Referencia: León-García 5.6.2 p258, Gubner 2.4 p91
Correlación
La correlación entre dos variables aleatorias X y Y se define como E[XY].
La correlación determina cuando dos variables se encuentran linealmente relacionadas; es decir cuando una es función lineal de la otra.
R(X,Y) = E[XY]Propiedades de la función de correlación
Simetría
R(X,Y) = R[Y,X] R(X,X) = E[X^2] \geq 0Desigualdad de Cauchy-Schwarz
|R(X,Y)| = \sqrt{(E[X]^2 E[Y]^2)}Covarianza
Retomando la función de covarianza de un proceso estocástico se muestra que:
Cov(X,Y) = E[XY] - E[X]E[Y] = = R(X,Y) - E[X]E[Y]Coeficiente de correlación lineal
Al multiplicar una de las variables X o Y por un número se incrementa la covarianza, para una mejor medida se normaliza la covarianza y así tener los valores en una escala absoluta.
El coeficiente de correlación de X y Y se define por:
\rho_{X,Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} = \frac{E[XY]-E[X]E[Y]}{\sigma_X \sigma_Y} donde: \sigma_X=\sqrt{Var(X)} \sigma_Y=\sqrt{Var(Y)} -1 \leq \rho_{X,Y} \leq 1El coeficiente de correlación es como máximo en magnitud 1.
Note que la correlación y el coeficiente de correlación no son lo mismo al resultar de la formula de covarianza.