1Eva_IT2003_T5 Revisar respuestas correctas

Parcial I Término 2003 – 2004. Julio 08, 2003 /ICM00794

Tema 5. (25 puntos) Un examen consta de 30 preguntas de opción múltiple. Cada pregunta tiene 5 respuestas para elegir, de las cuales solo una es correcta.

Los resultados del examen y la información concerniente al estudiante pueden representarse de la siguiente forma:

  • ANSWER es un vector que contiene las respuestas correctas del examen,
  • SCORE es una matriz cuyas filas son las respuestas dadas por n estudiantes a las 30 preguntas y
  • El vector NAME está compuesto por los nombres de ellos.

Las respuestas de cada pregunta se codifican entre 1 y 5, si se señala más de una respuesta o no se señala ninguna, se escribe 6.

Escriba un algoritmo en seudo-código cuya salida sean los nombres de los estudiantes que aprobaron.

Nota: Para aprobar se requiere al menos un 60% de respuestas correctas.

1Eva_IT2003_T4 Lado mayor de un polígono

Parcial I Término 2003 – 2004. Julio 08, 2003 /ICM00794

Tema 4. (25 puntos) Escriba un algoritmo en pseudocódigo que le permita al usuario ingresar en dos vectores X, Y las coordenadas de los vértices de un polígono de n lados en el plano, y determine cuál es la magnitud mayor de los lados.

Sugerencia: Considere la fórmula de distancia entre dos puntos
P1(X1, Y1) y P2(X2, Y2) en el plano.

d(P_1,P_2) = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

1Eva_IT2003_T3 Operaciones sucesivas hasta 1

Parcial I Término 2003 – 2004. Julio 08, 2003 /ICM00794

Tema 3 (25 puntos) Dado un número n entero positivo, el siguiente procedimiento aplicado repetidamente al número lo modifica hasta que finalmente toma el valor de 1:

a) Si es par, divídalo para dos
b) Si es impar, multiplíquelo por tres y súmele 1

Diseñe un diagrama de flujo que encuentre cuál es el número entre 1 y 100 que requiere más repeticiones del procedimiento anterior hasta convertirlo en 1.

1Eva_IT2003_T2 Verificar una inducción matemática

Parcial I Término 2003 – 2004. Julio 08, 2003 /ICM00794

Tema 2. (15 puntos) Por el proceso de Inducción Matemática se puede demostrar la siguiente propiedad:

induccionmat

Realice un programa que valide el ingreso de un valor n entero (10 n 50) y verifique si cumple tal propiedad.

Sugerencia: calcule ambos lados de la ecuación y compare resultados.

1Eva_IIT2002_T4 Cociente de Fibonacci

Parcial II Término 2002 – 2003. Diciembre 12, 2002 /ICM00794

TEMA 4. (25 puntos) En la siguiente secuencia de números:

1, 1, 2, 3, 5, 8, 13, 21, ...

https://murea.es/wp-content/uploads/2014/12/proporcion-aurea-1.jpg

cada número a partir del tercero se obtiene sumando los dos inmediatos anteriores.

La propiedad de esta secuencia es que el cociente de dos términos consecutivos tiende hacia un número real.

1/1, 1/2, 2/3, 3/5, 5/8, 8/13, 13/21, ... ¿?

Escriba un algoritmo para encontrar este número con 4 decimales de exactitud.

Sugerencia: para la secuencia, mantenga en cada iteración dos valores consecutivos de este número real, y pare cuándo la diferencia sea menor que 0.0001


1Eva_IIT2002_T3 Conjetura de Ullman

Parcial II Término 2002 – 2003. Diciembre 12, 2002 /ICM00794

TEMA 3. (25 puntos) Elabore un diagrama de flujo, tal que dado un valor n entero positivo, calcule y muestre los elementos correspondientes a la CONJETURA DE ULLMAN (en honor al matemático S. Ullman) que consiste en lo siguiente:

  • Empiece con cualquier entero positivo.
  • Si es par, divídalo entre 2.
  • Si es impar multiplíquelo por 3 y agréguele 1.
  • Obtenga enteros sucesivamente repitiendo el proceso.

Al final se obtendrá el número 1, independientemente del entero inicial.

Por ejemplo:
 cuando el entero inicial n es 52, la secuencia será:
 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

Rúbrica: validar número positivo (5 puntos)operaciones (5 puntos), uso de un vector para secuencia (10 puntos), estructura del algoritmo (5 puntos)

Referencia: https://anagarciaazcarate.wordpress.com/piensa-un-numero-la-magia-del-algebra/

1Eva_IIT2002_T2 Color de placas de vehículos

Parcial II Término 2002 – 2003. Diciembre 12, 2002 /ICM00794

TEMA 2. (25 puntos)

La Agencia de Control de Transito usará colores en todas las placas de los vehículos conforme al último dígito, utilizando la tabla mostrada:

dígito COLOR ¿Cuántos?
1, 2 amarillo (código 1)
3, 4 café (código 2)
5, 6 rojo (código 3
7, 8 azul (código 4)
9, 0 verde (código 5)

Ayude a dicha institución realizando un algoritmo que:

a) reciba los tres últimos números de la placa (3 dígitos validados) y el número n de autos a procesar,

b ) muestre cuántas placas de cada color de vehículos hay que fabricar y reemplazar.

Rúbrica: ingreso de datos en vector (5 puntos), validar dígitos (5 puntos), conteo por color (15 puntos).

ReferenciaMatrícula (vehículos), Wikipedia

1Eva_IIT2002_T1b Prueba de escritorio, arreglos

Parcial II Término 2002 – 2003. Diciembre 12, 2002 /ICM00794

TEMA 1.

b) (10 puntos) Considere el segmento números enteros x[4], y [4], k, j;
y los datos de entrada digitados en el orden dado:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

Después de ejecutarse el código,
¿cuál será el contenido de los arreglos x[] y y[]?

para (k ← 0; k<= 3; k ← k+1) repita
    ingrese x[k]
    para (j ← k; j < = 3; j ← j+1) repita
        ingrese y[j]
    fin
fin

Prueba de escritorio

k x[ ] j y[ ]
….. ….. ….. …..

1Eva_IIT2002_T1a Crea tablas de multiplicar con strings del 1 a n

Parcial II Término 2002 – 2003. Diciembre 12, 2002 /ICM00794

TEMA 1.

a) (15 puntos) Escriba un algoritmo que le presente un menú al usuario con las siguientes opciones:

1. Mostrar una tabla de sumar,
2. Mostrar una tabla de multiplicar,
3. Salir.


Luego de escoger una opción, le preguntará cuál otro número desea ver la tabla, mostrarla y volver al menú.

Si el usuario escoge la opción de salir del algoritmo, este terminará.

Nota: Considere que las tablas se muestran hasta el número 12.