0

Video sobre el Autor del Blog

Posted by fcaicedo on Jun 10, 2014 in Sin categoría

Hola, este es un pequeño video donde hablo sobre mí, el creador del blog, Fausto Caicedo Cevallos.

Espero que les guste.

 
0

Albert Einstein

Posted by fcaicedo on Jun 10, 2014 in Sin categoría

albert-einstein1

(Ulm, 1879 – Princeton, 1955) Científico estadounidense de origen alemán. En 1880 su familia se trasladó a Munich y luego (1894-96) a Milán. Frecuentó un instituto muniqués, prosiguió sus estudios en Italia y finalmente se matriculó en la Escuela Politécnica de Zurich (1896-1901). Obtenida la ciudadanía suiza (1901), encontró un empleo en el Departamento de Patentes; aquel mismo año contrajo matrimonio.

En 1905 publicó en Annalen der Physik sus primeros trabajos sobre la teoría de los quanta, la de la relatividad y los movimientos brownianos, y llegó a profesor libre de la Universidad de Berna. En 1909 fue nombrado profesor adjunto de la de Zurich y en 1910 pasó a enseñar Física teórica en la Universidad alemana de Praga. Luego dio clases de esta misma disciplina en la Escuela Politécnica zuriquesa (1912). En 1913, nombrado miembro de la Academia de Prusia, se trasladó a Berlín. En 1916 se casó en segundas nupcias. Publicó entonces Die Grundlage der allgemeinen Relativitätstheorie e inició una serie de viajes a los Estados Unidos, Inglaterra, Francia, China, Japón, Palestina y España (1919-32).

En 1924 entregó a la imprenta Über die spezielle und die allgemeine Relativitätstheorie y el año siguiente recibió el premio Nobel por su teoría sobre el efecto fotoeléctrico. En 1933 abandonó la Academia de Prusia y se enfrentó valerosamente a Hitler. Iniciada la persecución nazi contra los judíos, marchó a América y enseñó en el Instituto de Estudios Superiores de Princeton (Nueva Jersey). En 1945 se retiró a la vida privada, a pesar de lo cual prosiguió intensamente su actividad científica.

Einstein es uno de los grandes genios de la humanidad y en el ámbito de las ciencias físicas ha llevado a cabo una revolución todavía en marcha y cuyos alcances no pueden medirse aún en toda su amplitud. En su primera formulación (teoría de la relatividad restringida) extendió a los fenómenos ópticos y electromagnéticos el principio de relatividad galileo-newtoniano, anteriormente limitado sólo al campo de la Mecánica, y afirmó la validez de las leyes de esta última tanto respecto de un sistema galileano de referencia K, como en relación con otro de referencia K’ en movimiento rectilíneo y uniforme respecto de K.

Según las teorías de Einstein, la ley de la propagación de la luz en el vacío debe tener, como cualquier otra general de la naturaleza, la misma expresión ya referida, por ejemplo, a una garita ferroviaria o a un vagón de tren en movimiento rectilíneo y uniforme en relación con ésta; dicho en otros términos, la velocidad de la luz no se ajusta a la de los sistemas de referencia que se mueven en línea recta y de manera uniforme respecto del movimiento de la misma luz. En realidad, el experimento de Michelson-Morley, mil veces repetido y comprobado a partir de 1881, había demostrado la diferencia existente entre la velocidad de la luz y la de la Tierra.

La relatividad restringida ofrece la razón de tal hecho, antes inexplicable. A su vez, la invariabilidad de la velocidad de la luz lleva a la introducción, en Física, de las transformaciones de Lorentz, según las cuales la distancia temporal entre dos acontecimientos y la que separa dos puntos de un cuerpo rígido se hallan en función del movimiento del sistema de referencia, y por ello resultan distintas para K y K’. Ello nos libra, en la formulación de las leyes ópticas y electromagnéticas, de la relación con el hipotético sistema fijo «absoluto», rompecabezas metafísico de la Física clásica, puesto que tales leyes, como aparecen formuladas en la relatividad restringida, valen para K e igualmente para K’, lo mismo que las de la Mecánica.

 
0

James Clerk Maxwell

Posted by fcaicedo on Jun 10, 2014 in Sin categoría

maxwell1

(Edimburgo, 1831-Glenlair, Reino Unido, 1879) Físico británico. Nació en el seno de una familia escocesa de la clase media, hijo único de un abogado de Edimburgo. Tras la temprana muerte de su madre a causa de un cáncer abdominal –la misma dolencia que pondría fin a su vida–, recibió la educación básica en la Edimburg Academy, bajo la tutela de su tía Jane Cay.

Con tan sólo dieciséis años ingresó en la Universidad de Edimburgo, y en 1850 pasó a la Universidad de Cambridge, donde deslumbró a todos con su extraordinaria capacidad para resolver problemas relacionados con la física. Cuatro años más tarde se graduó en esta universidad, pero el deterioro de la salud de su padre le obligó a regresar a Escocia y renunciar a una plaza en el prestigioso Trinity College de Cambridge.

En 1856, poco después de la muerte de su padre, fue nombrado profesor de filosofía natural en el Marischal College de Aberdeen. Dos años más tarde se casó con Katherine Mary Dewar, hija del director del Marischal College. En 1860, tras abandonar la recién instituida Universidad de Aberdeen, obtuvo el puesto de profesor de filosofía natural en el King’s College de Londres.

En esta época inició la etapa más fructífera de su carrera, e ingresó en la Royal Society (1861). En 1871 fue nombrado director del Cavendish Laboratory. Publicó dos artículos, clásicos dentro del estudio del electromagnetismo, y desarrolló una destacable labor tanto teórica como experimental en termodinámica; las relaciones de igualdad entre las distintas derivadas parciales de las funciones termodinámicas, denominadas relaciones de Maxwell, están presentes de ordinario en cualquier libro de texto de la especialidad.

Sin embargo, son sus aportaciones al campo del elecromagnetismo las que lo sitúan entre los grandes científicos de la historia. En el prefacio de su obra Treatise on Electricity and Magnetism (1873) declaró que su principal tarea consistía en justificar matemáticamente conceptos físicos descritos hasta ese momento de forma únicamente cualitativa, como las leyes de la inducción electromagnética y de los campos de fuerza, enunciadas por Michael Faraday.

Con este objeto, Maxwell introdujo el concepto de onda electromagnética, que permite una descripción matemática adecuada de la interacción entre electricidad y magnetismo mediante sus célebres ecuaciones que describen y cuantifican los campos de fuerzas. Su teoría sugirió la posibilidad de generar ondas electromagnéticas en el laboratorio, hecho que corroboró Heinrich Hertz en 1887, ocho años después de la muerte de Maxwell, y que posteriormente supuso el inicio de la era de la comunicación rápida a distancia.

Aplicó el análisis estadístico a la interpretación de la teoría cinética de los gases, con la denominada función de distribución de Maxwell-Boltzmann, que establece la probabilidad de hallar una partícula con una determinada velocidad en un gas ideal diluido y no sometido a campos de fuerza externos. Justificó las hipótesis de Avogadro y de Ampère; demostró la relación directa entre la viscosidad de un gas y su temperatura absoluta, y enunció la ley de equipartición de la energía. Descubrió la birrefringencia temporal de los cuerpos elásticos translúcidos sometidos a tensiones mecánicas y elaboró una teoría satisfactoria sobre la percepción cromática, desarrollando los fundamentos de la fotografía tricolor.

La influencia de las ideas de Maxwell va más allá, si cabe, de lo especificado, ya que en ellas se basan muchas de las argumentaciones tanto de la teoría de la relatividad einsteiniana como de la moderna mecánica cuántica del siglo XX.

 
0

Georg Friedrich Bernhard Riemann

Posted by fcaicedo on Jun 10, 2014 in Sin categoría

riemann

(Breselenz, actual Alemania, 1826-Selasca, Italia, 1866) Matemático alemán. Su padre era pastor luterano, y su primera ambición fue la de seguir sus pasos. Ingresó en el liceo de Hannover, donde estudió hebreo y trató de probar la certeza del libro del Génesis por medio de razonamientos matemáticos. En 1846 ingresó en la Universidad de Gotinga, que abandonó un año después para trasladarse a la de Berlín y estudiar bajo la tutela de, entre otros, Steiner, Jacobi y Dirichlet (quien ejerció una gran influencia sobre él).

Su carrera se interrumpió por la revolución de 1848, durante la cual sirvió al rey de Prusia. En 1851 se doctoró en Gotinga, con una tesis que fue muy elogiada por Gauss, y en la que Riemann estudió la teoría de las variablea complejas y, en particular, lo que hoy se denominan superficies de Riemann, e introdujo en la misma los métodos topológicos.

En su corta vida contribuyó a muchísimas ramas de las matemáticas: integrales de Riemann, aproximación de Riemann, método de Riemann para series trigonométricas, matrices de Riemann de la teoría de funciones abelianas, funciones zeta de Riemann, hipótesis de Riemann, teorema de Riemann-Roch, lema de Riemann-Lebesgue, integrales de Riemann-Liouville de orden fraccional…, aunque tal vez su más conocida aportación fue su geometría no euclidiana, basada en una axiomática distinta de la propuesta por Euclides, y expuesta detalladamente en su célebre memoria Sobre las hipótesis que sirven de fundamento a la geometría.

 

 
0

René Descartes

Posted by fcaicedo on Jun 10, 2014 in Sin categoría

descartes

(La Haye, Francia, 1596 – Estocolmo, Suecia, 1650) Filósofo y matemático francés. René Descartes se educó en el colegio jesuita de La Flèche (1604-1612), donde gozó de un cierto trato de favor en atención a su delicada salud.

Obtuvo el título de bachiller y de licenciado en derecho por la facultad de Poitiers (1616), y a los veintidós años partió hacia los Países Bajos, donde sirvió como soldado en el ejército de Mauricio de Nassau. En 1619 se enroló en las filas del duque de Baviera; el 10 de noviembre, en el curso de tres sueños sucesivos, René Descartes experimentó la famosa «revelación» que lo condujo a la elaboración de su método.

Tras renunciar a la vida militar, Descartes viajó por Alemania y los Países Bajos y regresó a Francia en 1622, para vender sus posesiones y asegurarse así una vida independiente; pasó una temporada en Italia (1623-1625) y se afincó luego en París, donde se relacionó con la mayoría de científicos de la época. En 1628 decidió instalarse en los Países Bajos lugar que consideró más favorable para cumplir los objetivos filosóficos y científicos que se había fijado, y residió allí hasta 1649.

Los cinco primeros años los dedicó principalmente a elaborar su propio sistema del mundo y su concepción del hombre y del cuerpo humano, que estaba a punto de completar en 1633 cuando, al tener noticia de la condena de Galileo, renunció a la publicación de su obra, que tendría lugar póstumamente.

En 1637 apareció su famoso Discurso del método, presentado como prólogo a tres ensayos científicos. Descartes proponía una duda metódica, que sometiese a juicio todos los conocimientos de la época, aunque, a diferencia de los escépticos, la suya era una duda orientada a la búsqueda de principios últimos sobre los cuales cimentar sólidamente el saber.

Este principio lo halló en la existencia de la propia conciencia que duda, en su famosa formulación «pienso, luego existo». Sobre la base de esta primera evidencia, pudo desandar en parte el camino de su escepticismo, hallando en Dios el garante último de la verdad de las evidencias de la razón, que se manifiestan como ideas «claras y distintas».

 

 
0

Joseph-Louis de Lagrange

Posted by fcaicedo on Jun 10, 2014 in Sin categoría

Lagrange_portrait

(Turín, 1736 – París, 1813) Matemático francés de origen italiano. Estudió en su ciudad natal y hasta los diecisiete años no mostró ninguna aptitud especial para las matemáticas. Sin embargo, la lectura de una obra del astrónomo inglés Edmund Halley despertó su interés, y, tras un año de incesante trabajo, era ya un matemático consumado. Nombrado profesor de la Escuela de Artillería, en 1758 fundó una sociedad, con la ayuda de sus alumnos, que fue incorporada a la Academia de Turín.

En su obra Miscellanea taurinensia, escrita por aquellos años, obtuvo, entre otros resultados, una ecuación diferencial general del movimiento y su adaptación para el caso particular del movimiento rectilíneo, y la solución a muchos problemas de dinámica mediante el cálculo de variantes. Escribió asimismo numerosos artículos sobre el cálculo integral y las ecuaciones diferenciales generales del movimiento de tres cuerpos sometidos a fuerzas de atracción mutuas.

A principios de 1760 era ya uno de los matemáticos más respetados de Europa, a pesar del flagelo de una salud extremadamente débil. Su siguiente trabajo sobre el equilibrio lunar, donde razonaba la causa de que la Luna siempre mostrara la misma cara, le supuso la concesión, en 1764, de un premio por la Academia de Ciencias de París. Hasta que se trasladó a la capital francesa en 1787, escribió gran variedad de tratados sobre astronomía, resolución de ecuaciones, cálculo de determinantes de segundo y tercer orden, ecuaciones diferenciales y mecánica analítica.

En 1795 se le concedió una cátedra en la recién fundada École Normale, que ocupó tan solo durante cuatro meses. Dos años más tarde, tras la creación de la École Polytechnique, Lagrange fue nombrado profesor, y quienes asistieron a sus clases las describieron como «perfectas en forma y contenido». Sus enseñanzas sobre cálculo diferencial forman la base de sus obras Teoría de las funciones analíticas y Resolución de ecuaciones numéricas (1798). En 1810 inició una revisión de su Teoría, pero sólo pudo concluir dos terceras partes antes de su muerte.

 
0

Karl Friedrich Gauss

Posted by fcaicedo on Jun 10, 2014 in Sin categoría

gauss

(Brunswick, actual Alemania, 1777 – Gotinga, id., 1855) Matemático, físico y astrónomo alemán. Nacido en el seno de una familia humilde, desde muy temprana edad Karl Friedrich Gauss dio muestras de una prodigiosa capacidad para las matemáticas (según la leyenda, a los tres años interrumpió a su padre cuando estaba ocupado en la contabilidad de su negocio para indicarle un error de cálculo), hasta el punto de ser recomendado al duque de Brunswick por sus profesores de la escuela primaria.

El duque le proporcionó asistencia financiera en sus estudios secundarios y universitarios, que efectuó en la Universidad de Gotinga entre 1795 y 1798. Su tesis doctoral (1799) versó sobre el teorema fundamental del álgebra (que establece que toda ecuación algebraica de coeficientes complejos tiene soluciones igualmente complejas), que Gauss demostró.

En 1801 Gauss publicó una obra destinada a influir de forma decisiva en la conformación de la matemática del resto del siglo, y particularmente en el ámbito de la teoría de números, las Disquisiciones aritméticas, entre cuyos numerosos hallazgos cabe destacar: la primera prueba de la ley de la reciprocidad cuadrática; una solución algebraica al problema de cómo determinar si un polígono regular de n lados puede ser construido de manera geométrica (sin resolver desde los tiempos de Euclides); un tratamiento exhaustivo de la teoría de los números congruentes; y numerosos resultados con números y funciones de variable compleja (que volvería a tratar en 1831, describiendo el modo exacto de desarrollar una teoría completa sobre los mismos a partir de sus representaciones en el plano x, y) que marcaron el punto de partida de la moderna teoría de los números algebraicos.

Su fama como matemático creció considerablemente ese mismo año, cuando fue capaz de predecir con exactitud el comportamiento orbital del asteroide Ceres, avistado por primera vez pocos meses antes, para lo cual empleó el método de los mínimos cuadrados, desarrollado por él mismo en 1794 y aún hoy día la base computacional de modernas herramientas de estimación astronómica.

En 1807 aceptó el puesto de profesor de astronomía en el Observatorio de Gotinga, cargo en el que permaneció toda su vida. Dos años más tarde, su primera esposa, con quien había contraído matrimonio en 1805, falleció al dar a luz a su tercer hijo; más tarde se casó en segundas nupcias y tuvo tres hijos más. En esos años Gauss maduró sus ideas sobre geometría no euclidiana, esto es, la construcción de una geometría lógicamente coherente que prescindiera del postulado de Euclides de las paralelas; aunque no publicó sus conclusiones, se adelantó en más de treinta años a los trabajos posteriores de Lobachewski y Bolyai.

Alrededor de 1820, ocupado en la correcta determinación matemática de la forma y el tamaño del globo terráqueo, Gauss desarrolló numerosas herramientas para el tratamiento de los datos observacionales, entre las cuales destaca la curva de distribución de errores que lleva su nombre, conocida también con el apelativo de distribución normal y que constituye uno de los pilares de la estadística.

Otros resultados asociados a su interés por la geodesia son la invención del heliotropo, y, en el campo de la matemática pura, sus ideas sobre el estudio de las características de las superficies curvas que, explicitadas en su obra Disquisitiones generales circa superficies curvas (1828), sentaron las bases de la moderna geometría diferencial. También mereció su atención el fenómeno del magnetismo, que culminó con la instalación del primer telégrafo eléctrico (1833). Íntimamente relacionados con sus investigaciones sobre dicha materia fueron los principios de la teoría matemática del potencial, que publicó en 1840.

Otras áreas de la física que Gauss estudió fueron la mecánica, la acústica, la capilaridad y, muy especialmente, la óptica, disciplina sobre la que publicó el tratado Investigaciones dióptricas (1841), en las cuales demostró que un sistema de lentes cualquiera es siempre reducible a una sola lente con las características adecuadas. Fue tal vez la última aportación fundamental de Karl Friedrich Gauss, un científico cuya profundidad de análisis, amplitud de intereses y rigor de tratamiento le merecieron en vida el apelativo de «príncipe de los matemáticos».

 
0

Leonhard Euler

Posted by fcaicedo on Jun 10, 2014 in Sin categoría

Leonhard_Euler_2

(Basilea, Suiza, 1707 – San Petersburgo, 1783) Matemático suizo. Las facultades que desde temprana edad demostró para las matemáticas pronto le ganaron la estima del patriarca de los Bernoulli, Johann, uno de los más eminentes matemáticos de su tiempo y profesor de Euler en la Universidad de Basilea. Tras graduarse en dicha institución en 1723, cuatro años más tarde fue invitado personalmente por Catalina I para convertirse en asociado de la Academia de Ciencias de San Petersburgo, donde coincidió con otro miembro de la familia Bernoulli, Daniel, a quien en 1733 relevó en la cátedra de matemáticas.

A causa de su extrema dedicación al trabajo, dos años más tarde perdió la visión del ojo derecho, hecho que no afectó ni a la calidad ni al número de sus hallazgos. Hasta 1741, año en que por invitación de Federico el Grande se trasladó a la Academia de Berlín, refinó los métodos y las formas del cálculo integral (no sólo gracias a resultados novedosos, sino también a un cambio en los habituales métodos de demostración geométricos, que sustituyó por métodos algebraicos), que convirtió en una herramienta de fácil aplicación a problemas de física. Con ello configuró en buena parte las matemáticas aplicadas de la centuria siguiente (a las que contribuiría luego con otros resultados destacados en el campo de la teoría de las ecuaciones diferenciales lineales), además de desarrollar la teoría de las funciones trigonométricas y logarítmicas (introduciendo de paso la notación e para definir la base de los logaritmos naturales).

En 1748 publicó la obra Introductio in analysim infinitorum, en la que expuso el concepto de función en el marco del análisis matemático, campo en el que así mismo contribuyó de forma decisiva con resultados como el teorema sobre las funciones homogéneas y la teoría de la convergencia. En el ámbito de la geometría desarrolló conceptos básicos como los del ortocentro, el circuncentro y el baricentro de un triángulo, y revolucionó el tratamiento de las funciones trigonométricas al adoptar ratios numéricos y relacionarlos con los números complejos mediante la denominada identidad de Euler; a él se debe la moderna tendencia a representar cuestiones matemáticas y físicas en términos aritméticos.

 
0

Gottfried Wilhelm Leibniz

Posted by fcaicedo on Jun 10, 2014 in Sin categoría

Gottfried Wilhelm Leibniz

Gottfried Wilhelm von Leibniz; Leipzig, actual Alemania, 1646 – Hannover, id., 1716) Filósofo y matemático alemán. Su padre, profesor de filosofía moral en la Universidad de Leipzig, falleció cuando Leibniz contaba seis años. Capaz de escribir poemas en latín a los ocho años, a los doce empezó a interesarse por la lógica aristotélica a través del estudio de la filosofía escolástica.

En 1661 ingresó en la universidad de su ciudad natal para estudiar leyes, y dos años después se trasladó a la Universidad de Jena, donde estudió matemáticas con E. Weigel. En 1666, la Universidad de Leipzig rechazó, a causa de su juventud, concederle el título de doctor, que Leibniz obtuvo sin embargo en Altdorf; tras rechazar el ofrecimiento que allí se le hizo de una cátedra, en 1667 entró al servicio del arzobispo elector de Maguncia como diplomático, y en los años siguientes desplegó una intensa actividad en los círculos cortesanos y eclesiásticos.

En 1672 fue enviado a París con la misión de disuadir a Luis XIV de su propósito de invadir Alemania; aunque fracasó en la embajada, Leibniz permaneció cinco años en París, donde desarrolló una fecunda labor intelectual. De esta época datan su invención de una máquina de calcular capaz de realizar las operaciones de multiplicación, división y extracción de raíces cuadradas, así como la elaboración de las bases del cálculo infinitesimal.

En 1676 fue nombrado bibliotecario del duque de Hannover, de quien más adelante sería consejero, además de historiador de la casa ducal. A la muerte de Sofía Carlota (1705), la esposa del duque, con quien Leibniz tuvo amistad, su papel como consejero de príncipes empezó a declinar. Dedicó sus últimos años a su tarea de historiador y a la redacción de sus obras filosóficas más importantes, que se publicaron póstumamente.

Representante por excelencia del racionalismo, Leibniz situó el criterio de verdad del conocimiento en su necesidad intríseca y no en su adecuación con la realidad; el modelo de esa necesidad lo proporcionan las verdades analíticas de las matemáticas. Junto a estas verdades de razón, existen las verdades de hecho, que son contingentes y no manifiestan por sí mismas su verdad.

El problema de encontrar un fundamento racional para estas últimas lo resolvió afirmando que su contingencia era consecuencia del carácter finito de la mente humana, incapaz de analizarlas por entero en las infinitas determinaciones de los conceptos que en ellas intervienen, ya que cualquier cosa concreta, al estar relacionada con todas las demás siquiera por ser diferente de ellas, posee un conjunto de propiedades infinito.

 
0

Isaac Newton

Posted by fcaicedo on Jun 10, 2014 in Sin categoría

índice

Isaac Newton (1642 – 1727) fue un cientifico inglés, nacio en el dia de navidad en 1642 del calendario antiguo. Su madre preparó un futuro de granjero para él. pero despúes se convencio de que su hijo tenía talento y lo envió a la Universidad de Cambridge, donde para poder pagarse los estudios comenzó a trabajar.

Newton en la universidad no destacó especialmente.
Su graduacción fue en 1665. Despues de esto se inclinó a la investigación de la fisica y de las matemáticas. Debido a esto a los 29 años formuló algunas teorias que le llevarian por el camino de la ciencia moderna hasta el siglo XX.

Isaac es considerado como uno de los principales protagonistas de la «revolucion cientifica» del siglo XVII y el «Padre de la mecánica moderna». Pero el nunca quiso dar publicidad a sus descubrimientos.

*Newton coincidió con Gottfried Leibniz en el descubrimiento del calculo integral, lo que contribuyó a una renovacion de las matemáticas.
*También formuló el teorema del binomio, que es llamado el binomio de newton. Aunque sus principales aportes fueron en el hámbito de la ciencia.

Primeras investigaciones:
*Las primeras investigaciones giraron en torno a la óptica, donde explicó que la luz blanca era una mezcla de los colores que tiene el arcoiris.
Con esto hizo una teoría sobre la naturaleza corpuscular de la luz.
En 1668 diseño el primer telescopio reflector, el cual es un tipo de los que se usan actualmente en la mayoria de los observatorios astronomicos.
Con esto escribió la obra «óptica» (1703) donde recogío su visión de esta materia.

*Trabajo tambien en areas como la termodinámica y la acustica.

*Su lugar en la historia se lo debe a la nueva fundación de la mecanica. Donde en su obra «Principios matémáticos de la filosofía natural» formuló las tres leyes fundamentales del movimiento:
La primera: ley de inercia, la que dice que todo cuerpo tiende a estar en movimiento uniforme o reposo si no se le aplica aobre el alguna fuerza.
La segunda: Principio fundamental de la dinámica, según el cual la aceleración que tiene un cuerpo es igual a la fuerza ejercida sobre el, dividida por su masa.
La tercera: explica que por cada fuerza o acción que se hace sobre un cuerpo, existe una reaccion igual, pero de sentido contrario.

De estas tre leyes, despues él dedujo la cuarta, que para nosotros es la más conocida: La ley de la gravedad. que segun la historia, nos dice que fue sugerida por la caída de una manzana de un árbol.
* Descubrió que la atracción que hay entre la tierra y la luna es directamente proporcional al producto de sus masas, e inversamente proporcional al cuadrado de la distancia que hay entre ellas, donde se calcula la fuerza mediante el producto del cuociente por una constante «G».

Despues de esto Newton se dedicó a aplicar esos principios generales y a resolver problemas concretos, como predecir la posición exacta de los cuerpos celestes.

Con esto se convierte en el mayor astrónomo del siglo.

En 1703 fue nombrado presidente de la royal society de Londres.
En 1705 terminó la ascención de su prestigio, ya que fue nombrado caballero.

Copyright © 2024 Fausto Caicedo All rights reserved. Theme by Laptop Geek.