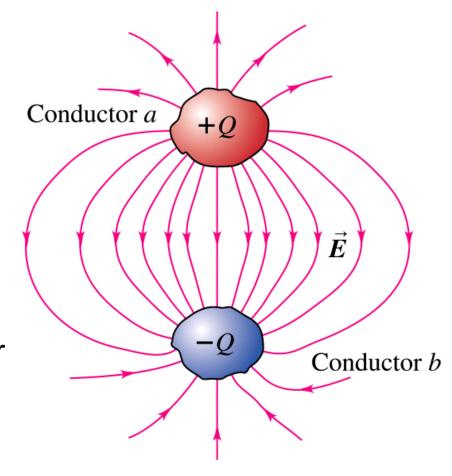

CAPACITANCIA

Definiciones & Ejemplos


¿Qué aprenderemos en este capítulo?

- Concepto de Electrostática
- Conservación de la Carga
- Fuerzas y Cargas Eléctricas
- Ley de Coulomb & Cualitativa
- Conductores & Aislantes

El Capacitor

- •Un capacitor es un dispositivo cuyo propósito es almacenar enegía eléctrica, la cual se puede liberar después y de una manera controlada en un periodo corto de tiempo.
- Un capacitor consiste de 2 conductores espacialmente separados, los que pueden ser cargados a +Q y -Q respectivamente.

"Lightning" (La atmósfera es un GRAN capacitor!!)

Colisiones producen partículas cargadas. Las cargadas (-) van a la parte baja de la nube; las partículas livianas (+) van a la parte superior.

"Stepped Leader"

Electrones
negativamente
cargados
empiezan a
zigzagear
hacia abajo.

Atracción

A medida que el "stepped leader" se aproxima al suelo, induce un arrastre de carga positiva hacia arriba.

Flujo de Carga

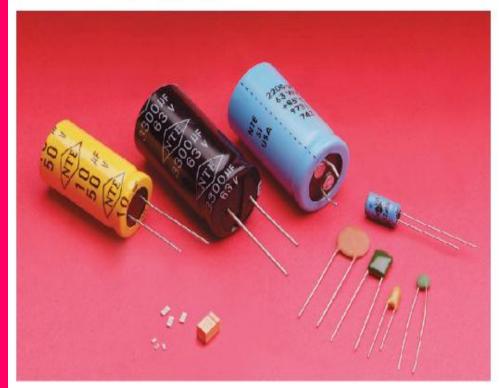
A medida que el lider y la corriente positiva se juntan, una corriente poderosa empieza a fluir

Contacto!

Onda intensa de carga positiva, un "return stroke," viaja hacia arriba a

 $P \sim 10^{12} \, \text{W}$

 $\Delta V \sim 200 \text{ M volts}$

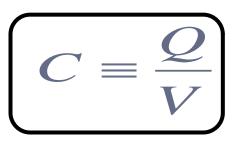

Verdades:

 $I \sim 40,000 \text{ amp}$

 $\Delta t \sim 30 \text{ms}$

TIPOS DE CAPACITORES

Aplicaciones Típicas

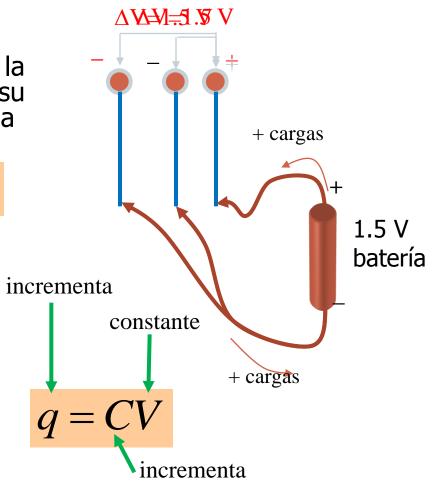

Los capacitores suelen usarse para:

- Baterías, por su cualidad de almacenar energía
- Memorias, por la misma cualidad
- Filtros
- Adaptación de impedancias, haciéndoles resonar a una frecuencia dada con otros componentes
- Demodular AM, junto con un diodo.
- El flash de las camaras fotograficas.
- Tubos fluorecentes

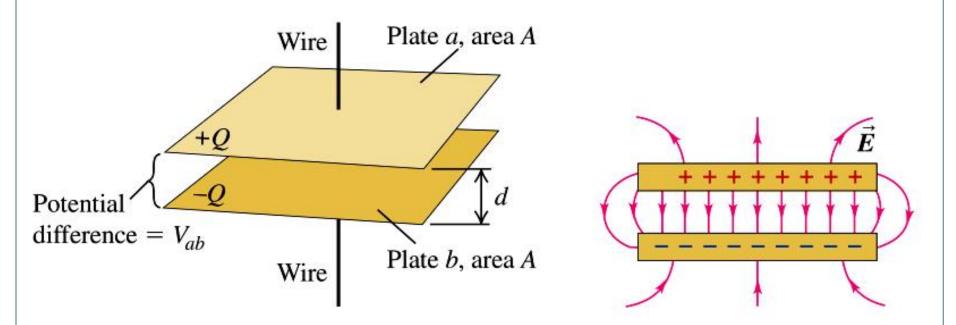
¿Qué es la Capacitancia?

De la palabra "capacidad," esta describe cuanta carga un arreglo de conductores puede almacenar <u>a un voltaje</u> <u>determinado.</u>

•La capacitancia es definida como la relación ente la carga de uno de los conductores del capacitor y la diferencia de potencial entre los conductores.

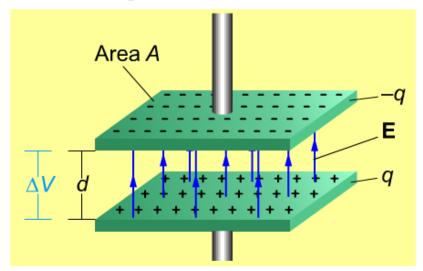


[La unidad de la capacitancia es el Faradio: 1 F = 1C/V]


· La capacitancia es una propiedad sólo del capacitor (geometría), independiente de la carga y el voltaje.

La Capacitancia Depende de la Geometría

- ¿Qué pasa cuando los dos conductores se acercan?
- Ellos permanecen conectados a la bateria, en consecuencia su diferencia de potencial no cambia
- Pero recuerde que $V = -\int \vec{E} \cdot d\vec{s}$
- Como la distancia entre los conductores disminuye, el campo <u>E debe incrementar.</u>
- Para que el campo incremente, deben fluir más cargas, en consecuencia, los dos conductores pueden almacenar más carga. La capacitancia se incrementa.


Ejemplo: El Capacitor de Placas Planas y Paralelas

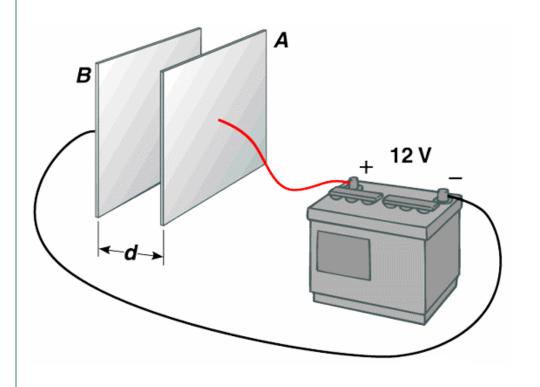
$$C \equiv rac{Q}{V}$$

- Q, valor absoluto de la carga en una de las placas.
- V, diferencia de potencial entre las placas.

El Capacitor de Placas Planas y Paralelas

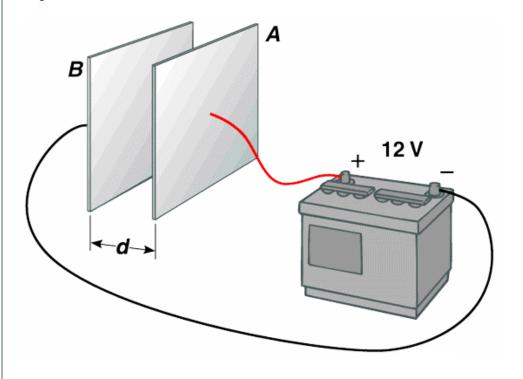

$$C \equiv \frac{Q}{V}$$

$$V_b - V_a = -\int_a^b \vec{E} \cdot d\vec{l} = E d$$

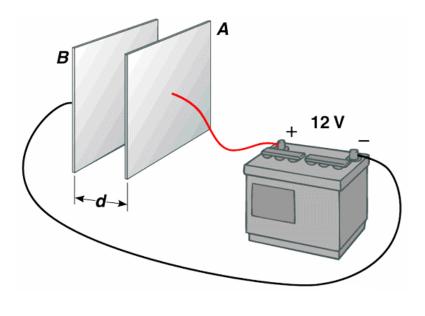

$$E = \frac{\sigma}{\varepsilon_o} = \frac{Q/A}{\varepsilon_o} \implies V = \frac{Qd}{A\varepsilon_o}$$

La capacitancia es función únicamente de la geometría del capacitor

$$C = \frac{Q}{V} = \frac{\varepsilon_o A}{d}$$



Determine qué pasa con el valor de la diferencia de potencial entre las placas, a medida que ellas se separan desde la posición indicada.


- La diferencia de potencial
- a) Aumenta
- b) Disminuye
- c) No cambia

Determine qué pasa con el valor de la carga en las placas, a medida que ellas se separan desde la posición indicada.

- La carga
- a) Aumenta
- b) Disminuye
- c) No cambia

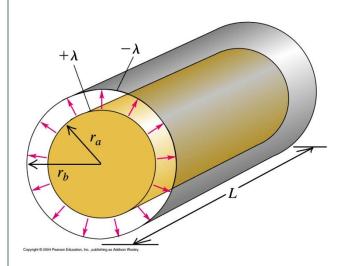
RECUERDE, LA BATERÍA ES UNA FUENTE DE CARGA (ENERGÍA) Y MANTIENE ENTRE SUS TERMINALES UNA DIFERENCIA DE POTENCIAL Las placas indicadas en la figura se cargan desde una batería, luego de cargarse se desconectan de la batería y se procede a <u>separar</u> las placas desde la posición indicada. ¿Qué pasa con la carga en las placas y el voltaje entre ellas?.

La carga

• El voltaje

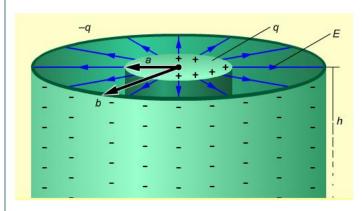
a) Aumenta

a) Aumenta


b) Disminuye

b) Disminuye

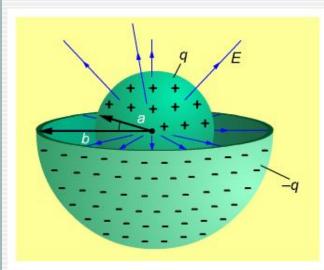
c) No cambia


c) No cambia

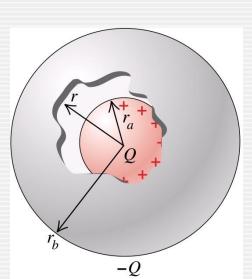
Ejemplo: Capacitor Cilíndrico

 La superficie Gaussiana es un cilindro de radio r (a < r < b) y longitud L

$$\oint \vec{E} \cdot d\vec{A} = E(2\pi rL) = \frac{Q}{\varepsilon_o} \qquad E = \frac{Q}{2\pi \varepsilon_0 Lr}$$



Si suponemos que el cilindro interior tiene +Q, luego el potencial V es positivo si definimos como cero el potencial en r = b:

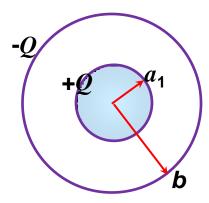

$$V = -\int_{b}^{a} \vec{E} \cdot d\vec{l} = -\int_{b}^{a} E dr = \int_{a}^{b} \frac{Q}{2\pi\varepsilon_{0}rL} dr = \frac{Q}{2\pi\varepsilon_{0}L} \ln\left(\frac{b}{a}\right)$$

$$C = \frac{Q}{V} = \frac{2\pi\varepsilon_{0}L}{\ln\left(\frac{b}{a}\right)}$$

Ejemplo: Capacitor Esférico

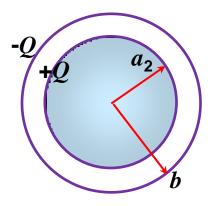
- Calculemos la capacitancia:
- Asuma +Q, -Q sobre las superficies de la esfera con diferencia de potencial V.
- Apliquemos Gauss para calcular el campo E y luego determinar la diferencia de potencial V
 - La superficie Gaussiana es una esfera de radio r (a < r < b)

$$\oint \vec{E} \cdot d\vec{A} = (4\pi r^2)E = \frac{Q}{\varepsilon_0} \Rightarrow E = \frac{Q}{4\pi \varepsilon_0 r^2}$$

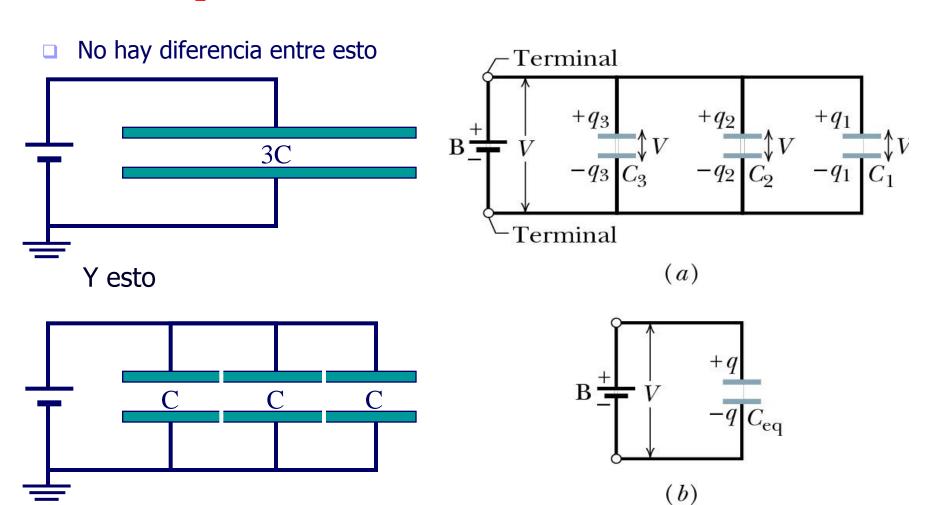

$$V = -\int_{b}^{a} \vec{E} \cdot d\vec{l} = -\int_{b}^{a} E dr = \int_{a}^{b} \frac{Q}{4\pi\varepsilon_{0} r^{2}} dr = \frac{Q}{4\pi\varepsilon_{0}} \left(\frac{1}{a} - \frac{1}{b} \right)$$

$$C \equiv \frac{Q}{V} = \frac{4\pi\varepsilon_0 \, ab}{b - a}$$

Comprobemos conceptos

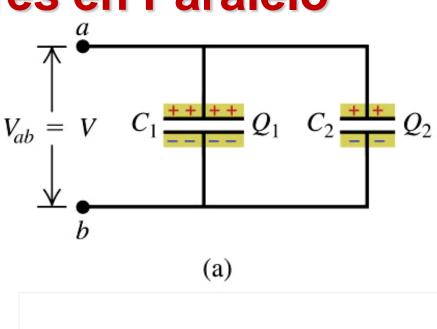

- En cada uno de los casos de abajo, una carga +Q es colocada sobre una esfera conductora sólida y una carga -Q sobre un cascarón esférico conductor concéntrico.
 - Sea V_1 la diferencia de potencial entre las esferas con (a_1, b) .
 - Sea V_2 la diferencia de potencial entre las esferas con (a_2, b) .

Cuál es la relación entre V_1 y V_2 ?


(a)
$$V_1 < V_2$$

(b)
$$V_1 = V_2$$

(c)
$$V_1 > V_2$$

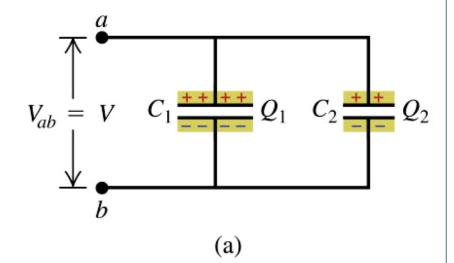

Capacitores en Paralelo

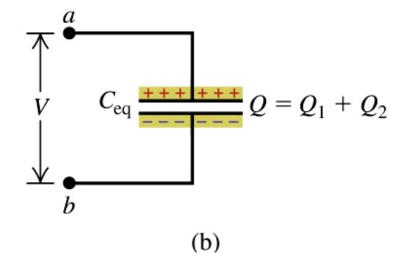
Capacitores en Paralelo

Los capacitores en paralelo tienen sus placas conectadas respectivamente a un determinado valor de potencial

El capacitor equivalente debe almacenar la carga de los capacitores que reemplaza.

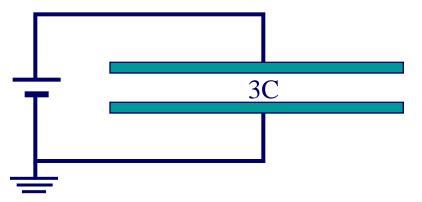
Capacitores en Paralelo

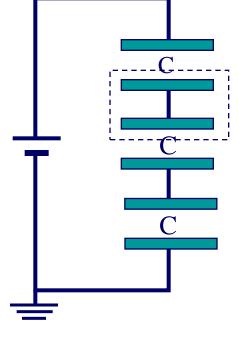

El capacitor equivalente debe almacenar la carga de los capacitores que reemplaza.


$$V = \frac{Q_1}{C_1} = \frac{Q_2}{C_2}$$

$$Q_1 = C_1 V \quad y \quad Q_2 = C_2 V$$

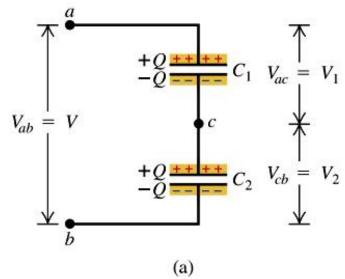
$$C \equiv \frac{Q}{V} = \frac{Q_1 + Q_2}{V} = \frac{C_1 V + C_2 V}{V}$$


$$C = C_1 + C_2$$



Capacitores en Serie

!Si hay diferencia entre esto!


!Y esto!

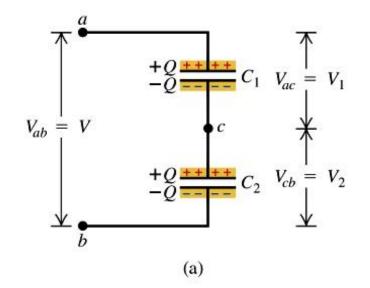
- La carga sobre la placa inferior de uno de los capacitores y la carga sobre la placa superior del capacitor vecino son iguales y opuestas. (mostradas por la superficie gaussiana sobre las dos placas).
- □ La carga total es q, pero el voltaje en cada uno es solo V/3, si los capacitores tienen la misma capacitancia.

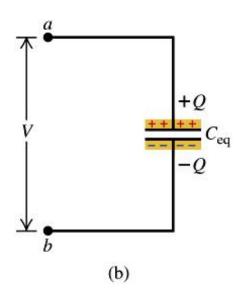
Capacitores en Serie

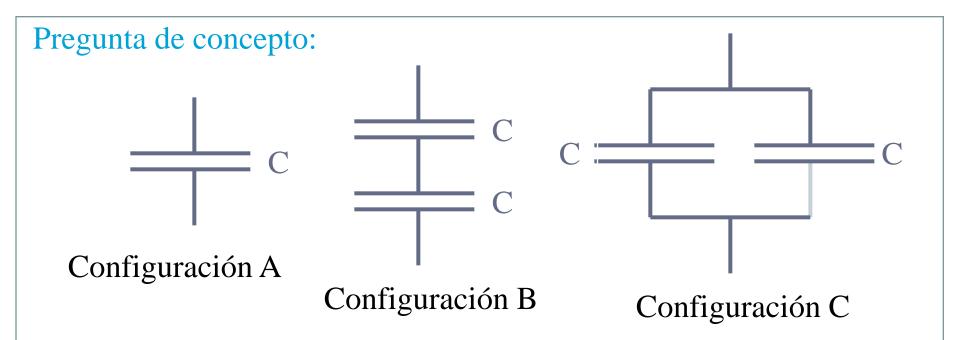
La carga en C₁ debe ser la misma que la carga en C₂ debido a que al aplicar una diferencia de potencial entre a y b las placas se inducen la misma carga y de signo contrario, la carga neta en las placas internas de C₁ y C₂ es cero

El capacitor equivalente debe almacenar la misma carga a la misma diferencia de potencial

Capacitores en Serie


El capacitor equivalente debe almacenar la misma carga a la misma diferencia de potencial


$$V_{ab} = \frac{Q}{C}$$


$$V_{ab} = V_1 + V_2 = \frac{Q}{C_1} + \frac{Q}{C_2}$$

$$\frac{Q}{C} = \frac{Q}{C_1} + \frac{Q}{C_2}$$

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$$

Se construyen tres configuraciones con capacitores idénticos

Cuál de estas configuraciones tiene la menor capacitancia?

- a) Configuración A
- b) Configuración B
- c) Configuración C

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} \quad (Serie)$$

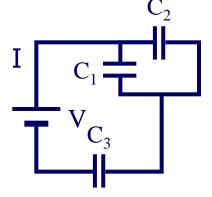
$$C \quad C_1 \quad C_2$$

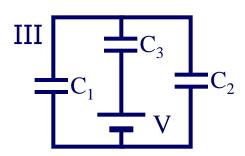
$$C = C_1 + C_2 \quad (Paralelo)$$

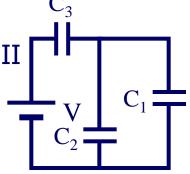
PREGUNTA DE ACTIVIDAD

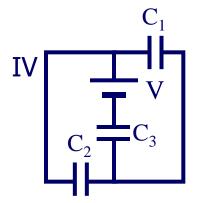
¿Serie o Paralelo?

4. En el circuito de abajo, ¿cuál de ellos muestra a los capacitores 1 y 2 en serie?

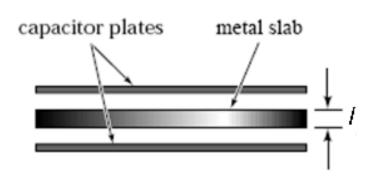


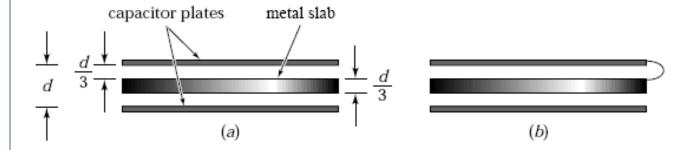

B. I, III


c. II, IV

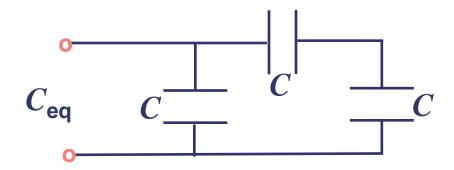

D. III, IV

E. Ninguno




Consider a capacitor made of two parallel metallic plates separated by a distance d. The top plate has a surface charge density $+\sigma$, the bottom plate $-\sigma$. A slab of metal of thickness l < d is inserted between the plates, not connected to either one. Upon insertion of the metal slab, the potential difference between the plates

- 1. increases.
- 2. decreases.
- 3. remains the same.

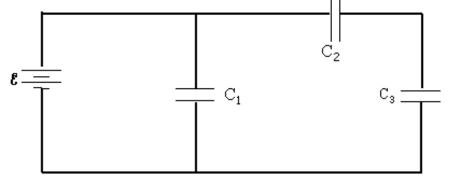

Consider two capacitors, each having plate separation d. In each case, a slab of metal of thickness d/3 is inserted between the plates. In case (a), the slab is not connected to either plate. In case (b), it is connected to the upper plate. The capacitance is higher for

- 1. case (*a*).
- 2. case (*b*).
- 3. The two capacitances are equal.

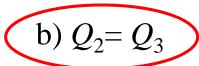
Comprobemos conceptos

• Cuál es la capacitancia equivalente, $C_{\rm eq}$, de la combinación mostrada?

(a)
$$C_{eq} = (3/2)C$$


(b)
$$C_{eq} = (2/3)C$$

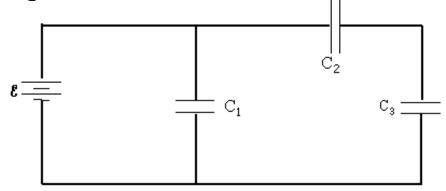
(c)
$$C_{eq} = 3C$$

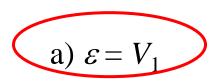

Pregunta de ATIVIDAD

Un circuito consiste de tres capacitores diferentes C_1 , C_2 , y C_3 los que estan conectados a una batería de fem ε . Los capacitores adquieren cargas Q_1 Q_2 , Q_3 , y tienen diferencias de potencial entre sus placas de V_1 , V_2 , y V_3 . C_{eq} es la capacitancia equivalente del circuito.

Marque las alternativas correctas:

a)
$$Q_1 = Q_2$$

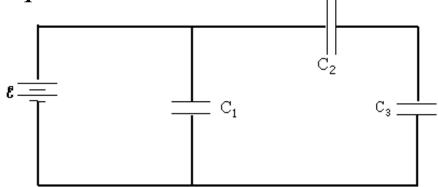



c)
$$V_2 = V_3$$

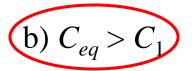
Pregunta de ACTIVIDAD

Un circuito consiste de tres capacitores diferentes C_1 , C_2 , y C_3 los que estan conectados a una batería de fem ε . Los capacitores adquieren cargas Q_1 Q_2 , Q_3 , y tienen diferencias de potencial entre sus placas de V_1 , V_2 , y V_3 . C_{eq} es la capacitancia equivalente del circuito.

Marque las alternativas correctas:

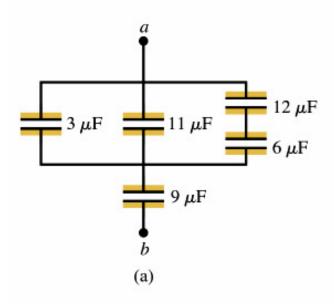

b)
$$\varepsilon < V_1$$

c)
$$\varepsilon > V_1$$

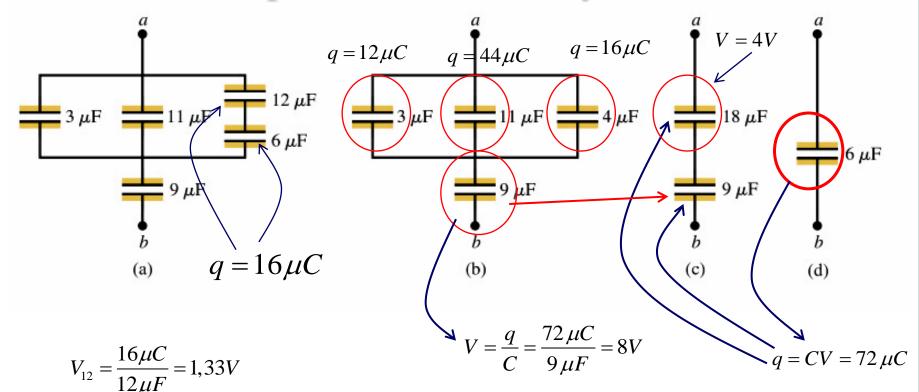

Pregunta de ACTIVIDAD

Un circuito consiste de tres capacitores diferentes C_1 , C_2 , y C_3 los que estan conectados a una batería de fem ε . Los capacitores adquieren cargas Q_1 Q_2 , Q_3 , y tienen diferencias de potencial entre sus placas de V_1 , V_2 , y V_3 . C_{eq} es la capacitancia equivalente del circuito.

Marque las alternativas correctas:

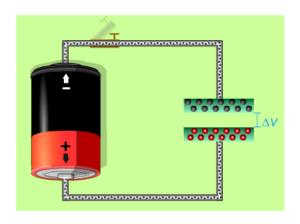

$$V_1 < V_2$$

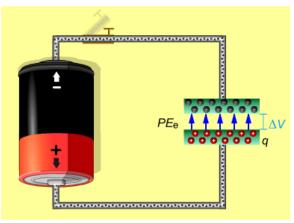
c)
$$C_{eq} < C_1$$

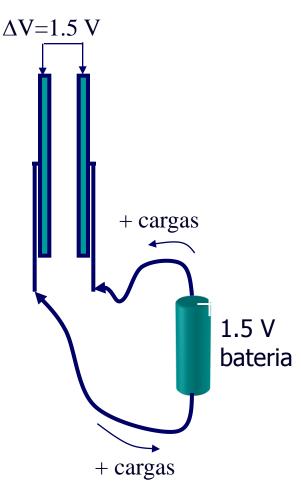

Ejemplos: Combinaciones de Capacitores

Determine la capacidad del capacitor equivalente entre los puntos a y b.

¿Qué carga almacenaría cada capacitor si la diferencia de potencial entre a y b es de 12 V?


¿Qué carga almacenaría cada capacitor si la diferencia de potencial entre a y b es de 12 V?




$$V_6 = \frac{16\mu C}{6\mu F} = 2,67V$$

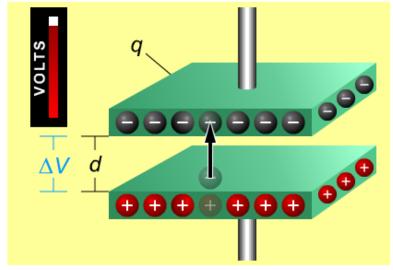
Los Capacitores Almacenan Energía

- Cuando las cargas fluyen desde la batería, la energía de la batería disminuye. ¿Dónde va ésta energía?
- Nosotros hemos aprendido que un arreglo de cargas se encuentra asociado con una energía potencial. Una forma de ver esto es que el arreglo de cargas almacena la energía.
- Recordemos la definición de potencial eléctrico V = U/q

VER ANIMACIÓN

13/05/2009 17:30

Los Capacitores Almacenan Energía


 □ Para una distribución de cargas sobre un capacitor, un elemento pequeño dq almacenará energía potencial

$$dU = V dq$$

 Entonces, la energía almacenada al cargar un capacitor desde carga 0 hasta q es

$$U = \int V dq = \int \frac{q}{C} dq$$

$$U = \frac{1}{C} \int_0^q q' \, dq' = \frac{q^2}{2C} = \frac{1}{2} C V^2$$

VER ANIMACIÓN

Los Capacitores Almacenan Energía (densidad de energía)

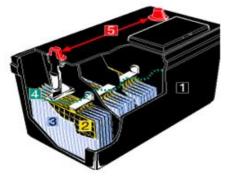
- Otra forma de ver la energía almacenada es considerar que ésta se encuentra almacenada en el campo eléctrico.
- La energía total del capacitor de placas plana es

$$U = \frac{1}{2}CV^2 = \frac{\varepsilon_0 A}{2d}V^2$$

■ El volumen donde se encuentra confinado el campo eléctrico es vol = Ad, la *densidad de energía es*

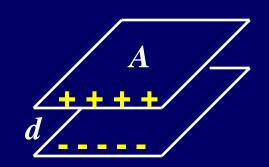
$$u = \frac{U}{vol} = \frac{\varepsilon_0 A}{2dAd} V^2 = \frac{1}{2} \varepsilon_0 \left(\frac{V}{d}\right)^2$$

Para un capacitor de placas planas


$$V = -\int \vec{E} \cdot d\vec{s} = Ed$$

VER ANIMACIÓN

$$u = \frac{1}{2} \varepsilon_0 E^2$$



VER ANIMACIÓN

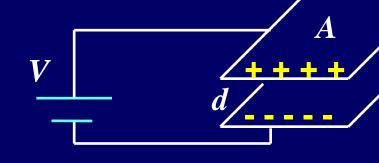
Energía almacenada en el campo eléctrico

Pregunta!

 Suponga que el capacitor de la figura se carga hasta adquirir una carga final de valor Q y luego es desconectado de la batería.

- Suponga ahora que yo separo las placas desde d hasta una separación final d_1
- Cómo cambian las cantidades Q, C, E, V, U en el capacitor?
- O: No cambia... no hay forma que la carga "escape".
- C: Disminuye...la capacitancia depende de la geometría
- E: No cambia...depende solo de la densidad de carga
- V: incrementa.. si $C \downarrow$, pero Q no cambia (o $d \uparrow$ pero E no cambia)
- U: Incrementa...se añade energía al sistema al separar las placas
- Cuánto cambian estas cantidades C, V, U?.. Ejercicio para los estudiantes!!

Respuestas:


$$C_1 = \frac{d}{d_1}C$$

$$V_1 = rac{d_1}{d}V$$

$$U_1 = \frac{d_1}{d}U$$

Pregunta Relacionada

- Suponga que la batería (V) se mantiene unida al capacitor.
- Las placas se separan desde d hasta d_1 .

- Ahora qué cambia?
- disminuye (la capacitancia depende solo de la geometría)
- Debe ser la misma la batería mantiene V
- Debe disminuir, Q=CV la carga "escapa" desde las placas

- Cuánto cambian las cantidades C, E, U?.. Ejercicio para los estudiantes!!

Respuestas:

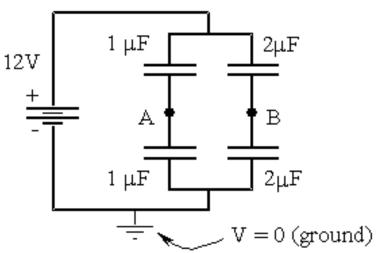
$$C_1 = \frac{d}{d_1}C$$

$$C_1 = \frac{d}{d_1}C \qquad \left[E_1 = \frac{d}{d_1}E\right]$$

$$oxed{U_1=rac{d}{d_1}U}$$

Los capacitores (inicialmente descargados) y la bacteria se ensamblan en un circuito como se indica en la figura. El punto indicado en la parte interior del circuito se encuentra conectado a tierra.

¿Cuál es el valor de la energía total U almacenada en los capacitores del circuito?


A)
$$U = 0.1 \text{ mJ}$$

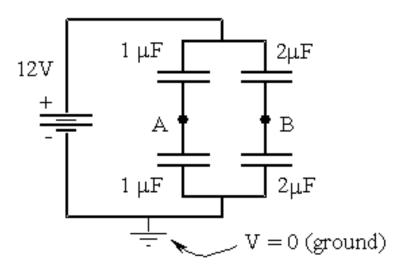
B)
$$U = 1.2 \text{ mJ}$$

C)
$$U = 1.44 \text{ mJ}$$

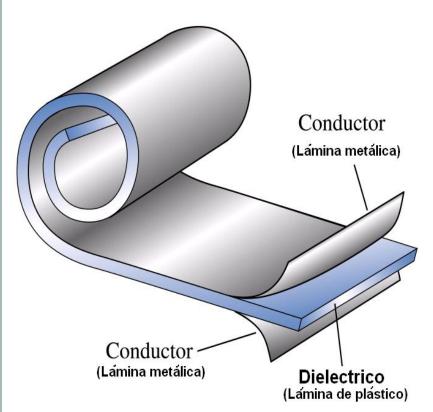
D)
$$U = 12 \text{ mJ}$$

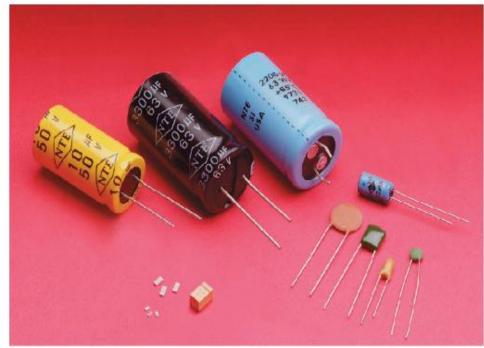
E)
$$U = 144 \text{ mJ}$$

¿Cuál es el valor de la diferencia de potencial, V_B - V_A , entre los puntos B y A?

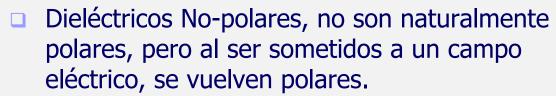

A)
$$V_B - V_A = -3.00 \text{ V}$$

B)
$$V_{R} - V_{A} = -2.00 \text{ V}$$

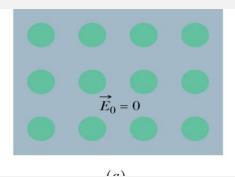

C)
$$V_{\rm B} - V_{\Delta} = +3.00 \text{ V}$$


D)
$$V_{R} - V_{\Delta} = +2.00 \text{ V}$$

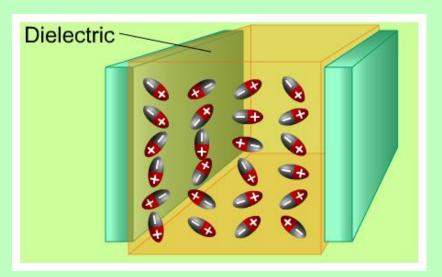
$$E) V_B - V_A = 0 V$$

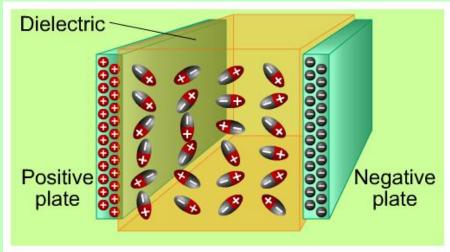

Dieléctricos

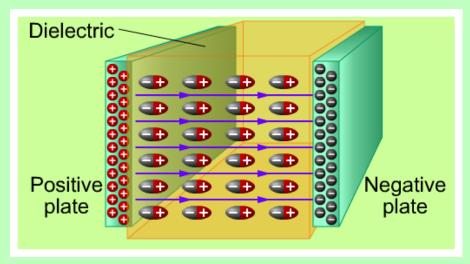


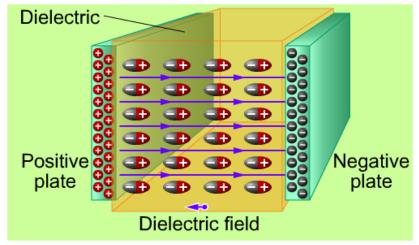

¿Qué hace el dieléctrico?

- Un material dieléctrico está hecho de moléculas.
- □ Dieléctricos Polares tienen un momento de dipolo (como la molécula de agua).



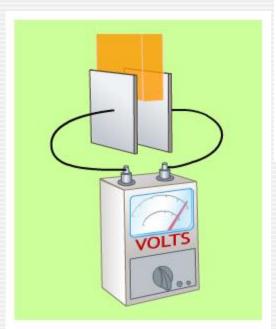


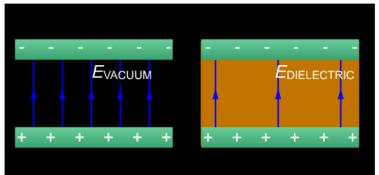

- Esto da lugar a una *reducción* del campo eléctrico resultante entre las placas.
- Esto da lugar a una disminución del potencial.
- □ Si las placas se encuentran conectadas a una batería, más carga fluirá hacia las placas.



Influencia de un dieléctrico en un Capacitor

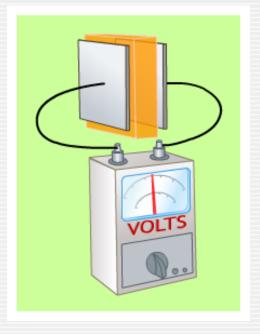
VER ANIMACIÓN


Dieléctricos

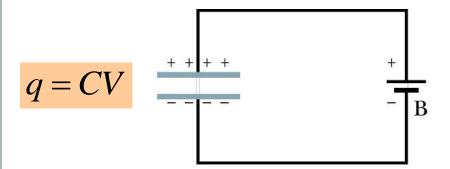

- Usted se podrá haber preguntado, porqué escribimos ε_0 (*permitividad del vacío*), esto significa que otros materiales (agua, papel, plástico) tienen diferentes permitividades $\varepsilon = \kappa \varepsilon_0$. La κ es llamada *constante dieléctrica*, y no tiene unidades. Para el aire, $\kappa = 1.00054$ (para nuestros propósitos lo tomaremos igual que el vacío)
- \Box En todas nuestras ecuaciones que hemos utilizado $ε_0$, usted la puede sustituir por $κε_0$ cuando consideremos otro material (llamado dieléctrico).
- Lo interesante de esto es que podemos incrementar la capacitancia de un capacitor de placas planas <u>llenando</u> el espacio con un dieléctrico.

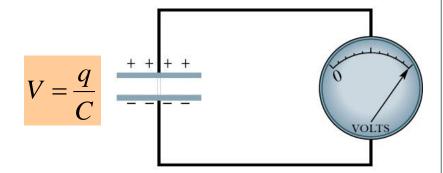
C =	$\underline{\kappa\varepsilon_0 A}$	$= \kappa C_o$
	d	

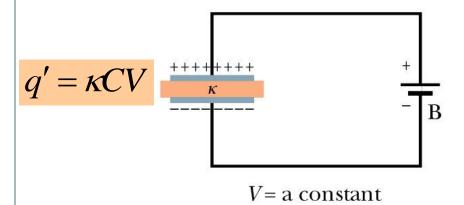
Material	Constant e dieléctric a κ	Rigidez dieléctrica (kV/mm)
Air	1.00054	3
Polystyrene	2.6	24
Paper	3.5	16
Transformer Oil	4.5	
Pyrex	4.7	14
Ruby Mica	5.4	
Porcelain	6.5	
Silicon	12	
Germanium	16	
Ethanol	25	
Water (20° C)	80.4	
Water (50° C)	78.5	
Titania Ceramic	130	
Strontium Titanate	310	8

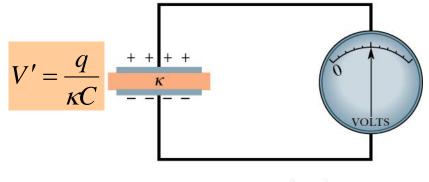

PARA UN CAPACITOR AISLADO

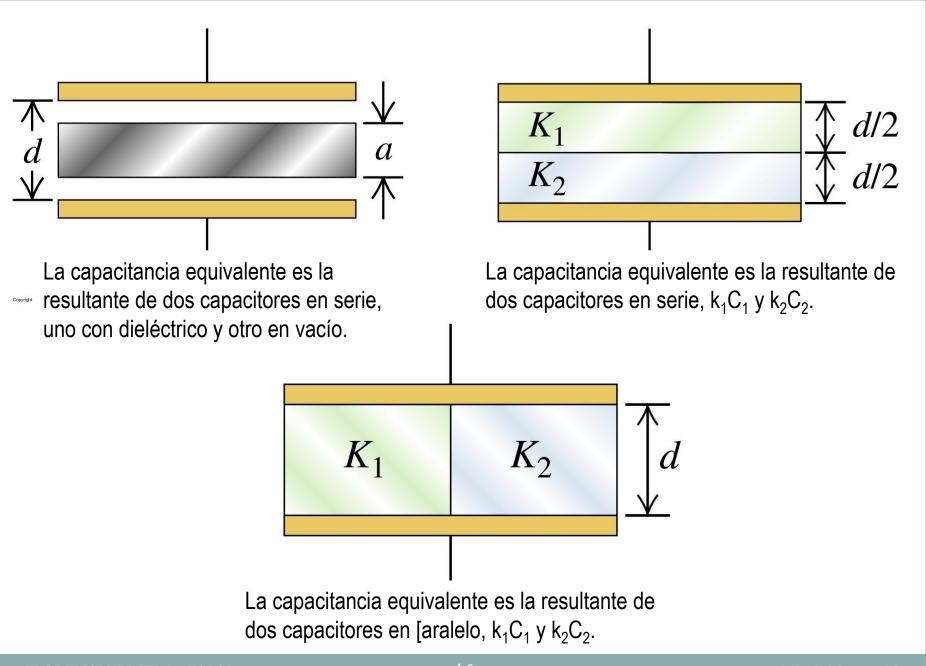
$$\kappa = \frac{C}{C_0}$$

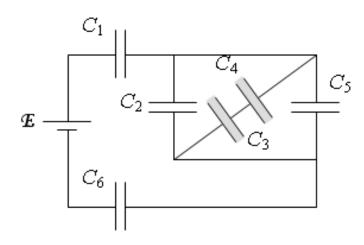

$$E = \frac{V}{d} = \frac{V_0}{d\kappa} = \frac{E_0}{\kappa}$$




El campo eléctrico y la diferencia de potencial resultante entre las placas de un capacitor se ve reducido y su capacitancia incrementada, con la presencia de un dieléctrico en su interior.


¿Qué ocurre cuando usted introduce un dieléctrico?


- Con la batería conectada, V=const,
 más carga fluye al capacitor
 - Con la batería desconectada, q=const, el voltaje (para la carga q) cae.


Six uncharged capacitors are connected to a battery as shown below. All six capacitors are geometrically identical, but C_3 and C_4 are filled with a material of dielectric constant $\kappa = 2$, while the other capacitors $(C_1, C_2, C_5, \text{ and } C_6)$ are filled with vacuum.

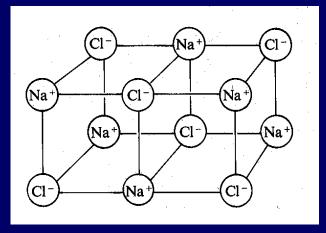
If the voltage drop across the capacitor C_2 is equal to 6 V, what is the magnitude of the charge, Q_3 , on the capacitor C_3 ?

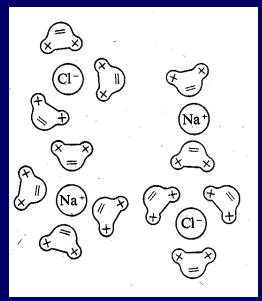
(a)
$$Q_3 = 6 \mu C$$

(b)
$$Q_3 = 12 \,\mu\text{C}$$

(a)
$$Q_3 = 6 \mu C$$

(b) $Q_3 = 12 \mu C$
(c) $Q_3 = 18 \mu C$




$$C_1 = C_2 = C_5 = C_6 = 1 \mu F$$

¿Por qué la Sal se Disuelve?

Normalmente NaCl es una estructura cristalina rígida, mantenida por la atracción electrostática entre los iones de Na⁺ y Cl⁻.

El agua tiene una constante dieléctrica muy grande (78). Esto reduce el campo eléctrico entre los átomos, por lo tanto la atracción entre ellos. La estructura cristalina se aparta y se disuelve.

Note: Esto debería dejar muchos iones en el agua

FIN DE ESTA UNIDAD

