Z(t)=X(t)−Y(t)
Y(t)=h(t)∗X(t)
a) autocorrelación de Z(t)
E[Z(t1)Z(t2)]=E[(X(t1)−Y(t1))(X(t2)−Y(t2))]
=E[X(t1)(X(t2)−X(t1)Y(t2)−Y(t1)X(t2)+Y(t1)Y(t2)]
=E[X(t1)(X(t2)]−E[X(t1)Y(t2)]−E[Y(t1)X(t2)]+E[Y(t1)Y(t2)]
=RX(τ)−RXY(τ)−RYX(τ)+RY(τ)
b) Densidad espectral de potencia de Z(t)
Sz(f)=F[RX(τ)]−F[RXY(τ)]−F[RYX(τ)]+F[RY(τ)]
=SX(f)−SXY(f)−SYX(f)+SY(f)
=SX(f)−SXY(f)−SXY∗(f)+SY(f)
=SX(f)−H(f)SX(f)−H∗(f)SX(f)+SY(f)
=[1−H(f)−H∗(f)+∣H(f)∣2]SX(f)
=[1−2Re[H(f)]+∣H(f)∣2]SX(f)
Sz(f)=∣1−H(f)∣2SX(f)