Referencia: Ross 2.4.2 p39, Gubner 4.2 p149, León-García 4.3 p 155, p16
Si X es una variablea aleatoria contínua que tiene una función densidad de probabilidad f(x), el valor esperado de X se define como:
E[X]= \int_{-\infty}^{\infty}xf(x) \delta xEjemplo
Referencia: Ross 4.7.
Sea X una variable aleatoria contínua uniforme [a,b], encuentre el valor esperado:
Solución:
E[X]= \int_{-\infty}^{\infty} xf(x) \delta x = \int_{a}^{b} x\frac{1}{b-a}\delta x = \left. = \frac{1}{(b-a)} \frac{x^2}{2} \right|_{a}^{b} = \frac{1}{(b-a)} \frac{b^2-a^2}{2} = = \frac{(b+a)(b-a)}{2(b-a)} = \frac{a+b}{2}que es el promedio simple entre a y b cuando la función es uniforme.
Ejemplo
Ross 4.8/Leon-García 4.20. Un convertidor analógico-digital o cuantizador con resolución de paso Δ voltios redondea en la entrada el valor más cercano al múltiplo de Δ voltios como se muestra en la figura.
La entrada es un voltaje Vin de tipo aleatorio y la salida del convertidor es A/D es Vout, y su desempeño se mide por el error cuadratico medio:
E[|Vin – Vout|2]
Se supone que el error Vin – Vout se puede aproximar a una función aleatoria uniforme [-Δ/2,Δ/2] dado que siempre el valor siempre cae en el intervalo dado. Determine el valor esperado para la señal de entrada, y también el valor del error cuadrático medio.
Solución: Para el intervalo centrado en el origen
f(x)= \frac{1}{b-a} E[X] = \int_{-\Delta /2}^{\Delta /2} xf(x) \delta x = =\int_{-\Delta /2}^{\Delta /2} x\frac{1}{\Delta /2 - (-\Delta /2)} \delta x = \int_{-\Delta /2}^{\Delta /2} \frac{x}{\Delta} \delta x = \left. \frac{x^2}{2 \Delta} \right|_{-\Delta /2}^{\Delta /2} = \frac{1}{2\Delta} \big[ {\big( \frac{-\Delta}{2}\big)}^2 - {\big( \frac{\Delta}{2}\big)}^2 \big] = 0Para el error cuadrático medio en [a,b], a=-Δ/2, b=Δ/2
E[|V_{in}-V_{out}|^2] \approx E[X^2] = \int_{-\infty}^{\infty} x^2 f(x) \delta x = \int_{a}^{b} x^2 \frac{1}{b - a} \delta x = \left. \frac{1}{b-a} \frac{x^3}{3} \right|_{a}^{b} = \frac{1}{b-a} \frac{b^3-a^3}{3} = = \frac{(b-a)(b^2+ba+a^2)}{3(b-a)} = \frac{b^2+ba+a^2}{3} = \frac{({\frac{\Delta}{2})}^2 + {(\frac{\Delta}{2})}{(\frac{-\Delta}{2})} + {(\frac{-\Delta}{2})}^2}{3} = \frac{1}{3} \frac{\Delta ^2 -\Delta^2 + \Delta ^2}{4} = \frac{\Delta ^2}{12}