CHAPTER

15

Differential Equations

15.1 Concepts Review

- 1. $r^2 + a_1 r + a_2 = 0$; complex conjugate roots
- **2.** $C_1 e^{-x} + C_2 e^x$
- 3. $(C_1 + C_2 x)e^x$
- $4. \quad C_1 \cos x + C_2 \sin x$

Problem Set 15.1

- 1. Roots are 2 and 3. General solution is $y = C_1 e^{2x} + C_2 e^{3x}$.
- 2. Roots are -6 and 1. General solution is $y = C_1 e^{-6x} + C_2 e^x$.
- 3. Auxiliary equation: $r^2 + 6r 7 = 0$, (r+7)(r-1) = 0 has roots -7, 1. General solution: $y = C_1 e^{-7x} + C_2 e^x$ $y' = -7C_1 e^{-7x} + C_2 e^x$ If x = 0, y = 0, y' = 4, then $0 = C_1 + C_2$ and $4 = -7C_1 + C_2$, so $C_1 = -\frac{1}{2}$ and $C_2 = \frac{1}{2}$. Therefore, $y = \frac{e^x e^{-7x}}{2}$.
- **4.** Roots are -2 and 5. General solution is $y = C_1 e^{-2x} + C_2 e^{5x}$. Particular solution is $y = \left(\frac{12}{7}\right)e^{5x} \left(\frac{5}{7}\right)e^{-2x}$.
- **5.** Repeated root 2. General solution is $y = (C_1 + C_2 x)e^{2x}$.
- 6. Auxiliary equation: $r^2 + 10r + 25 = 0$, $(r+5)^2 = 0$ has one repeated root -5. General solution: $y = C_1 e^{-5x} + C_2 x e^{-5x}$ or $y = (C_1 + C_2 x) e^{-5x}$

- 7. Roots are $2 \pm \sqrt{3}$. General solution is $y = e^{2x} (C_1 e^{\sqrt{3}x} + C_2 e^{-\sqrt{3}x}).$
- **8.** Roots are $-3 \pm \sqrt{11}$. General solution is $y = e^{-3x} \left(C_1 e^{\sqrt{11}x} + C_2 e^{-\sqrt{11}x} \right).$
- 9. Auxiliary equation: $r^2 + 4 = 0$ has roots $\pm 2i$. General solution: $y = C_1 \cos 2x + C_2 \sin 2x$ If x = 0 and y = 2, then $2 = C_1$; if $x = \frac{\pi}{4}$ and y = 3, then $3 = C_2$. Therefore, $y = 2\cos 2x + 3\sin 2x$.
- **10.** Roots are $\pm 3i$. General solution is $y = (C_1 \cos 3x + C_2 \sin 3x)$. Particular solution is $y = -\sin 3x 3\cos 3x$.
- 11. Roots are $-1 \pm i$. General solution is $y = e^{-x} (C_1 \cos x + C_2 \sin x)$.
- 12. Auxiliary equation: $r^2 + r + 1 = 0$ has roots $\frac{-1}{2} \pm \frac{\sqrt{3}}{2}i.$ General solution: $y = C_1 e^{(-1/2)x} \cos\left(\frac{\sqrt{3}}{2}\right) x + C_2 e^{(-1/2)x} \sin\left(\frac{\sqrt{3}}{2}\right) x$

$$y = e^{-x/2} \left[C_1 \cos\left(\frac{\sqrt{3}}{2}\right) x + C_2 \sin\left(\frac{\sqrt{3}}{2}\right) x \right]$$

- 13. Roots are 0, 0, -4, 1. General solution is $y = C_1 + C_2 x + C_3 e^{-4x} + C_4 e^x.$
- **14.** Roots are -1, 1, $\pm i$. General solution is $y = C_1 e^{-x} + C_2 e^x + C_3 \cos x + C_4 \sin x$.
- **15.** Auxiliary equation: $r^4 + 3r^2 4 = 0$, $(r+1)(r-1)(r^2+4) = 0$ has roots -1, 1, $\pm 2i$. General solution: $y = C_1 e^{-x} + C_2 e^x + C_3 \cos 2x + C_4 \sin 2x$

- **16.** Roots are -2, 3, $\pm i$. General solution is $y = C_1 e^{-2x} + C_2 e^{3x} + C_3 \cos x + C_4 \sin x$.
- 17. Roots are -2, 2. General solution is $y = C_1 e^{-2x} + C_2 e^{2x}$. $y = C_1 (\cosh 2x - \sinh 2x) + C_2 (\sinh 2x + \cosh 2x) = (-C_1 + C_2) \sinh 2x + (C_1 + C_2) \cosh 2x$ $= D_1 \sinh 2x + D_2 \cosh 2x$
- **18.** $e^{u} = \cosh u + \sinh u$ and $e^{-u} = \cosh u \sinh u$.

Auxiliary equation: $r^2 - 2br - c^2 = 0$

Roots of auxiliary equation: $\frac{2b \pm \sqrt{4b^2 + 4c^2}}{2} = b \pm \sqrt{b^2 + c^2}$

General solution: $y = C_1 e^{(b + \sqrt{b^2 + c^2})x} + C_2 e^{(b - \sqrt{b^2 + c^2})x}$

$$\begin{split} &=e^{bx}\bigg[\,C_1\bigg(\cosh\bigg(\sqrt{b^2+c^2}\,x\bigg)+\sinh\bigg(\sqrt{b^2+c^2}\,x\bigg)\bigg)+\,C_2\bigg(\cosh\bigg(\sqrt{b^2+c^2}\,x\bigg)-\sinh\bigg(\sqrt{b^2+c^2}\,x\bigg)\bigg)\bigg]\\ &=e^{bx}\bigg[\,\big(C_1+C_2\big)\cosh\bigg(\sqrt{b^2+c^2}\,x\bigg)+\,(C_1+C_2)\sin\bigg(\sqrt{b^2+c^2}\,x\bigg)\bigg]\\ &=e^{bx}\bigg[\,D_1\cosh\bigg(\sqrt{b^2+c^2}\,x\bigg)+\,D_2\sinh\bigg(\sqrt{b^2+c^2}\,x\bigg)\bigg] \end{split}$$

19. Repeated roots $\left(-\frac{1}{2}\right) \pm \left(\frac{\sqrt{3}}{2}\right)i$.

General solution is $y = e^{-x/2} \left[(C_1 + C_2 x) \cos \left(\frac{\sqrt{3}}{2} \right) x + (C_3 + C_4 x) \sin \left(\frac{\sqrt{3}}{2} \right) x \right].$

- **20.** Roots $1 \pm i$. General solution is $y = e^x (C_1 \cos x + C_2 \sin x)$
 - $= e^{x}(c\sin\gamma\cos x + c\cos\gamma\sin x) = ce^{x}\sin(x+\gamma).$
- **21.** (*) $x^2y'' + 5xy' + 4y = 0$

Let $x = e^z$. Then $z = \ln x$;

$$y' = \frac{dy}{dx} = \frac{dy}{dz}\frac{dz}{dx} = \frac{dy}{dz}\frac{1}{x};$$

$$y'' = \frac{dy'}{dx} = \frac{d}{dx} \left(\frac{dy}{dz} \frac{1}{x} \right) = \frac{dy}{dz} \frac{-1}{x^2} + \frac{1}{x} \frac{d^2y}{dz^2} \frac{dz}{dx}$$

$$= \frac{dy}{dz} \frac{-1}{x^2} + \frac{1}{x} \frac{d^2y}{dz^2} \frac{1}{x}$$

$$\left(-\frac{dy}{dz} + \frac{d^2y}{dz^2}\right) + \left(5\frac{dy}{dz}\right) + 4y = 0$$

(Substituting y' and y'' into (*))

$$\frac{d^2y}{dz^2} + 4\frac{dy}{dz} + 4y = 0$$

Auxiliary equation: $r^2 + 4r + 4 = 0$, $(r+2)^2 = 0$

has roots -2, -2.

General solution: $y = (C_1 + C_2 z)e^{-2z}$

$$y = (C_1 + C_2 \ln x)e^{-2\ln x}$$

$$y = (C_1 + C_2 \ln x)x^{-2}$$

22. As done in Problem 21,

$$\left[-a\left(\frac{dy}{dz}\right) + a\left(\frac{d^2y}{dx^2}\right)\right] + b\left(\frac{dy}{dz}\right) + cy = 0.$$

Therefore, $a\left(\frac{d^2y}{dz^2}\right) + (b-a)\left(\frac{dy}{dz}\right) + cy = 0.$

23. We need to show that $y'' + a_1y' + a_2y = 0$ if r_1 and r_2 are distinct real roots of the auxiliary equation. We have,

$$y' = C_1 r_1 e^{r_1 x} + C_2 r_2 e^{r_2 x}$$

$$y'' = C_1 r_1^2 e^{r_1 x} + C_2 r_2^2 e^{r_2 x}$$

When put into the differential equation, we obtain

$$\begin{split} y" + a_1 y' + a_2 y &= C_1 r_1^2 e^{r_1 x} + C_2 r_2^2 e^{r_2 x} \\ &+ a_1 \left(C_1 r_1 e^{r_1 x} + C_2 r_2 e^{r_2 x} \right) + a_2 \left(C_1 e^{r_1 x} + C_2 e^{r_2 x} \right) \end{split} \tag{*}$$

The solutions to the auxiliary equation are given by

$$r_1 = \frac{1}{2} \left(-a_1 - \sqrt{a_1^2 - 4a_2} \right)$$
 and

$$r_2 = \frac{1}{2} \left(-a_1 + \sqrt{{a_1}^2 - 4a_2} \right).$$

Putting these values into (*) and simplifying yields the desired result: $y'' + a_1 y' + a_2 y = 0$.

24. We need to show that $y'' + a_1 y' + a_2 y = 0$ if $\alpha \pm \beta i$ are complex conjugate roots of the auxiliary equation. We have,

$$y' = e^{\alpha x} \left((\alpha C_1 + \beta C_2) \cos(\beta x) + (\alpha C_2 - \beta C_1) \sin(\beta x) \right)$$

$$y'' = e^{\alpha x} \left(\left(\alpha^2 C_1 - \beta^2 C_1 + 2\alpha \beta C_2 \right) \cos(\beta x) + \left(\alpha^2 C_2 - \beta^2 C_2 - 2\alpha \beta C_1 \right) \sin(\beta x) \right).$$

When put into the differential equation, we obtain

$$y'' + a_1 y' + a_2 y = e^{\alpha x} \left(\left(\alpha^2 C_1 - \beta^2 C_1 + 2\alpha \beta C_2 \right) \cos(\beta x) + \left(\alpha^2 C_2 - \beta^2 C_2 - 2\alpha \beta C_1 \right) \sin(\beta x) \right) + a_1 e^{\alpha x} \left(\left(\alpha C_1 + \beta C_2 \right) \cos(\beta x) + \left(\alpha C_2 - \beta C_1 \right) \sin(\beta x) \right) + a_2 \left(C_1 e^{\alpha x} \cos(\beta x) + C_2 e^{\alpha x} \sin(\beta x) \right)$$
(*)

From the solutions to the auxiliary equation, we find that

$$\alpha = \frac{-a_1}{2}$$
 and $\beta = -\frac{1}{2}i\sqrt{a_1^2 - 4a_2}$.

Putting these values into (*) and simplifying yields the desired result: $y'' + a_1 y' + a_2 y = 0$.

25. a.
$$e^{bi} = 1 + (bi) + \frac{(bi)^2}{2!} + \frac{(bi)^3}{3!} + \frac{(bi)^4}{4!} + \frac{(bi)^5}{5!} + \dots = \left(1 - \frac{b^2}{2!} + \frac{b^4}{4!} - \frac{b^6}{6!} + \right) \dots + i \left(b - \frac{b^3}{3!} + \frac{b^5}{5!} - \frac{b^7}{7!} + \dots\right)$$

$$= \cos(b) + i \sin(b)$$

b.
$$e^{a+bi} = e^a e^{bi} = e^a [\cos(b) + i\sin(b)]$$

$$\begin{aligned} \mathbf{c.} \quad & D_x \bigg[e^{(\alpha+\beta i)x} \bigg] = D_x [e^{\alpha x} (\cos\beta x + i\sin\beta x)] = \alpha e^{\alpha x} (\cos\beta x + i\sin\beta x) + e^{\alpha x} (-i\beta\sin\beta x + i\beta\cos\beta x) \\ & = e^{\alpha x} [(\alpha+\beta i)\cos\beta x + (\alpha i - \beta)\sin\beta x] \\ & (\alpha+\beta) e^{(\alpha+\beta i)x} = (\alpha+\beta i) [e^{\alpha x} (\cos\beta x + i\sin\beta x)] = e^{\alpha x} [(\alpha+\beta i)\cos\beta x + (\alpha i - \beta)\sin\beta x] \\ & \text{Therefore, } D_x [e^{(\alpha+\beta i)x}] = (\alpha+i\beta) e^{(\alpha+\beta i)x} \end{aligned}$$

26.
$$c_1e^{(\alpha+\beta i)x}+c_2e^{(\alpha+\beta i)x}$$
 [c_1 and c_2 are complex constants.]
$$=c_1e^{\alpha x}[\cos\beta x+i\sin\beta x]+c_2e^{\alpha x}[\cos(-\beta x)+i\sin(-\beta x)]=e^{\alpha x}[(c_1+c_2)\cos\beta x+(c_1-c_2)i\sin\beta x]$$
$$=e^{\alpha x}[C_1\cos\beta x+C_2\sin\beta x], \text{ where } C_1=c_1+c_2, \text{ and } C_2=c_1-c_2.$$
 Note: If c_1 and c_2 are complex conjugates, then c_1 and c_2 are real.

27.
$$y = 0.5e^{5.16228x} + 0.5e^{-1.162278x}$$

28.
$$y = 3.5xe^{-2.5x} + 2e^{-2.5x}$$

29.
$$y = 1.29099e^{-0.25x} \sin(0.968246x)$$

30.
$$y = e^{0.333333x} [2.5\cos(0.471405x) - 4.94975\sin(0.471405x)]$$

15.2 Concepts Review

1. particular solution to the nonhomogeneous equation; homogeneous equation

2.
$$-6 + C_1 e^{-2x} + C_2 e^{3x}$$

3.
$$y = Ax^2 + Bx + C$$

4.
$$y = Bxe^{\frac{1}{3}x}$$

Problem Set 15.2

1.
$$y_h = C_1 e^{-3x} + C_2 e^{3x}$$

 $y_p = \left(-\frac{1}{9}\right) x + 0$
 $y = \left(-\frac{1}{9}\right) x + C_1 e^{-3x} + C_2 e^{3x}$

2.
$$y_h = C_1 e^{-3x} + C_2 e^{2x}$$

 $y_p = \left(-\frac{1}{3}\right) x^2 + \left(-\frac{1}{9}\right) x + \left(-\frac{7}{54}\right)$
 $y = \left(-\frac{1}{3}\right) x^2 - \left(\frac{1}{9}\right) x - \left(\frac{7}{54}\right) + C_1 e^{-3x} + C_2 e^{2x}$

3. Auxiliary equation:
$$r^2 - 2r + 1 = 0$$
 has roots 1, 1.

$$y_h = (C_1 + C_2 x)e^x$$

Let $y_p = Ax^2 + Bx + C$; $y'_p = 2Ax + B$;
 $y''_p = 2A$.

Then
$$(2A) - 2(2Ax + B) + (Ax^2 + Bx + C) = x^2 + x$$
.
 $Ax^2 + (-4A + B)x + (2A - 2B + C) = x^2 + x$
Thus, $A = 1, -4A + B = 1, 2A - 2B + C = 0$, so $A = 1, B = 5, C = 8$.

General solution:
$$y = x^2 + 5x + 8 + (C_1 + C_2 x)e^x$$

4.
$$y_h = C_1 e^{-x} + C_2 \cdot y_p = 2x^2 + (-4)x$$

 $y = 2x^2 - 4x + C_1 e^{-x} + C_2$

5.
$$y_h = C_1 e^{2x} + C_2 e^{3x} \cdot y_p = \left(\frac{1}{2}\right) e^x \cdot y$$
$$= \left(\frac{1}{2}\right) e^x + C_1 e^{2x} + C_2 e^{3x}$$

6. Auxiliary equation:
$$r^2 + 6r + 9 = 0$$
, $(r+3)^2 = 0$ has roots -3 , -3 .

$$y_h = (C_1 + C_2 x)e^{-3x}$$

Let
$$y_p = Be^{-x}$$
; $y'_p = -Be^{-x}$; $y''_p = Be^{-x}$.

Then
$$(Be^{-x}) + 6(-Be^{-x}) + 9(Be^{-x}) = 2e^{-x}$$
; $4Be^{-x} = 2e^{-x}$; $B = \frac{1}{2}$

General solution:
$$y = \left(\frac{1}{2}\right)e^{-x} + (C_1 + C_2 x)e^{-3x}$$

7.
$$y_h = C_1 e^{-3x} + C_2 e^{-x}$$

 $y_p = \left(-\frac{1}{2}\right) x e^{-3x}$
 $y = \left(-\frac{1}{2}\right) x e^{-3x} + C_1 e^{-3x} + C_2 e^{-x}$

8.
$$y_h = e^{-x} (C_1 \cos x + C_2 \sin x)$$

 $y_p = \left(\frac{3}{2}\right) e^{-2x}$
 $y = \left(\frac{3}{2}\right) e^{-2x} + e^{-x} (C_1 \cos x + C_2 \sin x)$

9. Auxiliary equation:
$$r^2 - r - 2 = 0$$
,

$$(r+1)(r-2) = 0$$
 has roots $-1, 2$.

$$y_h = C_1 e^{-x} + C_2 e^{2x}$$

Let
$$y_p = B\cos x + C\sin x$$
; $y_p' = -B\sin x + C\cos x$; $y_p'' = -B\cos x - C\sin x$.

Then
$$(-B\cos x - C\sin x) - (-B\sin x + C\cos x)$$

$$-2(B\cos x + C\sin x) = 2\sin x.$$

$$(-3B-C)\cos x + (B-3C)\sin x = 2\sin x$$
, so $-3B-C=0$ so $-3B-C=0$ and $B-3C=2$; $B=\frac{1}{5}$; $C=\frac{-3}{5}$.

General solution:
$$\left(\frac{1}{5}\right)\cos x - \left(\frac{3}{5}\right)\sin x + C_1e^{2x} + C_2e^{-x}$$

10.
$$y_h = C_1 e^{-4x} + C_2$$

$$y_p = \left(-\frac{1}{17}\right)\cos x + \left(\frac{4}{17}\right)\sin x$$

$$y = \left(-\frac{1}{17}\right)\cos x + \left(\frac{4}{17}\right)\sin x + C_1e^{-4x} + C_2$$

11.
$$y_h = C_1 \cos 2x + C_2 \sin 2x$$

$$y_p = (0)x\cos 2x + \left(\frac{1}{2}\right)x\sin 2x$$

$$y = \left(\frac{1}{2}\right)x\sin 2x + C_1\cos 2x + C_2\sin 2x$$

12. Auxiliary equation: $r^2 + 9 = 0$ has roots $\pm 3i$, so $y_h = C_1 \cos 3x + C_2 \sin 3x$.

Let
$$y_p = Bx \cos 3x + Cx \sin 3x$$
; $y'_p = (-3bx + C) \sin 3x + (B + 3Cx) \cos 3x$;

$$y_p'' = (-9Bx + 6C)\cos 3x + (-9Cx - 6B)\sin 3x$$
.

Then substituting into the original equation and simplifying, obtain $6C \cos 3x - 6B \sin 3x = \sin 3x$, so C = 0 and

$$B=-\frac{1}{6}.$$

General solution: $y = \left(-\frac{1}{6}\right)x\cos 3x + C_1\cos 3x + C_2\sin 3x$

13. $y_h = C_1 \cos 3x + C_2 \sin 3x$

$$y_p = (0)\cos x + \left(\frac{1}{8}\right)\sin x + \left(\frac{1}{13}\right)e^{2x}$$

$$y = \left(\frac{1}{8}\right)\sin x + \left(\frac{1}{13}\right)e^{2x} + C_1\cos 3x + C_2\sin 3x$$

14. $y_h = C_1 e^{-x} + C_2$

$$y_p = \left(\frac{1}{2}\right)e^x + \left(\frac{3}{2}\right)x^2 + (-3)x$$

$$y = \left(\frac{1}{2}\right)e^x + \left(\frac{3}{2}\right)x^2 - 3x + C_1e^{-x} + C_2$$

15. Auxiliary equation: $r^2 - 5r + 6 = 0$ has roots 2 and 3, so $y_h = C_1 e^{2x} + C_2 e^{3x}$.

Let
$$y_p = Be^x$$
; $y'_p = Be^x$; $y''_p = Be^x$.

Then
$$(Be^x) - 5(Be^x) + 6(Be^x) = 2e^x$$
; $2Be^x = 2e^x$; $B = 1$.

General solution:
$$y = e^x + C_1 e^{2x} + C_2 e^{3x}$$

$$y' = e^x + 2C_1e^{2x} + 3C_2e^{3x}$$

If
$$x = 0$$
, $y = 1$, $y' = 0$, then $1 = 1 + C_1 + C_2$ and $0 = 1 + 2C_1 + 3C_2$; $C_1 = 1$, $C_2 = -1$.

Therefore,
$$y = e^x + e^{2x} - e^{3x}$$
.

16. $y_h = C_1 e^{-2x} + C_2 e^{2x}$

$$y_p = (0)\cos x + \left(-\frac{4}{5}\right)\sin x$$

$$y = \left(-\frac{4}{5}\right)\sin x + C_1 e^{-2x} + C_2 e^{2x}$$

$$y = \left(-\frac{4}{5}\right)\sin x + \left(\frac{9}{5}\right)e^{-2x} + \left(\frac{11}{5}\right)e^{2x}$$
 satisfies the conditions.

17. $y_h = C_1 e^x + C_2 e^{2x}$

$$y_p = \left(\frac{1}{4}\right)(10x+19)$$

$$y = \left(\frac{1}{4}\right)(10x+19) + C_1e^x + C_2e^{2x}$$

- **18.** Auxiliary equation: $r^2 4 = 0$ has roots 2, -2, so $y_h = C_1 e^{2x} + C_2 e^{-2x}$. Let $y_p = v_1 e^{2x} + v_2 e^{-2x}$, subject to $v_1' e^{2x} + v_2' e^{-2x} = 0$, and $v_1' (2e^{2x}) + v_2' (-2e^{-2x}) = e^{2x}$. Then $v_1' (4e^{2x}) = e^{2x}$ and $v_2' (-4e^{-2x}) = e^{2x}$; $v_1' = \frac{1}{4}$ and $v_2' = -e^{4x/4}$; $v_1 = \frac{x}{4}$ and $v_2 = -\frac{e^{4x}}{16}$. General solution: $y = \frac{xe^{2x}}{4} - \frac{e^{2x}}{16} + C_1 e^{2x} + C_2 e^{-2x}$
- 19. $y_h = C_1 \cos x + C_2 \sin x$ $y_p = -\cos \ln |\sin x| - \cos x - x \sin x$ $y = -\cos x \ln |\sin x| - x \sin x + C_3 \cos x + C_2 \sin x$ (combined cos x terms)
- 20. $y_h = C_1 \cos x + C_2 \sin x$ $y_p = -\sin x \ln |\csc x + \cot x|$ $y = -\sin x \ln |\csc x + \cot x| + C_1 \cos x + C_2 \sin x$
- 21. Auxiliary equation: $r^2 3r + 2 = 0$ has roots 1, 2, so $y_h = C_1 e^x + C_2 e^{2x}$. Let $y_p = v_1 e^x + v_2 e^{2x}$ subject to $v_1' e^x + v_2' e^{2x} = 0$, and $v_1' (e^x) + v_2' (2e^{2x}) = e^x (ex+1)^{-1}$. Then $v_1' = \frac{-e^x}{e^x (e^x + 1)}$ so $v_1 = \int \frac{-e^x}{e^x (e^x + 1)} dx = \int \frac{-1}{u(u+1)} du$ $= \int \left(\frac{-1}{u} + \frac{1}{u+1}\right) du = -\ln u + \ln(u+1) = \ln\left(\frac{u+1}{u}\right) = \ln\frac{e^x + 1}{e^x} = \ln(1 + e^{-x})$ $v_2' = \frac{e^x}{e^{2x} (e^x + 1)}$ so $v_2 = -e^{-x} + \ln(1 + e^{-x})$

(similar to finding v_1)

General solution:
$$y = e^x \ln(1 + e^{-x}) - e^x + e^{2x} \ln(1 + e^{-x}) + C_1 e^x + C_2 e^{2x}$$

 $y = (e^x + e^{2x}) \ln(1 + e^{-x}) + D_1 e^x + D_2 e^{2x}$

- 22. $y_h = C_1 e^{2x} + C_2 e^{3x}$; $y_p = e^x$ $y = e^x + C_1 e^{2x} + C_2 e^{3x}$
- 23. $L(y_p) = (v_1u_1 + v_2u_2)'' + b(v_1u_1 + v_2u_2)' + c(v_1u_1 + v_2u_2)$ $= (v_1'u_1 + v_1u_1' + v_2'u_2 + v_2u_2') + b(v_1'u_1 + v_1u_1' + v_2'u_2 + v_2u_2') + c(v_1u_1 + v_2u_2)$ $= (v_1''u_1 + v_1'u_1' + v_1'u_1' + v_1''u_1' + v_2''u_2 + v_2'u_2' + v_2'u_2') + b(v_1'u_1 + v_1u_1' + v_2'u_2 + v_2u_2') + c(v_1u_1 + v_2u_2)$ $= v_1(u_1'' + bu_1' + cu_1) + v_2(u_2'' + bu_2' + cu_2) + b(v_1'u_1 + v_2'u_2) + (v_1''u_1 + v_1'u_1' + v_2''u_2 + v_2'u_2) + (v_1'u_1' + v_2'u_2)$ $= v_1(u_1'' + bu_1' + cu_1) + v_2(u_2'' + bu_2' + cu_2) + b(v_1'u_1 + v_2'u_2) + (v_1'u_1 + v_2'u_2)' + (v_1'u_1' + v_2'u_2')$ $= v_1(0) + v_2(0) + b(0) + (0) + k(x) = k(x)$

24. Auxiliary equation: $r^2 + 4 = 0$ has roots $\pm 2i$.

$$y_h = C_1 \cos 2x + C_2 \sin 2x$$

Now write $\sin^3 x$ in a form involving $\sin \beta x$'s or $\cos \beta x$'s

$$\sin^3 x = \frac{3}{4}\sin x - \frac{1}{4}\sin 3x$$

(C.R.C. Standard Mathematical Tables, or derive it using half-angle and product identities.)

Let
$$y_p = A \sin x + B \cos x + C \sin 3x + D \cos 3x$$
;

$$y_p' = A\cos x - B\sin x + 3C\cos 3x - 3D\sin 3x;$$

$$y_D'' = -A\sin x - B\cos x - 9C\sin 3x - 9D\cos 3x$$

Then

$$y_p'' + 4y_p = 3A\sin x + 3B\cos x - 5C\sin 3x - 5D\cos 3x = \frac{3}{4}\sin x - \frac{1}{4}\sin 3x$$
, so

$$A = \frac{1}{4}$$
, $B = 0$, $C = \frac{1}{20}$, $D = 0$.

General solution: $y = \frac{1}{4}\sin x + \frac{1}{20}\sin 3x + C_1\cos 2x + C_2\sin 2x$

15.3 Concepts Review

- **1.** 3; π
- 2. π ; decreases
- **3.** 0
- 4. electric circuit

Problem Set 15.3

1. $k = 250, m = 10, B^2 = k/m = 250/10 = 25, B = 5$

(the problem gives the mass as m = 10 kg)

Thus, y'' = -25y. The general solution is $y = C_1 \cos 5t + C_2 \sin 5t$. Apply the initial condition to get $y = 0.1 \cos 5t$.

The period is $\frac{2\pi}{5}$ seconds.

2. $k = 100 \text{ lb/ft}, w = 1 \text{ lb}, g = 32 \text{ ft/s}^2, y_0 = \frac{1}{12} \text{ ft},$

$$B = 40\sqrt{2}$$
. Then $y = \left(\frac{1}{12}\right)\cos(40\sqrt{2})t$.

Amplitude is
$$\frac{1}{12}$$
 ft = 1 in.

Period is
$$\frac{2\pi}{40\sqrt{2}} \approx 0.1111$$
 s.

3. $y = 0.1\cos 5t = 0$ whenever $5t = \frac{\pi}{2} + \pi k$ or $t = \frac{\pi}{10} + \frac{\pi}{5}k$.

$$\left| y' \left(\frac{\pi}{10} + \frac{\pi}{5} k \right) \right| = 0.5 \left| \sin 5 \left(\frac{\pi}{10} + \frac{\pi}{5} k \right) \right| = 0.5 \left| \sin \left(\frac{\pi}{2} + \pi k \right) \right| = 0.5 \text{ meters per second}$$

4.
$$|10| = k\left(\frac{1}{3}\right)$$
, so $k = 30$ lb/ft, $w = 20$ lb,

$$g = 32 \text{ ft/s}^2$$
, $y_0 = -1 \text{ ft}$, $v_0 = 2 \text{ ft/s}$, $B = 4\sqrt{3}$

Then
$$y = C_1 \cos(4\sqrt{3}t) + C_2 \sin(4\sqrt{3}t)$$
.

$$y = \cos(4\sqrt{3}t) + \left(\frac{\sqrt{3}t}{6}\right)\sin(4\sqrt{3}t)$$
 satisfies the initial conditions.

5.
$$k = 20 \text{ lb/ft}$$
; $w = 10 \text{ lb}$; $y_0 = 1 \text{ ft}$; $q = \frac{1}{10} \text{ s-lb/ft}$, $B = 8$, $E = 0.32$

$$E^2 - 4B^2 < 0$$
, so there is damped motion. Roots of auxiliary equation are approximately $-0.16 \pm 8i$.

General solution is
$$y \approx e^{-0.16t} (C_1 \cos 8t + C_2 \sin 8t)$$
. $y \approx e^{-0.16t} (\cos 8t + 0.02 \sin 8t)$ satisfies the initial conditions.

6.
$$k = 20 \text{ lb/ft}$$
; $w = 10 \text{ lb}$; $y_0 = 1 \text{ ft}$; $q = 4 \text{ s-lb/ft}$

$$B = \sqrt{\frac{(20)(32)}{10}} = 8$$
; $E = \frac{(4)(32)}{10} = 12.8$; $E^2 - 4B^2 < 0$, so damped motion.

Roots of auxiliary equation are
$$\frac{-E \pm \sqrt{E^2 - 4B^2}}{2} = -6.4 \pm 4.8i$$
.

General solution is
$$y = e^{-6.4t} (C_1 \cos 4.8t + C_2 \sin 4.8t)$$
.

$$y' = e^{-6.4t} (-4.8C_1 \sin 4.8t + 4.8C_2 \cos 4.8t) - 6.4e^{-6.4t} (C_1 \cos 4.8t + C_2 \sin 4.8t)$$

If
$$t = 0$$
, $y = 1$, $y' = 0$, then $1 = C_1$ and $0 = 4.8C_2 - 6.4C_1$, so $C_1 = 1$ and $C_2 = \frac{4}{3}$.

Therefore,
$$y = e^{-6.4t} \left[\cos 4.8t + \left(\frac{4}{3} \right) \sin 4.8t \right].$$

7. Original amplitude is 1 ft. Considering the contribution of the sine term to be negligible due to the 0.02 coefficient, the amplitude is approximately
$$e^{-0.16t}$$
.

$$e^{-0.16t} \approx 0.1$$
 if $t \approx 14.39$, so amplitude will be about one-tenth of original in about 14.4 s.

8.
$$C_1 = 1$$
 and $C_2 = -0.105$, so $y = e^{-0.16t} (\cos 8t + 0.105 \sin 8t)$.

9.
$$LQ'' + RQ' + \frac{Q}{C} = E(t); \ 10^6 Q' + 10^6 Q = 1; \ Q' + Q = 10^{-6}$$

Integrating factor:
$$e^t$$

$$D[Qe^t] = 10^{-6}e^t; Qe^t = 10^{-6}e^t + C;$$

$$Q = 10^{-6} + Ce^{-t}$$

If
$$t = 0$$
, $Q = 0$, then $C = -10^{-6}$.

Therefore,
$$Q(t) = 10^{-6} - 10^{-6} e^{-t} = 10^{-6} (1 - e^{-t}).$$

10. Same as Problem 9, except
$$C = 4 - 10^{-6}$$
, so $Q(t) = 10^{-6} + (4 - 10^{-6})e^{-t}$.

Then
$$I(t) = Q'(t) = -(4-10^{-6})e^{-t}$$
.

11.
$$\frac{Q}{[2(10^{-6})]} = 120\sin 377t$$

a.
$$Q(t) = 0.00024 \sin 377t$$

b.
$$I(t) = O'(t) = 0.09048 \cos 377t$$

12.
$$LQ'' + RQ' + \frac{Q}{C} = E$$
; $10^{-2}Q'' + \frac{Q}{10^{-7}} = 20$; $Q'' + 10^{9}Q = 2000$

The auxiliary equation, $r^2 + 10^9 = 0$, has roots $\pm 10^{9/2}i$.

$$Q_h = C_1 \cos 10^{9/2} t + C_2 \sin 10^{9/2} t$$

$$Q_p = 2000(10^{-9}) = 2(10^{-6})$$
 is a particular solution (by inspection).

General solution:
$$Q(t) = 2(10^{-6}) + C_1 \cos 10^{9/2} t + C_2 \sin 10^{9/2} t$$

Then
$$I(t) = Q'(t) = -10^{9/2} C_1 \sin 10^{9/2} t + 10^{9/2} C_2 \cos 10^{9/2} t$$
.

If
$$t = 0$$
, $Q = 0$, $I = 0$, then $0 = 2(10^{-6}) + C_1$ and $0 = C_2$.

Therefore,
$$I(t) = -10^{9/2} (-2[10^{-6}]) \sin 10^{9/2} t = 2(10^{-3/2}) \sin 10^{9/2} t$$
.

13.
$$3.5Q'' + 1000Q + \frac{Q}{[2(10^{-6})]} = 120 \sin 377t$$

(Values are approximated to 6 significant figures for the remainder of the problem.)

$$Q'' + 285.714Q' + 142857Q = 34.2857 \sin 377t$$

Roots of the auxiliary equation are

$$-142.857 \pm 349.927i$$
.

$$Q_h = e^{-142.857t} (C_1 \cos 349.927t + C_2 \sin 349.927t)$$

$$Q_p = -3.18288(10^{-4})\cos 377t + 2.15119(10^{-6})\sin 377t$$

Then,
$$Q = -3.18288(10^{-4})\cos 377t + 2.15119(10^{-6})\sin 377t + Q_h$$
.

$$I = Q' = 0.119995 \sin 377t + 0.000810998 \cos 377t + Q'_h$$

$$0.000888\cos 377t$$
 is small and $Q_h'\to 0$ as $t\to \infty$, so the steady-state current is $I\approx 0.12\sin 377t$.

14. a. Roots of the auxiliary equation are
$$\pm Bi$$
.

$$y_h = C_1 \cos Bt + C_2 \sin Bt.$$

$$y_p = \left[\frac{c}{(B^2 - A^2)}\right] \sin At$$

The desired result follows.

b.
$$y_p = \left(-\frac{c}{2B}\right)t\cos Bt$$
, so

$$y = C_1 \cos Bt + C_2 \sin Bt - \left(\frac{c}{2B}\right)t \cos Bt.$$

15.
$$A\sin(\beta t + \gamma) = A(\sin\beta t\cos\gamma + \cos\beta t\sin\gamma)$$

$$= (A\cos\gamma)\sin\beta t + (A\sin\gamma)\cos\beta t$$

=
$$C_1 \sin \beta t + C_2 \cos \beta t$$
, where $C_1 = A \cos \gamma$ and $C_2 = A \sin \gamma$.

$$C_1^2 + C_2^2 = A^2 \cos^2 \gamma + A^2 \sin^2 \gamma = A^2$$
.)

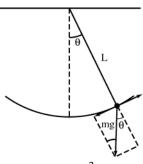
16. The first two terms have period
$$\frac{2\pi}{R}$$
 and the last

has period
$$\frac{2\pi}{4}$$
. Then the sum of the three terms

is periodic if
$$m\left(\frac{2\pi}{B}\right) = n\left(\frac{2\pi}{B}\right)$$
 for some integers

m, n; equivalently, if
$$\frac{B}{A} = \frac{m}{n}$$
, a rational number.

17. The magnitudes of the tangential components of the forces acting on the pendulum bob must be equal.



Therefore, $-m\frac{d^2s}{dt^2} = mg\sin\theta$.

$$s = L\theta$$
, so $\frac{d^2s}{dt^2} = L\frac{d^2\theta}{dt^2}$.

Therefore, $-mL\frac{d^2\theta}{dt^2} = mg\sin\theta$.

Hence,
$$\frac{d^2\theta}{dt^2} = -\frac{g}{L}\sin\theta$$
.

18. a. Since the roots of the auxiliary equation are $\pm \sqrt{\frac{g}{L}}i$, the solution of $\theta''(t) + \left(\frac{g}{L}\right)\theta = 0$ is $\theta = C_1 \cos \sqrt{\frac{g}{L}}t + C_2 \sin \sqrt{\frac{g}{L}}t$, which can be written as $\theta = C\left(\sqrt{\frac{g}{L}}t + \gamma\right)$

(by Problem 15).

The period of this function is

$$\frac{2\pi}{\sqrt{\frac{g}{L}}} = 2\pi \frac{L}{\sqrt{G}} = 2\pi \sqrt{\frac{LR^2}{GM}} = 2\pi R \sqrt{\frac{L}{GM}}.$$

Therefore,
$$\frac{p_1}{p_2} = \frac{2\pi R_1 \sqrt{\frac{L_1}{GM}}}{2\pi R_2 \sqrt{\frac{L_2}{GM}}} = \frac{R_1 \sqrt{L_1}}{R_2 \sqrt{L_2}}.$$

b. To keep perfect time at both places, require

$$p_1 = p_2$$
. Then $1 = \frac{R_2 \sqrt{80.85}}{3960\sqrt{81}}$, so

 $R_2 \approx 3963.67.$

The height of the mountain is about 3963.67 - 3960 = 3.67 mi (about 19,387 ft).

15.4 Chapter Review

Concepts Test

1. False: y^2 is not linear in y.

2. True: y and y'' are linear in y and y'', respectively.

3. True: $y' = \sec^2 x + \sec x \tan x$ $2y' - y^2 = (2\sec^2 x + 2\sec x \tan x)$ $-(\tan^2 x + 2\sec x \tan x + \sec^2 x)$ $= \sec^2 x - \tan^2 x = 1$

4. False: It should involve 6.

5. True: D^2 adheres to the conditions for linear operators. $D^2(kf) = kD^2(f)$ $D^2(f+g) = D^2f + D^2g$

6. False: Replacing y by $C_1u_1(x) + C_2u_2(x)$ would yield, on the left side, $C_1f(x) + C_2f(x) = (C_1 + C_2)f(x)$ which is f(x) only if $C_1 + C_2 = 1$ or f(x) = 0.

7. True: -1 is a repeated root, with multiplicity 3, of the auxiliary equation.

8. True: $L(u_1 - u_2) = L(u_1) - L(u_2)$ = f(x) - f(x) = 0

9. False: That is the form of y_h . y_p should have the form $Bx \cos 3x + Cx \sin 3x$.

10. True: See Problem 15, Section 15.3.

Sample Test Problems

1. $u' + 3u = e^x$. Integrating factor is e^{3x} . $D[ue^{3x}] = e^{4x}$ $y = \left(\frac{1}{4}\right)e^x + C_1e^{-3x}$ $y' = \left(\frac{1}{4}\right)e^x + C_1e^{-3x}$ $y = \left(\frac{1}{4}\right)e^x + C_3e^{-3x} + C_2$

2. Roots are -1, 1. $y = C_1 e^{-x} + C_2 e^{x}$

- 3. (Second order homogeneous) The auxiliary equation, $r^2 3r + 2 = 0$, has roots 1, 2. The general solution is $y = C_1 e^x + C_2 e^{2x}$. $y' = C_1 e^x + 2C_2 e^{2x}$ If x = 0, y = 0, y' = 3, then $0 = C_1 + C_2$ and $3 = C_1 + 2C_2$, so $C_1 = -3$, $C_2 = 3$.
- **4.** Repeated root $-\frac{3}{2}$. $y = (C_1 + C_2 x)e^{(-3/2)x}$
- 5. $y_h = C_1 e^{-x} + C_2 e^x$ (Problem 2) $y_p = -1 + C_1 e^{-x} + C_2 e^x$

Therefore, $y = -3e^x + 3e^{2x}$.

- **6.** (Second-order nonhomogeneous) The auxiliary equation, $r^2 + 4r + 4 = 0$, has roots -2, -2. $y_h = C_1 e^{-2x} + C_2 x e^{-2x} = (C_1 + C_2 x) e^{-2x}$ Let $y_p = Be^x$; $y_p' = Be^x$; $y_p'' = Be^x$. $(Be^x) + 4(Be^x) + 4(Be^x) = 3e^x$, so $B = \frac{1}{3}$. General solution: $y = \frac{e^x}{3} + (C_1 + C_2 x) e^{-2x}$
- 7. $y_h = (C_1 + C_2 x)e^{-2x}$ (Problem 12) $y_p = \left(\frac{1}{2}\right)x^2e^{-2x}$ $y = \left[\left(\frac{1}{2}\right)x^2 + C_1 + C_2 x\right]e^{-2x}$
- 8. Roots are $\pm 2i$. $y = C_1 \cos 2x + C_2 \sin 2x$ $y = \sin 2x$ satisfies the conditions.
- 9. (Second-order homogeneous) The auxiliary equation, $r^2 + 6r + 25 = 0$, has roots $-3 \pm 4i$. General solution: $y = e^{-3x} (C_1 \cos 4x + C_2 \sin 4x)$
- 10. Roots are $\pm i$. $y_h = C_1 \cos x + C_2 \sin x$ $y_p = x \cos x - \sin x + \sin x \ln |\cos x|$ $y = x \cos x - \sin x \ln |\cos x| + C_1 \cos x + C_3 \sin x$ (combining the sine terms)
- **11.** Roots are -4, 0, 2. $y = C_1 e^{-4x} + C_2 + C_3 e^{2x}$

- 12. (Fourth-order homogeneous)
 The auxiliary equation, $r^4 3r^2 10 = 0$ or $(r^2 5)(r^2 + 2) = 0$, has roots $-\sqrt{5}, \sqrt{5}, \pm \sqrt{2}i$.
 General solution: $y = C_1 e^{\sqrt{5}x} + C_2 e^{-\sqrt{5}x} + C_3 \cos \sqrt{2}x + C_4 \sin \sqrt{2}x$
- 13. Repeated roots $\pm \sqrt{2}$ $y = (C_1 + C_2 x)e^{-\sqrt{2}x} + (C_3 + C_4 x)e^{\sqrt{2}x}$
- **14.** a. Q'(t) = 3 0.02Q
 - **b.** Q'(t) + 0.02Q = 3Integrating factor is $e^{0.02t}$ $D[Qe^{0.02t}] = 3e^{0.02t}$ $Q(t) = 150 + Ce^{-0.02t}$ $Q(t) = 150 - 30e^{-0.02t}$ goes through (0, 120).
 - c. $Q \rightarrow 150$ g, as $t \rightarrow \infty$.
- **15.** (Simple harmonic motion) $k = 5; w = 10; y_0 = -1$ $B = \sqrt{\frac{(5)(32)}{10}} = 4$

Then the equation of motion is $y = -\cos 4t$. The amplitude is $\left|-1\right| = 1$; the period is $\frac{2\pi}{4} = \frac{\pi}{2}$.

- **16.** It is at equilibrium when y = 0 or $-\cos 4t = 0$, or $t = \frac{\pi}{8}, \frac{3\pi}{8}, \dots$ $y'(t) = 4\sin 4t$, so at equilibrium $|y'| = |\pm 4| = 4$.
- 17. Q'' + 2Q' + 2Q = 1Roots are $-1 \pm i$. $Q_h = e^{-t} (C_1 \cos t + C_2 \sin t)$ and $Q_p = \frac{1}{2}$; $Q = e^{-t} (C_1 \cos t + C_2 \sin t) + \frac{1}{2}$ $I(t) = Q'(t) = -e^{-t} [(C_1 - C_2) \cos t + (C_1 + C_2) \sin t]$ $I(t) = e^{-t} \sin t$ satisfies the initial conditions.