Tabla de Integrales Indefinidas

Referencia: Leon W Couch Apéndice p656

Integrales Indefinidas

(a+bx)ndx=(a+bx)n+1b(n+1),0<n \int (a+bx)^n dx = \frac{(a+bx)^{n+1}} {b(n+1)}, 0<n dxa+bx=1blna+bx \int \frac{dx}{a+bx} =\frac{1}{b} ln|a+bx| dx(a+bx)n=1(n1)b(a+bx)n1,1<n \int \frac{dx}{(a+bx)^n} = \frac{-1}{(n-1)b(a+bx)^{n-1}} , 1<n
dx(c+bc+ax2)n= \int \frac{dx}{(c+bc+ax^2)^n} = ={24acb2tan1(2ax+b4acb2),b2<4ac1b24acln2ax+bb24ac2ax+b+b24ac,b2>4ac22ax+b,b2=4ac= \begin{cases} \frac{2}{ \sqrt{4ac-b^2}} tan^{-1}\left(\frac{2ax+b}{\sqrt{4ac-b^2}}\right) , & b^{2} < 4ac \\ \frac{1}{\sqrt{b^2-4ac}}ln\left| \frac{2ax+b-\sqrt{b^2-4ac}}{2ax+b+\sqrt{b^2-4ac}} \right| , & b^{2} > 4ac \\ \frac{-2}{\sqrt{2ax+b}} , & b^{2}=4ac \end{cases}
xdxc+bx+ax2= \int \frac{x dx}{c+bx+ax^2} = =12alnax2+bx+cb2adxc+bx+ax2 = \frac{1}{2a} ln\left| ax^2+bx+c \right| - \frac{b}{2a}\int \frac{dx}{c+bx+ax^2}
dxa2+b2x2=1abtan1(bxa) \int \frac{dx}{a^2+b^2x^2} = \frac{1}{ab} tan^{-1}\left( \frac{bx}{a} \right) xdxa2+x2=12ln(a2+x2) \int \frac{x dx}{a^2+x^2} = \frac{1}{2} ln( a^2+x^2 )

Trigonométricas

cos(x)dx=sen(x) \int cos(x) dx = sen(x) sen(x)dx=cos(x) \int sen(x) dx = -cos(x) xcos(x)dx=cos(x)+xsen(x) \int x cos(x) dx = cos(x) + x sen(x) xsen(x)dx=sen(x)xcos(x) \int x sen(x) dx = sen(x) - x cos(x) x2cos(x)dx=2xcos(x)+(x22)sen(x) \int x^2 cos(x) dx = 2x cos(x) + (x^2 -2) sen(x) x2sen(x)dx=2xsen(x)(x22)cos(x) \int x^2 sen(x) dx = 2x sen(x) - (x^2 -2) cos(x)

Exponenciales

eaxdx=eaxa \int e^{ax} dx = \frac{e^{ax}}{a} xeaxdx=eax(xa1a2) \int x e^{ax} dx = e^{ax} \left( \frac{x}{a} - \frac{1}{a^2} \right) x2eaxdx=eax(x2a2xa2+2a3) \int x^2 e^{ax} dx = e^{ax} \left( \frac{x^2}{a} - \frac{2x}{a^2} + \frac{2}{a^3} \right) x3eaxdx=eax(x3a3x2a2+6xa36a4) \int x^3 e^{ax} dx = e^{ax} \left( \frac{x^3}{a} - \frac{3x^2}{a^2} + \frac{6x}{a^3} - \frac{6}{a^4}\right) eaxsen(x)dx=eaxa2+1(asen(x)cos(x)) \int e^{ax} sen(x) dx = \frac{e^{ax}}{a^2 +1} (a sen(x) - cos(x)) eaxcos(x)dx=eaxa2+1(acos(x)sen(x)) \int e^{ax} cos(x) dx = \frac{e^{ax}}{a^2 +1} (a cos(x) - sen(x))