s2Eva_IIIT2003_T3 función distancia de Hamming

Ejercicio: 2Eva_IIIT2003_T3 función distancia de Hamming

Se deben comparar las cadenas U y V en los elementos de las mismas posiciones.
Primero se plantea un algoritmo para determinar el número de parejas diferentes que existen dentro de cada cadena.

Si las cadenas difieren en el tamaño, la respuesta será ‘-1’.

Intrucciones en Python

# ICM00794-Fundamentos de Computación - FCNM-ESPOL
# 2Eva_IIIT2003_T3 Distancia de Hamming

# INGRESO
U = '20001'
V = '10103'

# PROCEDIMIENTO
n = len(U)
m = len(V)

diferente= -1  # tamaño diferente U,V
if n == m:
    diferente = 0
    i = 0
    while not(i>=n):
        if U[i] != V[i]:
            diferente = diferente +1
        i = i + 1
# SALIDA
print('distancia Hamming: ', diferente)

resultado del algoritmo

distancia Hamming:  3
>>> 

Luego se procede a convertir el algoritmo a una función y hacer la llamada desde un programa, con lo que se cumple lo requerido en cada literal

Instrucciones en Python usando una función

# ICM00794-Fundamentos de Computación - FCNM-ESPOL
# 2Eva_IIIT2003_T3 Distancia de Hamming

# literal a. funcion
def dHamming(U,V):
    n = len(U)
    m = len(V)

    diferente = -1
    if n == m:
        diferente = 0
        i = 0
        while not(i>=n):
            if U[i] != V[i]:
                diferente = diferente +1
            i = i + 1
    return(diferente)

# Programa -------------
# INGRESO
U = '20001'
V = '10103'

# PROCEDIMIENTO
diferente = dHamming(U,V)

# SALIDA
print('distancia Hamming: ', diferente)

Tarea: Añadir la lectura de los datos desde un archivo.