Final II Término 2003-2004. Febrero 10, 2004

Tema 1 (20 puntos) Escriba un programa en C/C++ que permita almacenar en una matriz las primeras n filas, n<20, del triángulo de pascal.

Muestre por pantalla la matriz generada.

1	0	0	0	0	0
1	1	0	0	0	0
1	2	1	0	0	0
1	3	3	1	0	0
1	4	6	4	1	0
1	5	10	10	5	1

En la matriz se muestra un ejemplo A partir de la tercera fila, los elementos dentro del triángulo, se obtienen sumando los dos elementos anteriores de la fila anterior. Por ejemplo, 6=3+3.

Propuesta de Solución:

Para la solución se usará una matriz cuadrada de tamaño **n**x**n**. Al recorrer la matriz, siempre que se encuentre en la primera columna o en la diagonal se escribe 1, sino se suma los valores de dos casillas superiores. Se recorre toda la matriz y se presenta el resultado.

Tarea: Realizar el ejercicio usando lazos "para"

Descripción	Octave/Python		
Inicio	% 3ra Eval II Termino 2006		
	% Tema 2. Triangulo pascal		
	% propuesta: edelros@espol.edu.ec		
Ingresa el tamaño del triángulo	n=input('tamanio del triangulo: ');		
Inicializa matriz pascal	pascal=zeros(n,n);		
Se usará la fila 1	f=1;		
Mientras f esté dentro de la matriz	while (f<=n)		
Se usa columna desde 1	c=1;		
Mientras c este debajo de la diagonal	while (c<=f)		
Si es la primera columna o es la diagonal	if (c==1 c==f)		
Se escribe 1	pascal(f,c)=1;		
Sino	else		
se suma de las casillas de arriba	pascal(f,c)=pascal(f-1,c)+pascal(f-1,c-1);		
fin condicional	end		
cambia columna	c=c+1;		
fin mientras	end		
cambia fila	f=f+1;		
fin mientras	end		
muestra la matriz pascal	disp(pascal)		

Ejecución del algoritmo: triangulopascal.m

>>triangulopascal	>> triangulopascal			
tamanio del triángulo: 5	tamanio del triángulo: 7			
1 0 0 0 0	1 0 0 0 0 0			
1 1 0 0 0	1 1 0 0 0 0			
1 2 1 0 0	1 2 1 0 0 0 0			
1 3 3 1 0	1 3 3 1 0 0 0			
1 4 6 4 1	1 4 6 4 1 0 0			
	1 5 10 10 5 1 0			
	1 6 15 20 15 6 1			