3.3.2 Bucles o Ciclos – Ejercicios y Tarea

Ejercicios para Actividades independientes con lazos

1Eva_IT2003_T2 Verificar una inducción matemática

1Eva_IIT2013_T1 Verificar Bisiesto

1Eva_IT2013_T1 Primos gemelos

1Eva_IT2014_T2 Verificar EAN

2Eva_IT2008_T2 Validar cédula ecuatoriana


Tarea – Ejercicios

Para cada ejercicio, describa un algoritmo en seudo-código, dibuje un diagrama de flujo y realice dos pruebas de escritorio.

1. Un bote tiene capacidad de llevar X kilos. Se tiene una lista con los pesos en kilos ordenados en forma creciente de las personas que desean subir al bote.
Determine cuantas personas puede llevar el bote.

Bote paseo acuatico
Bote paseo control de carga maxima

2. Repita la lectura de un número entero hasta que sea positivo, entonces, determine cuantas cifras tiene. El método que debe usar es contar cuantas veces es divisible para 10.

 

3. Dado un número entero positivo, determine la suma de sus dígitos.

Ejemplo: 7258 -> 7+2+5+8 = 22

4. Dado un número entero positivo, muéstrelo con las dígitos en orden opuesto.

Ejemplo. escribe 7258 y el resultado será 8527

5. Dados dos números enteros muestre su MCD y su MCM.

Ejemplo. escribe 25 y 20. obtiene como resultado 5 y 100

Nota: si a, b son los datos y MCM es su mínimo común múltiplo y MCD es su máximo común divisor, se tiene que MCD * MCM = a * b

6. Dado un número entero positivo determine su equivalente en el sistema binario con el siguiente procedimiento:

– divida el número para 2 sucesivamente hasta que el cociente sea 0.

– Entonces, los residuos que se obtienen son los dígitos del número binario, pero en orden opuesto.

– Forme el número con estos residuos mientras los obtiene y muestre su valor

7. Modifique el algoritmo anterior para invertir el número obtenido y mostrar el número binario con los dígitos en la posición correcta.

8. El siguiente procedimiento genera una secuencia de números enteros:

a) Dado un número entero

b) Sume los cuadrados de los dígitos del número y forme un nuevo número con el residuo entre la suma y 9

c) Repita sucesivamente el paso b) con cada nuevo número obtenido, hasta que el resultados sea el número 1, o hasta que se hayan realizado mas de 10 repeticiones.

d) Si se obtuvo el resultado 1, muestre el número inicial, la cantidad de repeticiones realizadas, y el mensaje «número suertudo»

9. Modifique el algoritmo anterior para encontrar los «números suertudos» existentes entre 10 y 99

10. Describa un algoritmo para realizar el control de la anotación de un encuentro de tenis de mesa.

– En este juego intervienen 2 jugadores identificados como 1 y 2 .

– A cada uno se le agrega un punto cada vez que realiza una jugada a su favor si es que tiene el servicio a su favor, si no únicamente pasa el servicio a su favor.

– El juego termina cuando un jugador llega a 15 puntos teniendo por lo menos dos puntos de diferencia con respecto al otro jugador.

– Al inicio debe ingresar el número 1 o 2 indicando cual jugador comienza con el servicio a su favor, y luego sucesivamente ingrese el resultado de cada jugada ( 1 o 2).

– Al terminar debe mostrar un mensaje indicando cuál es el ganador.

11. Encuentre todos los números naturales entre 1 y 100 tales que la suma de sus dígitos de como resultado un numero primo.

Ejemplo : 34: 3+4 = 7 debe mostrar el 34 pues 7 es un número primo

12. Muestre los primeros n números de la secuencia de Fibonacci, siendo n un número entero.

Los términos de la secuencia de Fibonacci son: 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Note que a partir del tercer término cada nuevo término es igual a la suma de los dos anteriores.

13. Repita la lectura de un número entero hasta que sea par. Luego encuentre dos números primos tales que la suma sea igual al número par dado.

14. Dado el radio r de una circunferencia, encuentre el polígono regular de menor número de lados inscrito en la circunferencia, de tal manera que la suma de sus lados difiera de la longitud de la circunferencia en no mas de 0.0001.

Sugerencia: repita los cálculos con polígonos regulares incrementando su número de lados con n = 3, 4, 5, 6,…..

poligono dentreo de circulo