2da Evaluación II Término 2017-2018. Febrero 7, 2018
Tema 2.
θ es una variable aleatoria uniforme, distribuida en el rango [-π π].
f_{\theta} (\theta) = \frac{1}{\pi - (-\pi))} = \frac{1}{2\pi}valor esperados X(t)
X(t) = \cos (\omega t + \theta) E[X(t)] = E[ \cos (\omega t + \theta)] = \int_{-\pi}^{\pi}x(t)f_{\theta}(\theta) d\theta = \int_{-\pi}^{\pi}\cos (\omega t + \theta) \frac{1}{2\pi} d\theta = \frac{1}{2\pi}\sin (\omega t + \theta) \Big|_{-\pi}^{\pi} = \frac{1}{2\pi} [ \sin (\omega t +\pi) -\sin (\omega t -\pi) ] E[X(t)] = 0valor esperado Y(t)
Y(t) = \sin (\omega t + \theta) E[Y(t)] = E[ \sin(\omega t + \theta)] = \int_{-\pi}^{\pi}y(t)f_{\theta}(\theta) d\theta = \int_{-\pi}^{\pi}\sin(\omega t + \theta) \frac{1}{2\pi} d\theta = \frac{1}{2\pi} [-\cos(\omega t + \theta)] \Big|_{-\pi}^{\pi} = \frac{1}{2\pi} [ -\cos(\omega t +\pi) - (-\cos (\omega t -\pi)) ] = \frac{1}{2\pi} [\cos(\omega t -\pi) - \cos (\omega t +\pi) ] E[Y(t)] = 0Correlación X(t) y Y(t)
R_{XY}[t,t+\tau] =E[X(t) Y(t+\tau)] =E[\cos (\omega t + \theta) \sin (\omega (t+\tau) + \theta)] =E \Big[ \frac{1}{2}\Big[\sin [(\omega (t+\tau) + \theta) - (\omega t + \theta)] + \sin [(\omega (t+\tau) + \theta) + (\omega t + \theta)] \Big] \Big] =\frac{1}{2}E\Big[\sin (\omega \tau) + \sin (2\omega t+ \omega \tau + 2\theta) \Big] =\frac{1}{2}E \Big[ \sin (\omega \tau) \Big] + \frac{1}{2}E\Big[\sin (2\omega t+ \omega \tau + 2\theta) \Big]El primer término no contiene la variable aleatorioa Θ, por lo que se comporta como una constante para el valor esperado.
=\frac{\sin (\omega \tau)}{2} + \frac{1}{2}\int_{-\pi}^{\pi}\sin (2\omega t+ \omega \tau + 2\theta) \frac{1}{2\pi} d\theta =\frac{\sin (\omega \tau)}{2} - \frac{1}{4\pi}\cos (2\omega t+ \omega \tau + 2\theta) \Big|_{-\pi}^{\pi} =\frac{\sin (\omega \tau)}{2} - \frac{1}{4\pi}\Big[ \cos (2\omega t+ \omega \tau + 2\pi) - \cos (2\omega t+ \omega \tau - 2\pi)\Big] =\frac{\sin (\omega \tau)}{2} - 0 R_{XY}[t,t+\tau] =\frac{\sin (\omega \tau)}{2}C_{XY}[t,t+\tau] = R_{XY}[t,t+\tau] - E[X(t)]E[Y(t+\tau)] C_{XY}[t,t+\tau] = R_{XY}[t,t+\tau] - 0 C_{XY}[t,t+\tau] = \frac{\sin (\omega \tau)}{2}
X(t) y Y(t) son procesos con correlación, pues su covarianza cruzada no es igual a cero para todas las selecciones de muestras de tiempo. Sin embargo, X(t1) y Y(t2) son variables aleatorias no correlacionadas para t1 y t2 dado que ω( t2 – t1 ) = k π, donde k es cualquier número entero.
Los valores de mas medias de X(t) = Y(t) =0 son constantes
R_{X}[t,t+\tau] = E[X(t) X(t+\tau)] =E[\cos (\omega t + \theta) \cos(\omega (t+\tau) + \theta)] =E\Big[\frac{1}{2} \Big[ \cos [(\omega t + \theta) -(\omega (t+\tau) + \theta) ] + \cos[(\omega t + \theta)+(\omega (t+\tau) + \theta)] \Big] \Big] =\frac{1}{2}E\Big[ \cos (\omega \tau ) + \cos(2\omega t + \omega \tau + 2\theta)] \Big] =\frac{1}{2}E\Big[ \cos (\omega \tau )\Big] +\frac{1}{2}E\Big[ \cos(2\omega t + \omega \tau + 2\theta)] \Big] =\frac{\cos (\omega \tau )}{2} \cos (\omega \tau ) +0La autocorrelación depende solo de las diferencias de tiempo τ = t2-t1
El proceso X(t) clasifica como Estacionario en el sentido amplio.
Tarea: Revisar la autocorrelación para Y(t) para verificar si clasifica como WSS.