1. Valor Esperado de una función de variable aleatoria

Referencia: Gubner 2.4 p83 , Ross 2.4.3 p42, León-García 3.3.1 p.107

Dada una variable aleatoria X, se puede definir una nueva variable aleatoria Z = g(X), donde g(x) es una función de valor real de la variable real x.

Para calcular E[Z] se puede proceder como:

E[g(X)] = \sum_i g(x_i) p_X(x_i) E[g(x)] = \int_{-\infty}^{\infty} g(x) f(x) dx

dado que la fórmula es mas fácil de usar que encontrar la pmf de Z, la formula se la conoce como la «ley del estadístico inconsciente» o LOTUS (Law Of The Unconscious Statistician).

Una aplicación simple es :

E[aX] = \sum_i ax_i p_X(x_i) = = a \sum_i x_i p_X(x_i) = a E[X]

Ejemplo

Referencia: León- García 3.17 p107

Sea X el ruido en el voltaje que está uniformemente distribuido en SX = {-3,-1,+1,+3} con pX (k) =  1/4 para k en SX. Encuentre E[Z] donde Z=X2.

Solución: Se busca primero encontrar la pmf (probability mass function) de Z, el SZ ={9,1,1,9} = {1,9}, por lo que:

pZ(9) = P[X ∈ {-3,+3}] 
      = pX(-3) + pX(3) 
      = 1/4 + 1/4 = 1/2
pZ(1) = pX(-1) + pX(1) = 
      = 1/4 + 1/4 = 1/2
entonces:
E[Z] = 1(1/2) + 9(1/2) = 5 

usando la fórmula para E[Z]:

E[Z] = E[g(X)] = \sum_i g(x_i)p_X(x_i) = \sum_i i^2 p_X(x_i) = \frac{1}{4} [(-3)^2 + (-1)^2+1^2+2^2] = = \frac{20}{4} = 5

con lo que se obtuvo el mismo resultado.


Ross Corolario 2.2. Siendo a y b constantes, entonces:

E[aX + b] = aE[X] +b