Tabla de derivadas

Referencia: Leon W Couch Apéndice p656

Tabla de Derivadas

Definición

ddx[f(x)]=limΔx 0f(x+Δx2)f(xΔx2)Δx \frac{d}{dx}[ f(x) ]= \lim_{\Delta x \rightarrow\ 0} \frac{f \big( x+\frac{\Delta x}{2} \big)- f\big( x-\frac{\Delta x}{2}\big) }{\Delta x}

Regla del producto

ddx[u(x)v(x)]=u(x)dv(x)dx+v(x)du(x)dx \frac{d}{dx}[u(x) v(x)]= u(x)\frac{dv(x)}{dx} + v(x)\frac{du(x)}{dx}

Regla del cociente

ddx[u(x)v(x)]=1v2(x)[v(x)du(x)dxu(x)dv(x)dx] \frac{d}{dx} \left[ \frac{u(x)}{v(x)}\right] = \frac{1}{v^2(x)} \left[ v(x)\frac{du(x)}{dx}- u(x)\frac{dv(x)}{dx}\right]

Regla de la cadena

ddxu[v(x)]=dudvdvdx \frac{d}{dx}u[v(x)]= \frac{du}{dv}\frac{dv}{dx}

Potenciación

ddx[xn]=nxn1 \frac{d}{dx}[ x^n ]= nx^{n-1}

Exponenciales

ddx[eax]=aeax \frac{d}{dx} [ e ^{ax} ] = a e^{ax} ddx[ax]=axln(a) \frac{d}{dx} [ a ^{x} ]= a^x ln(a)

Logaritmicas

ddx[ln(x)]=1x \frac{d}{dx} [ ln(x) ] = \frac{1}{x} ddx[loga(x)]=1xlogae \frac{d}{dx}[ log_a (x) ] = \frac{1}{x} log_a e

Trigonométricas

ddx[sen(ax)]=a cos(ax) \frac{d}{dx}[sen(ax)]= a\text{ } cos(ax) ddx[cos(ax)]=a sen(ax) \frac{d}{dx}[cos(ax)]= -a\text{ }sen(ax) ddx[tan(ax)]=acos2(ax) \frac{d}{dx}[tan(ax)]= \frac{a} {cos^2(ax)} ddx[sen1(ax)]=a1(ax)2 \frac{d}{dx}[sen^{-1}(ax)]= \frac{a} {\sqrt{1-(ax)^2}} ddx[cos1(ax)]=a1(ax)2 \frac{d}{dx}[cos^{-1}(ax)]= \frac{-a} {\sqrt{1-(ax)^2}} ddx[tan1(ax)]=a1+(ax)2 \frac{d}{dx}[tan^{-1}(ax)]= \frac{a} {{1+(ax)^2}}

Regla de Leibniz

ddx[a(x)b(x)f(λ,x)dλ]= \frac{d}{dx}\left[ \int_{a(x)}^{b(x)} f(\lambda,x) d\lambda \right] =
=f(b(x),x)ddx[b(x)]f(a(x),x)ddx[a(x)]+ = f(b(x),x) \frac{d}{dx}[b(x)] - f(a(x),x) \frac{d}{dx}[a(x)] +
+a(x)b(x)ddx[f(λ,x)dλ + \int_{a(x)}^{b(x)} \frac{d}{dx}[f(\lambda , x) d\lambda