 Hz	′ Enabled ×
80-OF2	- Conf	iguratior	n	

Enabled

Output State

Los módulos de entradas (IF4) y salidas (OF2) analógicas están ubicados en el slot 2 y 3

Voltage

Output Type

()

Channel

Los módulos de entradas (IF4) y salidas (OF2) analógicas están ubicados en el slot 2 y 3 como se visualiza:

_	0121411718	D Also-Bradley	Adan-Bradley	0	0	0
-		IF4	OF2			
	nan Mar Nar		1 2 1 4 B WelcolWelcol A Relication			
	0 1 2 2 4 2 6 7 8 8 10 11 11 14 2 16 17 19 10 Micro850	0000000	00000	0	0	0

Ilustración 4. Micro 850 con módulos de entradas y salidas analógicas.

Nos dirigimos a la sección de Ethernet e ingresamos la dirección "192.168.31.47", mascara por default "255.255.255.0" y Gateway "192.168.1.1"

Encender el controlador fisico y colocarlo en modo "Program" y podremos descargar el archivo a nuestro PLC.

Cambiar a modo "RUN" el PLC físico.

A continuación, se muestra cómo se colocaría las entradas y salidas en el tablero de trabajo:

En este caso hemos seleccionado las perillas selectoras como entradas START, STOP e Invertir Giro, estas ya poseen conexiones internas al micro850.

A continuación, se muestra la programación en lógica LADDER del arranque, parada e inversión de giro de motor con variador de frecuencia PowerFlex 4M de acuerdo con lo descrito anteriormente:

ESCUEla Superior Politécnica del Litoral

Laboratorio de Automatización de Procesos Industriales

Enclavamiento _IO_EM_DO_04 Salida_Start _IO_EM_DI_20 _IO_EM_DI_21 _IO_EM_DI_22 Invertir_giro _IO_EM_DO_03 Salida_Stop _IO_EM_DI_21 Ĩ 2 -(Ī) _IO_EM_DI_22 Invertir_giro _IO_EM_DO_05 Salida giro ertir_giro giro 3 () En el siguiente peldaño, se muestra el escalamiento de una entrada analógica. Para realizar lo antes mencionado, se utilizo el bloque Stor (ANY TO REAL) en la conversion de la entrada analogica UINT en Real, pues el bloque Scaler (SCP) solo permite datos reales. STOR SCALER 1 SCP 4 EN ENO EN ENO _IO_P1_AI_00 Entrada_analog_real Herz_pot Entrada analog real Potenciometro i1 01 Output Input 0.0 InputMin Entrada de señal 65535.0 analógica InputMax 0.0 OutputMin 60.0 OutputM. La luz piloto se enciende si herz_pot es mayor o igual a 30 _IO_EM_DO_04 Salida_Start GEQ _IO_EM_DO_02 Luz_Piloto alida_Start 5 - EN 01 -()-Herz_pot i1 30.0 الانع _IO_EM_DO_05 Salida_giro SCALER_2 SCP ANY_TO_UINT 6 EN ENO EN ENO _IO_EM_DO_04 Salida_Start Herz_pot Out_analog_Real Out_analog_Real _IO_P2_AO_00 Voltage_Control Output o1 Input 0.0 InputMin 60.0 InputMax 0.0 OutputMin 65535.0 OutputM.