Mejoramiento I Término 2004-2005. Agosto 31, 2004

Tema 3 (20 puntos). Para efectuar la multiplicación entre 2 números enteros **p** y **q**, se puede utilizar un método recursivo denominado el *Campesino Egipcio*:

$$mult(p,q) = \begin{cases} 0, & q = 0 \\ p, & q = 1 \end{cases}$$

$$mult(2p, cociente(q/2)), & q >= 2 \quad q_es_par_q = 0$$

$$mult(2p, cociente(q/2)) + p, & q >= 2 \quad q_es_i = 0$$

- Nota: usar división entera.
- a) Escriba la función recursiva $\textit{mult}(\mathbf{p},\mathbf{q})$ en C/C++ que reciba dos argumentos enteros \mathbf{p} y \mathbf{q} , y devuelva el resultado de su multiplicación.
- b) Escriba un programa en C/C++ que, pida al usuario un número entre 0 y 12 y muestre la tabla de multiplicar de dicho número, utilizando la función anterior.

Rubrica: Desarrollo de la función (10 puntos), Desarrollo del Programa (10 puntos).

Propuesta de Solución:

Descripción Función	Python
	# ICM00794-Fundamentos de Computación - FCNM-ESPOL
	# Mejoramiento I Term 2004 Tema 3. campesino egipcio
	# propuesta: edelros@espol.edu.ec
Definición de la función mult con resultado en 'z'	
	def mult(p,q):
	if q==0:
	z=0
	if q==1:
	z=p
	r=(q%2)
Para determinar si es par, se usa el residuo de q/2	if (q>=2 and r==0):
	z=mult(2*p,int(q/2))
En la división se usa la forma entera. Solo el cociente.	if (q>=2 and r>0):
	z=mult(2*p,int(q/2))+p
	return z

Descripción de Programa	Python
	# ICM00794-Fundamentos de Computación - FCNM-ESPOL
	# Mejoramiento I Term 2004
Inicio	# tema 3. campesino egipcio. Programa
	# propuesta: edelros@espol.edu.ec
	import numpy
Ingreso del n para la tabla a desarrollar,	
tarea: validar el rango de n entre 0 y 12	n=int(input('¿cual tabla?: '))
	#Procedimiento
Genera las respuestas de la multiplicación	r=numpy.zeros(13,dtype=int)
	i=1
	while (i<=12):
	r[i]=mult(n,i)
	i=i+1
	#Salida
Muestra los resultados como tabla de multiplicar	i=1
	while (i<=12):
	print(str(n)+' x '+str(i)+' = ',str(r[i]))
	i=i+1

Ejecución de función: mult.py	Ejecución de Programa: multprog.py	5 x 5 = 25 5 x 6 = 30 5 x 7 = 35
>>> mult(4,3) 12	>>> cual tabla?: 5 5 x 1 = 5	5 x 8 = 40 5 x 9 = 45
>>> mult(5,2) 10	5 x 2 = 10 5 x 3 = 15 5 x 4 = 20	5 x 10 = 50 5 x 11 = 55 5 x 12 = 60