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Preface

The main focus of this book is on bounded linear operators on complex infinite-
dimensional Banach spaces and their spectral properties. In recent years spectral
theory, which has numerous and important applications in many parts of modern
analysis and physics, has witnessed considerable development. In this book the
reader is assumed to be familiar with the basic notions of linear algebra, functional
analysis and complex analysis. Essentially, the aim of this book is to give an idea
of the relationship between local spectral theory and Fredholm theory. The deep
and elegant interaction between Fredholm theory and local spectral theory becomes
evident when one considers the so-called single-valued extension property (SVEP).
This property, which dates back to the early days of local spectral theory, was first
introduced in 1952 by Dunford and has received a systematic treatment in Dunford
and Schwartz’s classical book [143]. It also plays an important role in the book
of Colojoară and Foiaş [98], in Vasilescu [292], and in the more recent books of
Laursen and Neumann [216] and Aiena [1].

H. Weyl’s pioneering work [296] showed that the spectra of self-adjoint operators
on Hilbert spaces have a very nice structure, which was later also observed for
several classes of operators defined on Banach spaces. Nowadays, these operators
are said to satisfy Weyl’s theorem. A general theory of these operators has never
been systematically organized in a monograph, only a few results may be found in
the books by Aiena [1, Chapter 3, §8] and Lee [223]. The purpose of this book is
to provide the first general treatment of the theory of operators for which Weyl-type
or Browder-type theorems hold, taking into account the more recent developments.
A localized version of the single-valued extension property will be a very useful
tool for studying these theorems, so this monograph may also be thought of as
a substantial attempt to show how the local spectral theory and Fredholm theory
interact.

We describe in more detail the architecture of this monograph. This book consists
of six chapters. The first chapter is mainly dedicated to some classes of operators
originating from Fredholm theory. All these classes of operators are strictly related
to the classical semi-Fredholm operators. In the second chapter we introduce the
basic tools of local spectral theory, and relate some aspects of Fredholm theory
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viii Preface

to a localized version of the single-valued extension property. The third chapter
plays a central role in this book, since it concerns the relationships between the
several spectra originating from the classes of operators introduced in Chap. 1. In
particular, these spectra are studied under suitable perturbations. Furthermore, in
this chapter we consider some special classes of operators having a nice spectral
structure: Riesz operators, meromorphic operators, algebraic operators and other
classes of operators. We also see that the spectral theorem holds for many of the
spectra which originate from Fredholm theory.

In Chap. 4 we introduce the classes of polaroid-type operators. The polaroid-type
operators are those for which the isolated points of the spectrum, or also the isolated
points of the approximate point spectrum, are poles or left poles of the resolvent,
respectively. These classes of operators are very large, and contain many important
classes of operators acting on Hilbert spaces which generalize, in some sense, the
properties of normal operators, for instance hyponormal and paranormal operators.
Other examples of polaroid operators are the isometries, the convolution operators
on group algebra, the analytic Toeplitz operators defined on Hardy spaces, the semi-
shift operators and weighted unilateral shifts.

The ideas developed in the first four chapters are then applied to the last two
chapters. In particular, Chap. 5 is dedicated to the classes of operators which
satisfy Browder-type theorems, in their classical form or in their generalized form,
according to the B-Fredholm theory.

The last chapter concerns Weyl-type theorems, also in their classical or general-
ized form. We also see that Weyl’s theorem holds for many important classes of
operators, such as Toeplitz operators in Hardy spaces, symmetrizable operators,
symmetries and shift operators. In the last part of this chapter we also present
a theoretical and general framework from which all Weyl-type theorems may be
promptly established for many classes of operators introduced in Chap. 4.

The content of this book is essentially new, and is the result of intensive research
done during the last 10 years. Many results appear here for the first time in a
monograph, and this in a sense is an attempt to organize the available material,
most of which can only be found in research papers. Of course, it is not possible
to make a presentation such as this one entirely self-contained, but in general most
of the material needed is developed within the framework of the book itself, and
only a few results are mentioned with suitable reference. A rudimentary knowledge
of functional analysis is quite necessary for understanding the material of the book.
However, some basic facts of functional analysis are reassumed in the Appendix.

Anyone who writes a book of this sort accumulates, of course, many outstanding
debts. There are several friends and colleagues to whom I am indebted for their
suggestions and ideas. These ideas constitute a great part of the material presented in
this book. In particular, I thank Manolo Gonzalez, Vladimir Müller, Bhaggy Duggal,
Salvatore Triolo, and all my PhD students. Finally, I have a special debt of thanks
to the anonymous copy editor, who reads the manuscript and who provided me with
corrections and useful comments.

Palermo, Italy Pietro Aiena
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Chapter 1
Fredholm Theory

The purpose of this chapter is to provide an introduction to some classes of
operators which have their origin in the classical Fredholm theory of bounded linear
operators on Banach spaces. The presentation is rather expository in style, and only
a few results are mentioned here with suitable reference. The first three sections
address some preliminary and basic notions, concerning some important invariant
subspaces, such as the hyper-range, the hyper-kernel, and the analytic core of an
operator. The importance of these subspaces will become evident when we study the
special classes of operators treated in successive sections. The first class introduced
is that of semi-regular operators, which is treated in the fourth section. We also
consider, in the fourth section, an important decomposition property, the generalized
Kato decomposition for operators, originating from the classical treatment of
perturbation theory by Kato [195], which showed that this decomposition holds
for semi-Fredholm operators. This decomposition motivates the definition of two
other classes of operators which contain all semi-Fredholm operators, the class
of all operators of Kato-type, and the class of essentially semi-regular operators,
introduced by Müller [243].

The fifth section is devoted to the class of operators having topological uniform
descent, introduced by Grabiner [162]. We also give some perturbation results
concerning this class of operators that will be used in the sequel. This class properly
contains the class of quasi-Fredholm operators on Banach spaces, which was first
introduced by Labrousse [208] for operators acting on Hilbert spaces. The last two
sections of this chapter concern a generalization of semi-Fredholm operators, the
class of semi B-Fredholm operators introduced by Berkani et al. [62, 64, 71] and
the class of all Drazin invertible operators. We also introduce the classes of left and
right Drazin invertible operators and relate these operators to the other classes of
operators previously introduced.

© Springer Nature Switzerland AG 2018
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2 1 Fredholm Theory

1.1 Operators with Closed Range

Since this book concerns the spectral theory of bounded linear operators, we
will always assume that the Banach spaces are complex and infinite-dimensional,
although many of the results in these notes are still valid for real Banach spaces. IfX,
Y are Banach spaces, by L(X, Y ) we denote the Banach space of all bounded linear
operators from X into Y . Recall that if T ∈ L(X, Y ), the norm of T is defined by

‖T ‖ := sup
x �=0

‖T x‖
‖x‖ .

If X = Y we write L(X) := L(X,X). By X∗ := L(X,C) we denote the dual of X.
If T ∈ L(X, Y ) by T ∗ ∈ L(Y ∗,X∗) we denote the dual operator of T , defined by

(T ∗f )(x) := f (T x) for all x ∈ X, f ∈ Y ∗.

The identity operator on X will be denoted by IX , or simply I if no confusion can
arise. Given a bounded operator T ∈ L(X, Y ), the kernel of T is the set

ker T := {x ∈ X : T x = 0},

while the range of T is denoted by T (X). In the sequel, for every bounded operator
T ∈ L(X, Y ), we shall denote by α(T ) the nullity of T , is defined as α(T ) :=
dim ker T , while the deficiency β(T ) of T is the dimension of the cokernel of T (X),
i.e., β(T ) := dimY/T (X) = codim T (X). The spectrum of T ∈ L(X) defined as

σ(T ) := {λ ∈ C : λI − T is not bijective}.

It is well known that the spectrum is a compact subset of C and σ(T ) = σ(T ∗) for
all T ∈ L(X). If X is a complex Banach space then every T ∈ L(X) has non-empty
spectrum. The complement ρ(T ) := C \ σ(T ) is called the resolvent of T .

In this book by D(λ0, ε) we always denote the open disc in C centered at λ0 with
radius ε. The closed unit disc will be denoted by D(λ0, ε).

The property of T (X) being closed is an important property in operator theory.
Indeed, if T is a bounded linear operator defined on a normed spaceX, then T (X) is
closed if and only if T is normally solvable, which means that the equation T x = y,
x, y ∈ X, possesses a solution exactly if f (y) = 0 for all f ∈ ker T ∗, see [179,
§29]. If K : C[a, b] → C[a, b] is the integral compact operator defined on the
Banach space C[a, b] of all complex-valued continuous functions on the interval
[a, b] by

(Kx)(s) :=
∫ b

a

k(s, t)x(t)dt,
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where k(s, t) is continuous on the square [a, b] × [a, b], then λI − K has closed
range for every λ �= 0, and hence is normally solvable. This fact leads, jointly with
the property α(λI − K) = β(λI − K) < ∞, to the classical Fredholm alternative
criterion of the Fredholm integral equation (of the second kind).

The property of T (X) being closed may be characterized by means of a suitable
number associated with T , defined as follows.

Definition 1.1 If T ∈ L(X, Y ), X, Y Banach spaces, the reduced minimal modulus
of T is defined to be

γ (T ) := inf
x /∈ker T

‖T x‖
dist(x, kerT )

.

Formally, we set γ (0) := ∞. It easily seen that if T is bijective then γ (T ) =
1

‖T −1‖ . In fact, if T is bijective then

dist (x, ker T ) = dist (x, {0}) = ‖x‖,
thus if T x = y

γ (T ) = inf
x �=0

‖T x‖
‖x‖ =

(
sup
x �=0

‖x‖
‖T x‖

)−1

=
(

sup
y �=0

‖T −1y‖
‖y‖

)−1

= 1

‖T −1‖ .

Theorem 1.2 Let T ∈ L(X, Y ), X and Y Banach spaces. Then we have

(i) γ (T ) > 0 if and only if T (X) is closed.
(ii) γ (T ) = γ (T ∗).

Proof

(i) The statement is clear if T = 0. Suppose that T �= 0. Let X := X/ker T and
denote by T : X → Y the continuous injection corresponding to T , defined by

T x := T x for every x ∈ x.
It is easily seen that T (X) = T (X). But, by a classical result of functional
analysis, it is known that T (X) is closed if and only if T admits a continuous
inverse, i.e., there exists a constant δ > 0 such that ‖T x‖ ≥ δ‖x‖, for every
x ∈ X. From the equality

γ (T ) = inf
x �= 0

‖T x‖
‖x‖

we then conclude that T (X) = T (X) is closed if and only if γ (T ) > 0.
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(ii) The assertion is obvious if γ (T ) = 0. Suppose that γ (T ) > 0. Then T (X)
is closed. If T 0 : X → T (X) is defined by T 0x := T x for every x ∈ x,
then γ (T ) = γ (T 0) and T = JT 0Q, where J : T (X) → Y denotes the
natural embedding and Q : X → X is the canonical projection defined by
Qx = x. Clearly, T 0 is bijective, and from T = JT 0Q it then follows that
T ∗ = Q∗(T 0)

∗J ∗. From this we easily obtain that

γ (T ) = 1

‖(T 0)−1‖ = 1

‖(T 0
∗
)−1‖ = γ (T ∗).

�
Corollary 1.3 Let T ∈ L(X, Y ), X and Y Banach spaces. Then T (X) is closed if
and only if T ∗(X∗) is closed.

In the sequel we give some sufficient conditions that ensure that the range T (X)
is closed.

Lemma 1.4 Let T ∈ L(X) and suppose that T (X) is closed and that Y is a closed
subspace of X such that ker T ⊆ Y . Then T (Y ) is closed.
Proof Consider the induced operator T̃ : X/ ker T → T (X). By the open mapping
theorem T̃ is an isomorphism, in particular an open mapping. Since ker T ⊆ Y ,
the space Y/ ker T is closed in X/ ker T and this easily implies that the image
T̃ (Y/ ker T ) = T (Y ) is closed in X. �
Lemma 1.5 Let T ∈ L(X) and suppose that T (X) is closed. If Y is a (not
necessarily closed) subspace of X for which Y + ker T is closed, then T (Y ) is
closed.

Proof We have T (Y ) = T (Y + ker T ), so the statement follows from Lemma 1.4.
�

Theorem 1.6 Let T ∈ L(X), X a Banach space, and suppose that there exists a
closed subspace Y of X such that T (X) + Y is closed and T (X) ∩ Y = {0}. Then
the subspace T (X) is also closed.

Proof Consider the product space X × Y under the norm

‖(x, y)‖ := ‖x‖ + ‖y‖ x ∈ X, y ∈ Y.

Then X× Y is a Banach space and the continuous map S : X× Y → X defined by
S(x, y) := T x+y has range S(X×Y ) = T (X)⊕Y , which is closed by assumption.
Hence

γ (S) := inf
(x,y)/∈ker S

‖S(x, y)‖
dist((x, y), ker S)

> 0.
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Moreover, ker S = ker T × {0}, so

dist((x, 0), ker S) = dist(x, ker T ),

and hence

‖T x‖ = ‖S(x, 0)‖ ≥ γ (S) dist((x, 0), ker S))

= γ (S) dist(x, ker T ).

From this it follows that γ (T ) ≥ γ (S) > 0, and this implies that T has closed range.
�

It is obvious that the sum M + N of two linear subspaces M and N of a vector
spaceX is again a linear subspace. IfM ∩N = {0} then this sum is called the direct
sum ofM andN and will be denoted byM ⊕N . In this case for every z = x + y in
M+N the components x, y are uniquely determined. IfX = M⊕N thenN is called
an algebraic complement of M . In this case the (Hamel) basis of X is the union of
the basis of M with the basis of N . It is obvious that every subspace of a vector
space admits at least one algebraic complement. The codimension of a subspaceM
of X is the dimension of every algebraic complement N of M , or equivalently the
dimension of the quotientX/M . Note that codimM = dimM⊥, where

M⊥ := {f ∈ X∗ : f (x) = 0 for every x ∈ M}

denotes the annihilator ofM . Indeed, by the Annihilator theorem (see Appendix A)
we have:

codimM = dimX/M = dim (X/M)∗ = dimM⊥.

Theorem 1.6 then directly yields the following important result:

Corollary 1.7 Let T ∈ L(X), X a Banach space, and Y a finite-dimensional
subspace of X such that T (X) + Y is closed. Then T (X) is closed. In particular, if
T (X) has finite codimension then T (X) is closed.

Proof Let Y1 be any subspace of Y for which Y1 ∩ T (X) = {0} and T (X) + Y1 =
T (X) + Y . From the assumption we infer that T (X) ⊕ Y1 is closed, so T (X) is
closed by Theorem 1.6. The second statement is clear, since every finite-dimensional
subspace of a Banach space X is always closed. �

A very important class of operators is given by the class of injective operators
having closed range.

Definition 1.8 An operator T ∈ L(X) is said to be bounded below if T is injective
and has closed range.
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Lemma 1.9 T ∈ L(X, Y ) is bounded below if and only if there exists a δ > 0
such that

‖T x‖ ≥ δ‖x‖ for all x ∈ X. (1.1)

Proof Indeed, if ‖T x‖ ≥ δ‖x‖ for some δ > 0 and all x ∈ X then T is injective.
Moreover, if (xn) is a sequence in X for which (T xn) converges to y ∈ X, then
(xn) is a Cauchy sequence and hence, by completeness, it converges to some x ∈ X.
Since T is continuous then T x = y and therefore T (X) is closed.

Conversely, if T is injective and T (X) is closed then, from the open mapping
theorem, it easily follows that there exists a δ > 0 for which the inequality (1.1)
holds. �

The quantity

j (T ) := inf‖x‖=1
‖T x‖ = inf

x �=0

‖T x‖
‖x‖

is called the injectivity modulus of T and, obviously, from (1.1) we have

T is bounded below ⇔ j (T ) > 0, (1.2)

and in this case j (T ) = γ (T ). The next result shows that the properties of being
bounded below or being surjective are dual each other.

Theorem 1.10 Let T ∈ L(X), X a Banach space. Then:

(i) T is surjective (respectively, bounded below) if and only if T ∗ is bounded below
(respectively, surjective);

(ii) If T is bounded below (respectively, surjective) then λI − T is bounded below
(respectively, surjective) for all |λ| < γ (T ).

Proof

(i) Suppose that T is surjective. Trivially T has closed range and therefore T ∗ also
has closed range. From the equality ker T ∗ = T (X)⊥ = X⊥ = {0} we conclude
that T ∗ is injective.

Conversely, suppose that T ∗ is bounded below. Then T ∗ has closed range
and hence, by Theorem 1.2, the operator T also has closed range. From the
equality T (X) =⊥ ker T ∗ =⊥ {0} = X we then conclude that T is surjective.

The proof of T being bounded below if and only if T ∗ is surjective is
analogous.

(ii) Suppose that T is injective with closed range. Then γ (T ) > 0 and from the
definition of γ (T ) we obtain

γ (T ) · dist(x, ker T ) = γ (T )‖x‖ ≤ ‖T x‖ for all x ∈ X.
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From that we obtain

‖(λI − T )x‖ ≥ ‖T x‖ − |λ|‖x‖ ≥ (γ (T )− |λ|)‖x‖,

and hence, by Lemma 1.9, the operator λI − T is bounded below for all |λ| <
γ (T ).

The case of surjective T now follows easily by considering the adjoint T ∗.
�

Two important parts of the spectrum σ(T ) are defined as follows: The approxi-
mate point spectrum of T ∈ L(X) defined as

σap(T ) := {λ ∈ C : λI − T is not bounded below}

and the surjectivity spectrum of T defined as

σs(T ) := {λ ∈ C : λI − T is onto}.

By Theorem 1.10 we have

σap(T ) = σs(T
∗) and σap(T

∗) = σs(T ).

Remark 1.11 In the case of Hilbert space operators T ∈ L(H) instead of the
dual T ∗ it is more appropriate to consider the Hilbert adjoint T ′. By means of the
classical Fréchet–Riesz representation theorem if U is the conjugate-linear isometry
that associates to each y ∈ H the linear form x → (x, y) we have that

λI − T ′ = (λI − T )′ = U−1(λI − T )∗U, (1.3)

where λ is the conjugate of λ ∈ C. The equality (1.3) then easily implies that

σap(T
′) = σap(T ∗) = σs(T )

and

σs(T
′) = σs(T ∗) = σap(T ).

Theorem 1.12 Let T ∈ L(X). Then we have:
(i) λ ∈ σap(T ) if and only if there exists a sequence of unit vectors (xn) such that
(λI − T )xn → 0, as n→ ∞.

(ii) Both spectra σap(T ) and σs(T ) are closed subsets of σ(T ) that contain the
boundary ∂σ(T ). Moreover, if X �= {0} then σap(T ) and σs(T ) are non-empty.
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Proof

(i) By Lemma 1.9 if λ ∈ σap(T ) then there exists, for each n ∈ N, a unit vector xn
such that ‖(λI −T )xn‖ < 1/n, so (λI−T )xn → 0 as n→ ∞. Conversely, the
existence of a sequence of unit vectors from which (λI − T )xn → 0 implies,
again by Lemma 1.9, that λI − T is not bounded below.

(ii) We show first that σap(T ) is closed. Let (λn) be a sequence in σap(T ) which
converges to λ ∈ C, and choose a sequence (xn) of unit vectors such that
‖(λnI − T )xn‖ ≤ 1/n for all n ∈ N. Then

‖(λI − T )xn‖ ≤ |λ− λn| + 1

n

for all n ∈ N, from which we obtain that λ ∈ σap(T ). Therefore σap(T ) is
closed for every operator, and by duality σs(T ) = σap(T

∗) is also closed.

To show the inclusion ∂σ(T ) ⊆ σap(T ), let λ ∈ ∂σ(T ) and consider a sequence
(λn) of points of ρ(T ) which converges to λ. The well-known estimate

‖(μI − T )−1‖ dist[μ, σ(T )] ≥ 1 for all μ ∈ ρ(T )

then implies that ‖(λnI − T )−1‖ → ∞ as n→ ∞. For each n ∈ N, let yn be a unit
vector such that

δn := ‖(λnI − T )−1yn‖ ≥ ‖(λnI − T )−1‖ − 1

n
.

Put

xn := (1/δn)(λnI − T )−1yn.

Then ‖xn‖ = 1 and ‖(λI − T )xn‖ → 0, so λ ∈ σap(T ). The inclusion ∂σ(T ) ⊆
σs(T ) easily follows by duality and the last statement is an obvious consequence of
the fact that ∂σ(T ) is non-empty, since the spectrum is a non-empty closed subset
of C. �

1.2 Ascent and Descent

The kernels and the ranges of the iterates T n, n ∈ N, of a linear operator T defined
on a vector space X form two increasing and decreasing chains, respectively, i.e.,
the chain of kernels

ker T 0 = {0} ⊆ ker T ⊆ ker T 2 ⊆ · · ·
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and the chain of ranges

T 0(X) = X ⊇ T (X) ⊇ T 2(X) · · · .

The subspace

N∞(T ) :=
∞⋃
n=1

ker T n

is called the hyper-kernel of T , while

T∞(X) :=
∞⋂
n=1

T n(X)

is called the hyper-range of T . Note that both N∞(T ) and T∞(X) are T -invariant
linear subspaces of T , i.e.

T (N∞(T )) ⊆ N∞(T ) and T (T∞(X)) ⊆ T∞(X).

The following elementary lemma will be useful in the sequel.

Lemma 1.13 Let X be a vector space and T a linear operator on X. If p1 and p2
are relatively prime polynomials then there exist polynomials q1 and q2 such that

p1(T )q1(T )+ p2(T )q2(T ) = I.

Proof If p1 and q1 are relatively prime polynomials then there are polynomials such
that p1(μ)q1(μ)+ p2(μ)q2(μ) = 1 for every μ ∈ C. �

The next result establishes some basic properties of the hyper-kernel and the
hyper-range of an operator.

Theorem 1.14 Let X be a vector space and T a linear operator on X. Then we
have:

(i) (λI + T )(N∞(T )) = N∞(T ) for every λ �= 0;
(ii) N∞(λI + T ) ⊆ (μI + T )∞(X) for every λ �= μ.
Proof

(i) The equality will be proved if we show that (λI + T )(ker T n) =
ker T n holds for every n ∈ N and λ �= 0. Clearly, the inclusion
(λI + T )(ker T n) ⊆ ker T n holds for all n ∈ N. By Lemma 1.13 we know that
there exist two polynomials p and q such that

(λI + T )p(T )+ q(T )T n = I.
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If x ∈ ker T n then (λI + T )p(T )x = x and since p(T )x ∈ ker T n we then
obtain ker T n ⊆ (λI + T )(ker T n), so the equality (i) is proved.

(ii) Put S := λI + T and write

μI + T = (μ− λ)I + λI + T = (μ− λ)I + S.
By assumption μ− λ �= 0, so, by part (i), we have

(μI + T )(N∞(λI + T )) = ((μ− λ)I + S)(N∞(S)) = N∞(λI + T ).
From this it easily follows that

(μI + T )n(N∞(λI + T )) = N∞(λI + T ) for all n ∈ N,

so N∞(λI + T ) ⊆ (μI + T )n(X) for all n ∈ N, from which we conclude that
N∞(λI + T ) ⊆ (μI + T )∞(X). �

Lemma 1.15 For every linear operator T on a vector space X we have

T m(ker T m+n) = T m(X) ∩ ker T n for all m,n ∈ N.

Proof If x ∈ ker T m+n then T mx ∈ T m(X) and T n(T mx) = 0, so that
T m(ker T m+n) ⊆ T m(X) ∩ ker T n.

Conversely, if y ∈ T m(X) ∩ ker T n then y = T m(x) and x ∈ ker T m+n, so the
opposite inclusion is verified. �

In the next result we give some useful connections between the kernels and the
ranges of the iterates T n of an operator T on a vector space X.

Theorem 1.16 For a linear operator T on a vector space X the following
statements are equivalent:

(i) ker T ⊆ T m(X) for each m ∈ N;
(ii) ker T n ⊆ T (X) for each n ∈ N;

(iii) ker T n ⊂ T m(X) for each n ∈ N and eachm ∈ N;
(iv) ker T n = T m(ker T m+n) for each n ∈ N and eachm ∈ N.

Proof The implications (iv) ⇒ (iii) ⇒ (ii) are trivial.
(ii) ⇒ (i) If we apply the inclusion (ii) to the operator T m we then obtain

ker T mn ⊆ T m(X) and consequently ker T ⊆ T m(X), since ker T ⊆ ker T mn.
(i) ⇒ (iv) If we apply the inclusion (i) to the operator T n we obtain

ker T n ⊆ (T n)m(X) ⊆ T m(X).
By Lemma 1.15 we then have

T m(ker T m+n) = T m(X) ∩ ker T n = ker T n,

so the proof is complete. �
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Corollary 1.17 Let T be a linear operator on a vector space X. Then the
statements of Theorem 1.16 are equivalent to each of the following inclusions:

(i) ker T ⊆ T∞(X);
(ii) N∞(T ) ⊆ T (X);

(iii) N∞(T ) ⊆ T∞(X).

We now introduce two important notions in operator theory.

Definition 1.18 A linear operator T on a vector spaceX is said to have finite ascent
if N∞(T ) = kerT k for some positive integer k. Clearly, in such a case there is a
smallest positive integer p := p(T ) such that ker T p = ker T p+1. The positive
integer p is called the ascent of T . If there is no such integer we set p(T ) := ∞.
Analogously, T is said to have finite descent if T∞(X) = T k(X) for some positive
integer k. In such a case there is a smallest positive integer q = q(T ) such that
T q+1(X) = T q(X). The positive integer q is called the descent of T . If there is no
such integer we set q(T ) := ∞.

Clearly p(T ) = 0 if and only if T is injective and q(T ) = 0 if and only if T is
surjective. The following lemma establishes useful and simple characterizations of
operators having finite ascent and finite descent.

Lemma 1.19 Let T be a linear operator on a vector spaceX. For a positive natural
m, the following assertions hold:

(i) p(T ) ≤ m <∞ if and only if for every n ∈ N we have T m(X)∩ ker T n = {0};
(ii) q(T ) ≤ m < ∞ if and only if for every n ∈ N there exists a subspace Yn ⊆

kerT m such that X = Yn ⊕ T n(X).
Proof

(i) Supposep(T ) ≤ m <∞ and n is any natural number. Consider an element y ∈
T m(X)∩ ker T n. Then there exists an x ∈ X such that y = T mx and T ny = 0.
From that we obtain T m+nx = T ny = 0 and therefore x ∈ ker T m+n =
ker T m. Hence y = T mx = 0.

Conversely, suppose T m(X) ∩ ker T n = {0} for some natural m and let
x ∈ ker T m+1. Then T mx ∈ ker T and therefore

T mx ∈ T m(X) ∩ ker T ⊆ T m(X) ∩ ker T n = {0}.

Hence x ∈ ker T m. We have shown that ker T m+1 ⊆ ker T m. Since the
opposite inclusion is satisfied for all operators, we then conclude that ker T m =
ker T m+1.

(ii) Let q := q(T ) ≤ m <∞ and Y be a complementary subspace to T n(X) in X.
Let {xj : j ∈ J } be a basis of Y . Since

T q(Y ) ⊆ T q(X) = T q+n(X),
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for every element xj of the basis there exists an element yj ∈ X such that
T qxj = T q+nyj . Set zj := xj − T nyj . Then

T qzj = T qxj − T q+nyj = 0.

Therefore, the linear subspace Yn generated by the elements zj is contained
in ker T q and hence is contained in ker T m. From the decomposition X =
Y ⊕ T n(X) we obtain for every x ∈ X a representation of the form

x =
∑
j∈J
λj xj + T ny =

∑
j∈J
λj (zj + T nyj )+ T ny =

∑
j∈J
λj zj + T nz,

thus X = Yn + T n(X). We show that this sum is direct. Indeed, suppose that
x ∈ Yn ∩ T n(X). Then

x =
∑
j∈J
μjzj = T nv,

for some v ∈ X, and

∑
j∈J
μjxj =

∑
j∈J
μjT

nyj + T nv ∈ T n(X).

From the decomposition X = Y ⊕ T n(X) we then obtain that μj = 0 for all
j ∈ J and hence x = 0. Therefore Yn is a complement of T n(X) contained
in kerT m. Conversely, if for n ∈ N the subspace T n(X) has a complement
Yn ⊆ kerT m then

T m(X) = T m(Yn)+ T m+n(X) = T m+n(X),

and hence q(T ) ≤ m. �
Theorem 1.20 If both p(T ) and q(T ) are finite then p(T ) = q(T ).
Proof Set p := p(T ) and q := q(T ). Assume first that p ≤ q , so that the inclusion
T q(X) ⊆ T p(X) holds. Obviously we may assume q > 0. From part (ii) of
Lemma 1.19 we haveX = kerT q+T q(X), so every element y := T p(x) ∈ T p(X)
admits the decomposition y = z+ T qw, with z ∈ kerT q . From z = T px − T qw ∈
T p(X) we then obtain that z ∈ kerT q ∩ T p(X) and the last intersection is {0}, by
part (i) of Lemma 1.19. Therefore y = T qw ∈ T q(X) and this shows the equality
T p(X) = T q(X), from which we obtain p ≥ q , and hence p = q .

Assume now that q ≤ p and p > 0, so that ker T q ⊆ ker T p. From part (ii) of
Lemma 1.19 we have X = ker T q + T p(X), so an arbitrary element x of ker T p

admits the representation x = u + T pv, with u ∈ ker T q . From T px = T pu = 0
it then follows that T 2pv = 0, so v ∈ ker T 2p = ker T p. Therefore, T pv = 0 and,
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consequently, x = u ∈ ker T q . This shows that ker T q = ker T p, hence q ≥ p

from which we conclude that p = q . �
Lemma 1.21 Let T be a linear operator on a linear vector space X. If α(T ) < ∞
then α(T n) <∞ for all n ∈ N. Analogously, if β(T ) <∞ then β(T n) <∞ for all
n ∈ N.

Proof We use an inductive argument. Suppose that dim ker T n < ∞. Since
T (ker T n+1) ⊆ ker T n then the restriction

T0 := T | ker T n+1 : ker T n+1 → ker T n

has kernel equal to ker T , so the canonical mapping T̂ : ker T n+1/ ker T →
ker T n/ ker T is injective. Therefore we have

dim ker T n+1/ ker T ≤ dim ker T n/ ker T ≤ dim ker T n <∞

and since dim ker T <∞ we then conclude that dim ker T n+1 <∞.
Suppose now that β(T n) <∞. Since the map

T̃ : T n(X)/T n+1(X) → T n+1(T n(X)/T n+2(X),

defined by

T̃ (z+ T n+1(X)) = T z + T n+2(X), z ∈ T n(X),

is onto, dimT n+1(X)/T n+2(X) ≤ dimT n(X)/T n+1(X). This easily implies that
β(T n+1) <∞. �

In the next theorem we establish the basic relationships between the quantities
α(T ), β(T ), p(T ) and q(T ).

Theorem 1.22 If T is a linear operator on a vector space X then the following
properties hold:

(i) If p(T ) <∞ then α(T ) ≤ β(T ).
(ii) If q(T ) <∞ then β(T ) ≤ α(T ).

(iii) If p(T ) = q(T ) <∞ then α(T ) = β(T ) (possibly infinite).
(iv) If α(T ) = β(T ) <∞ and if either p(T ) or q(T ) is finite then p(T ) = q(T ).
Proof

(i) Let p := p(T ) < ∞, i.e., ker T p = ker T p+n for all n ∈ N . Obviously if
β(T ) = ∞ there is nothing to prove. Assume that β(T ) <∞. By Lemma 1.19,
part (i), we have kerT ∩ T p(X) = {0}. Since β(T n) < ∞, by Lemma 1.21,
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this implies that α(T ) <∞, so T has finite deficiency. According to the index
theorem (see Appendix A) we then obtain for all n ≥ p the following equality:

n · indT = ind T n = α(T n)− (βT n) = α(T p)− β(T n).

Now suppose that q := q(T ) < ∞. For all integers n ≥ max{p, q} the
quantity n · ind T = α(T p) − β(T p) is then constant, so that indT = 0, i.e.,
α(T ) = β(T ). Consider the other case q = ∞. Then β(T n) → 0 as n → ∞,
so n · ind T becomes eventually negative, and hence indT < 0. Therefore, in
this case we have α(T ) < β(T ).

(ii) Let q := q(T ) < ∞. Also here we can assume that α(T ) < ∞, otherwise
there is nothing to prove. Consequently, as is easy to check, also β(T n) < ∞
and by part (ii) of Lemma 1.19 X = Y ⊕ T (X) with Y ⊆ kerT q . From this it
follows that

β(T ) = dimY ≤ α(T q) <∞.

If we use, with appropriate changes, the index argument used in the proof of
part (i) then we obtain that β(T ) = α(T ) if p(T ) < ∞, and β(T ) < α(T ) if
p(T ) = ∞.

(iii) This is clear from part (i) and part (ii).
(iv) This is an immediate consequence of the equality α(T n)− β(T n) = ind T n =

n · ind T = 0, valid for every n ∈ N. �
Given n ∈ N, we denote by Tn : T n(X) → T n(X) the restriction of T ∈ L(X)

on the subspace R(T n) := T n(X). Observe that

R(Tn
m) = R(T m+n) = R(T nm)

for all m,n ∈ N.

Lemma 1.23 Let T be a linear operator on a vector space X. Then the following
statements are equivalent:

(i) p(T ) <∞;
(ii) there exists a k ∈ N such that Tk is injective;

(iii) there exists a k ∈ N such that p(Tk) <∞.

Proof (i) ⇔ (ii) If p := p(T ) < ∞, then by Lemma 1.19 ker Tp = ker T ∩
T p(X) = {0}. Conversely, suppose that ker Tk = {0}, for some k ∈ N. If x ∈
ker T k+1 then T (T kx) = 0, so

T kx ∈ ker T ∩ T k(X) = ker Tk = {0}.

Hence x ∈ ker T k . This shows that ker T k+1 ⊆ ker T k . The opposite inclusion is
true for every operator, thus ker T k+1 = ker T k and consequently p(T ) ≤ k.
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(ii) ⇔ (iii) The implication (ii) ⇒ (iii) is obvious. To show the opposite
implication, suppose that ν := p(Tk) <∞. By Lemma 1.19 we then have:

{0} = ker Tk ∩ R(Tkν) = (ker T ∩ R(T k)) ∩ R(Tkν) = (ker T ) ∩ R(Tkν)
= ker T ∩ R(T ν+k) = ker Tν+k,

so that the equivalence (ii) ⇔ (iii) is proved. �
A dual result holds for the descent:

Lemma 1.24 Let T be a linear operator on a vector space X. Then the following
statements are equivalent:

(i) q(T ) <∞;
(ii) there exists a k ∈ N such that Tk is onto;

(iii) there exists a k ∈ N such that q(Tk) <∞.

Proof (i) ⇔ (ii) Suppose that q := q(T ) <∞. Then

T q(X) = T q+1(X) = T (T q(X)) = R(Tq),

hence Tq is onto. Conversely, if Tk is onto for some k ∈ N then

T k+1(X) = T (T k(X)) = R(Tk) = T k(X),

thus q(T ) ≤ k.
The implication (ii) ⇒ (iii) is obvious. We show (iii) ⇒ (i). Suppose that

ν := q(Tk) < ∞ for some k ∈ N. Then Tkν(X) = Tk
ν+1(X), so T k+ν(X) =

T ν+k+1(X), hence q(T ) ≤ k + ν. �
Remark 1.25 As observed in the proof of Lemma 1.23, if p := p(T ) < ∞ then
ker Tp = {0} and hence ker Tj = {0} for all j ≥ p. Conversely, if ker Tk = {0} for
some k ∈ N then p(T ) <∞ and p(T ) ≤ k. Hence, if p(T ) <∞ we have

p(T ) = inf{k ∈ N : Tk is injective}.

Analogously, if q := q(T ) < ∞ then Tj is onto for all j ≥ q . Conversely, if Tk is
onto for some k ∈ N then q(T ) ≤ k, so that

q(T ) = inf{k ∈ N : Tk is onto}.

We shall often use the following basic results:

Lemma 1.26 Suppose that T ∈ L(X) has closed range. Then p(T ) = q(T ∗) and
q(T ) = p(T ∗).

Proof If T has closed range then T n has closed range for all n ∈ N or equivalently,
by Corollary 1.3, (T ∗)n has closed range. From the closed range theorem (see
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Appendix A) it then follows that kerT n =⊥ [(T ∗)n(X∗)] and [(T ∗)n(X∗)] =
ker T n for all n ∈ N. These equalities easily imply that p(T ) = q(T ∗) and
q(T ) = p(T ∗) �
Remark 1.27 It is easily seen from equality (1.3) that T ∗ has closed range if and
only if the Hilbert adjoint T ′ has closed range, and p(λI − T ∗) = p(λI − T ′) and
q(λI − T ∗) = q(λI − T ′).

Lemma 1.28 Let T be a linear operator on a vector space X. Suppose that X =
M ⊕N ,M and N closed T -invariant subspaces. Then

(i) α(T ) = α(T |M)+ α(T |N) and β(T ) = β(T |M)+ β(T |N).
(ii) p(T ) = p(T |M)+ p(T |N) and q(T ) = q(T |M)+ q(T |N).

(iii) If T ∈ L(X), X a Banach space, then T (X) is closed if and only if T (M) is
closed inM and T (N) is closed in N .

(iv) σap(T ) = σap(T |M) ∪ σap(T |N) and σs(T ) = σs(T |M) ∪ σs(T |N).
Proof The equalities in (i) and (ii) follow immediately from the equality ker T =
ker T |M ⊕ ker T |N and T (X) = T (M) ⊕ T (N). To show (iii) denote by P the
projection of X onto M along N . Clearly, PT = T P . If T (X) is closed then
T (M) = T (P (X)) = P(T (X)) = T (X) ∩M , so T (M) is closed, and analogously
T (N) is closed. Conversely, suppose that T (M) is closed inM and T (N) is closed in
N . The mapping : M×N → M⊕N , defined by(x, y) := x+y is a topological
isomorphism, so the image (T (M)× T (N)) = T (M)⊕ T (N) = T (X) is closed
in X.

The equalities (iv) are obvious consequences of (i) and (iii). �
Recall that a bounded operator T ∈ L(X) is said to be relatively open if it is

open as mapping from X onto its range T (X). An application of the open mapping
theorem shows that T is relatively open if and only if T (X) is closed, see [179,
Theorem 3.21].

Lemma 1.29 Suppose that T , S ∈ L(X),X a Banach space, satisfy T (X)∩S(X) =
{0} and the sum T (X)+ S(X) is closed. Then T (X) and S(X) are closed.
Proof Define U : X × X → X by means of U(x, y) := T x + Sy for all (x, y) ∈
X × Y . Since U has closed range, from the open mapping theorem we have that U
is relatively open. Because T (X) ∩ S(X) = {0}, it easily follows that both T and S
are open operators. This is equivalent to saying that T and S have closed ranges. �
Theorem 1.30 If T ∈ L(X) is an operator for which T (X) ∩ ker T = {0} and
T (X) + ker T is closed in X, then T (X) is closed. In particular, if p(T ) ≤ 1 and
T (X)+ ker T is closed in X, then T (X) is closed.

Proof The first assertion immediately follows from Lemma 1.29 applied to the
operator T and the natural inclusion mapping from ker T into X. The second
assertion is clear, since, by Lemma 1.19, p(T ) ≤ 1 entails that ker T ∩T (X) = {0}.

�
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1.3 The Algebraic and Analytic Core

In this section we shall introduce some important T -invariant subspaces, the alge-
braic core and its analytic counterpart, the analytic core. The first was introduced by
Saphar [270].

Definition 1.31 Given a linear operator T defined on a vector space X, the
algebraic core C(T ) of T is defined to be the largest linear subspace M such that
T (M) = M .

It is easy to prove that C(T ) is the set of all x ∈ X such that there exists a
sequence (xn)n=0,1,... such that x0 = x, T xn+1 = xn for all n = 0, 1, 2, . . . .

Trivially, if T ∈ L(X) is surjective then C(T ) = X. Clearly, for every linear
operator T we haveC(T ) = T n(C(T )) ⊆ T n(X) for all n ∈ N. From that it follows
that C(T ) ⊆ T∞(X). The next result shows that under certain purely algebraic
conditions the algebraic core and the hyper-range of an operator coincide.

Lemma 1.32 Let T be a linear operator on a vector space X. Suppose that there
exists an m ∈ N such that

ker T ∩ T m(X) = ker T ∩ T m+k(X) for all integers k ≥ 0.

Then C(T ) = T∞(X).

Proof We have only to prove that T∞(X) ⊆ C(T ). We show that T (T∞(X)) =
T∞(X). Evidently the inclusion T (T∞(X)) ⊆ T∞(X) holds for every linear
operator, so we need only to prove the opposite inclusion.

Let Y := ker T ∩ T m(X). Obviously we have

Y = ker T ∩ T m(X) = ker T ∩ T∞(X).

Let us now consider an element y ∈ T∞(X). Then y ∈ T n(X) for each n ∈ N,
so there exists an xk ∈ X such that y = T m+kxk for every k ∈ N. If we set

zk := T mx1 − T m+k−1xk (k ∈ N),

then zk ∈ T m(X) and since

T zk = T m+1x1 − T m+kxk = y − y = 0

we also have zk ∈ ker T . Thus zk ∈ Y , and from the inclusion

Y = ker T ∩ T m+k(X) ⊆ ker T ∩ T m+k−1(X)

it follows that zk ∈ T m+k−1(X). This implies that

T mx1 = zk + T m+k−1xk ∈ T m+k−1(X)
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for each k ∈ N, and therefore T mx1 ∈ T∞(X). Finally, from

T (T mx1) = T m+1x1 = y

we may conclude that y ∈ T (T∞(X)). Therefore T∞(X) ⊆ T (T∞(X)), so the
proof is complete. �
Theorem 1.33 Let T be a linear operator on a vector space X. Suppose that one
of the following conditions holds:

(i) α(T ) <∞;
(ii) β(T ) <∞;

(iii) ker T ⊆ T n(X) for all n ∈ N.

Then C(T ) = T∞(X).

Proof

(i) If ker T is finite-dimensional then there exists a positive integerm such that

ker T ∩ T m(X) = ker T ∩ T m+k(X)

for all integers k ≥ 0. Hence it suffices to apply Lemma 1.32.
(ii) Suppose thatX = F ⊕T (X) with dim F <∞. If we let Yn := ker T ∩T n(X)

then we have Yn ⊇ Yn+1 for all n ∈ N. Suppose that there exist k distinct
subspaces Yn. There is no loss of generality in assuming Yj �= Yj+1 for all
j = 1, 2, . . . k. Then for every one of these j we can find an element wj ∈ X
such that T jwj ∈ Yj and T jwj /∈ Yj+1. By means of the decomposition
X = F ⊕ T (X) we also find uj ∈ F and vj ∈ T (X) such that wj = uj + vj .

We claim that the vectors u1, · · · , uk are linearly independent. To see this,
let us suppose

∑k
j=1 λjuj = 0. Then

k∑
j=1

λjwj =
k∑
j=1

λjvj

and therefore from the equalities

T kw1 = · · · = T kwk−1 = 0

we deduce that

T k(

k∑
j=1

λjwj ) = λkT kwk = T k(
k∑
j=1

λjvj ) ∈ T k(T (X)) = T k+1(X).
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From T kwk ∈ ker T we obtain λkT kwk ∈ Yk+1, and since T kwk /∈ Yk+1 this
is possible only if λk = 0. Analogously we have λk−1 = · · · = λ1 = 0, so the
vectors u1, . . . , uk are linearly independent. Consequently, k is smaller than or
equal to the dimension of F . But then for a sufficiently largem we obtain that

ker T ∩ T m(X) = ker T ∩ T m+j (X)

for all integers j ≥ 0. So we are again in the situation of Lemma 1.32.
(iii) Obviously, if ker T ⊆ T n(X) for all n ∈ N, then

ker T ∩ T n(X) = ker T ∩ T n+k(X) = ker T

for all integers k ≥ 0. Hence also in this case we can apply Lemma 1.32. �
The finiteness of p(T ) or q(T ) also has some remarkable consequences on

T | T∞(X), the restriction of T on T∞(X).

Theorem 1.34 Let T be a linear operator on the vector space X. We have:

(i) If either p(T ) or q(T ) is finite then T |T∞(X) is surjective. Indeed, T∞(X) =
C(T ).

(ii) If either α(T ) <∞ or β(T ) <∞ then

p(T ) <∞ ⇔ T |T∞(X) is injective.

Proof

(i) The assertion follows immediately from Lemma 1.32, because if p = p(T ) <
∞ then, by Lemma 1.19,

ker T ∩ T p(X) = ker T ∩ T p+k(X) for all integers k ≥ 0;

while if q = q(T ) <∞ then

ker T ∩ T q(X) = ker T ∩ T q+k(X) for all integers k ≥ 0.

(ii) Assume that p(T ) < ∞. We have C(T ) = T∞(X) and hence T (T∞(X)) =
T∞(X). Let T̃ := T |T∞(X). Then T̃ is surjective, thus q(T̃ ) = 0. From our
assumption and from the equality ker T̃ n = kerT n ∩ T∞(X) we also obtain
p(T̃ ) <∞. From Theorem 1.20 we then conclude that p(T̃ ) = q(T̃ ) = 0, and
therefore the restriction T̃ is injective.

Conversely, if T̃ is injective then kerT ∩ T∞(X) = {0}. By assumption
α(T ) < ∞ or β(T ) < ∞, and this implies (see the proof of Theorem 1.33)
that kerT ∩ T n(X) = {0} for some positive integer n. By Lemma 1.19 it then
follows that p(T ) <∞. �
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The finiteness of the ascent and the descent of a linear operator T is related to a
certain decomposition of X.

Theorem 1.35 Suppose that T is a linear operator on a vector space X. If p :=
p(T ) = q(T ) <∞ then we have the decomposition

X = T p(X)⊕ ker T p.

Conversely, if for a natural number m we have the decomposition X = T m(X) ⊕
ker T m then p(T ) = q(T ) ≤ m. In this case T |T p(X) is bijective.
Proof If p < ∞ and assuming, as we may, that p > 0, then the decomposition
X = T p(X) ⊕ ker T p immediately follows from Lemma 1.19. Conversely, if X =
T m(X) ⊕ ker T m for some m ∈ N then p(T ), q(T ) ≤ m, again by Lemma 1.19,
and hence p(T ) = q(T ) <∞ by Theorem 1.20.

To verify the last assertion observe that T∞(X) = T p(X), so, from Theo-
rem 1.34, T̃ := T |T p(X) is onto. On the other hand,

ker T̃ ⊆ kerT ⊆ kerT p,

but also ker T̃ ⊆ T p(X), so the decomposition X = T p(X) ⊕ ker T p entails that
ker T̃ = {0}. �

Let λ0 be an isolated point of the spectrum and let � be a closed positively
oriented contour in ρ(T ) = C \ σ(T ) which separates λ0 from the rest of the
spectrum σ(T ). The spectral projection associated with the spectral set {λ0} is
defined by

P0 := 1

2πi

∫
�

(λI − T )−1dλ,

see Appendix A. The subspaces P0(X) and kerP0 are invariant under T and
σ(T |P0(X)) = {λ0}, while σ(T | kerP0) = C \ {λ0}.

The algebraic concepts of ascent and descent are intimately related to the analytic
concept of a pole of the resolvent. Indeed, we have (see Heuser [179, Proposition
50.2]):

Theorem 1.36 If T ∈ L(X) then λ0 ∈ σ(T ) is a pole of Rλ if and only if 0 <
p(λ0I − T ) = q(λ0I − T ) < ∞. Moreover, if p := p(λ0I − T ) = q(λ0I − T )
then p is the order of the pole. In this case λ0 is an eigenvalue of T , and if P0 is the
spectral projection associated with {λ0} then

P0(X) = ker (λ0I − T )p, ker P0 = (λ0I − T )p(X).

The following subspace was introduced by Vrbová [293] and studied in several
papers by Mbekhta [229, 230, 232]. It is a natural analytic counterpart of the
algebraic core C(T ) introduced before.
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Definition 1.37 Let X be a Banach space and T ∈ L(X). The analytic core of T is
the set K(T ) of all x ∈ X such that there exists a sequence (un) ⊂ X and a constant
δ > 0 such that:

(a) x = u0, and T un+1 = un for every n ∈ Z+;
(b) ‖un‖ ≤ δn‖x‖ for every n ∈ Z+.

In the following theorem we collect some elementary properties of K(T ).

Theorem 1.38 If T ∈ L(X) the following statements hold:
(i) K(T ) is a linear subspace of X;

(ii) T (K(T )) = K(T );
(iii) K(T ) ⊆ C(T );
(iv) If λ �= 0 then ker (λI − T ) ⊆ K(T ).
Proof (i) It is evident that if x ∈ K(T ) then λx ∈ K(T ) for every λ ∈ C. We show
that if x, y ∈ K(T ) then x + y ∈ K(T ). If x ∈ K(T ) there exists a δ1 > 0 and
a sequence (un) ⊂ X satisfying the condition (a) and which is such that ‖un‖ ≤
δ1
n‖x‖ for all n ∈ Z+. Analogously, since y ∈ K(T ) there exists a δ2 > 0 and a

sequence (vn) ⊂ X satisfying condition (a) of the definition of K(T ) and such that
‖vn‖ ≤ δn2‖y‖ for every n ∈ N.

Let δ : = max {δ1, δ2}. We have

‖un + vn‖ ≤ ‖un‖ + ‖vn‖ ≤ δn1‖x‖ + δn2‖y‖ ≤ δn(‖x‖ + ‖y‖).

Trivially, if x + y = 0 there is nothing to prove since 0 ∈ K(T ). Suppose then
x + y �= 0 and set

μ := ‖x‖ + ‖y‖
‖x + y‖ .

Clearly μ ≥ 1, so μ ≤ μn and therefore

‖un + vn‖ ≤ δnμ‖x + y‖ ≤ (δμ)n‖x + y‖ for all n ∈ Z+,

which shows that property (b) of the definition of K(T ) is satisfied for every sum
x + y, with x, y ∈ K(T ). Hence x + y ∈ K(T ), and consequentlyK(T ) is a linear
subspace of X.

The proof of (ii) is rather simple, while (iii) is a trivial consequence of (ii) and
the definition of C(T ). To prove (iv), suppose that λ �= 0 and x ∈ ker (λI − T ). If
we set u0 = x and un := x

λn
for n = 1, . . . , then the sequence (un) satisfies (a) and

(b) of the definition ofK(T ). Hence x ∈ K(T ). �
Observe that in general neitherK(T ) nor C(T ) are closed. The next result shows

that K(T ) contains every closed subspace F for which the equality T (F ) = F

holds.
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Theorem 1.39 Suppose that T ∈ L(X). Then we have
(i) If F is a closed subspace of X such that T (F ) = F then F ⊆ K(T ).

(ii) If C(T ) is closed then C(T ) = K(T ).
Proof

(i) Let T0 : F → F denote the restriction of T on F . By assumption F is a Banach
space and T (F ) = F , so, by the open mapping theorem, T0 is open. This means
that there exists a constant δ > 0 with the property that for every x ∈ F there
is a u ∈ F such that T u = x and ‖u‖ ≤ δ‖x‖.
Now, if x ∈ F , define u0 := x and consider an element u1 ∈ F such that

T u1 = u0 and ‖u1‖ ≤ δ‖u0‖.

By repeating this procedure, for every n ∈ N we find an element un ∈ F

such that

T un = un−1 and ‖un‖ ≤ δ‖un−1‖.

From the last inequality we obtain the estimate

‖un‖ ≤ δn‖u0‖ = δn‖x‖ for every n ∈ N,

so x ∈ K(T ). Hence F ⊆ K(T ).
(ii) Suppose that C(T ) is closed. Since C(T ) = T (C(T )) the first part of the

theorem shows that C(T ) ⊆ K(T ), and hence, since the reverse inclusion is
always true, C(T ) = K(T ). �

1.4 Semi-Regular Operators

In this section we first introduce a class of operators which are related to semi-
Fredholm operators.

Definition 1.40 A bounded operator T ∈ L(X), X a Banach space, is said to be
semi-regular if T has closed range T (X) and ker T ⊆ T n(X) for every n ∈ N.

Note that the condition ker T ⊆ T n(X) is equivalent to the conditions listed
in Theorem 1.16 and Corollary 1.17. Clearly, bounded below, as well as surjective
operators, are semi-regular.

Lemma 1.41 Suppose that T ∈ L(X) is semi-regular. Then γ (T n) ≥ γ (T )n.
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Proof We proceed by induction. The case n = 1 is trivial.
Suppose that γ (T n) ≥ γ (T )n. If x ∈ X and u ∈ ker T n+1, we have

dist(x, ker T n+1) = dist(x − u, ker T n+1)

≤ dist(x − u, ker T ).

By Theorem 1.16 we also have ker T = T n(ker T n+1) and hence

dist(T nx, ker T ) = dist(T nx, T n(ker T n+1))

= inf
u∈ker T n+1

‖T n(x − u)‖

≥ γ (T n) · inf
u∈ker T n+1

dist(x − u, ker T n)

≥ γ (T n) dist(x, ker T n+1).

From this estimate it then follows that

‖T n+1x‖ ≥ γ (T ) dist(T nx, ker T ) ≥ γ (T ) γ (T n) · dist(x, ker T n+1).

Consequently, from our inductive assumption we obtain that

γ (T n+1) ≥ γ (T )γ (T )n = γ (T )n+1,

so the proof is complete. �
Theorem 1.42 If T ∈ L(X) is semi-regular and x ∈ X, then T x ∈ C(T ) if and
only if x ∈ C(T ).
Proof Clearly the equality T (C(T )) = C(T ) implies that T x ∈ C(T ) for every
x ∈ C(T ). Conversely, let T x ∈ C(T ). By Theorem 1.33 we then have that C(T ) =
T∞(X), and consequently for each n ∈ N there exists a yn ∈ X such that T n+1yn =
T x. Hence z := x−T nyn ∈ ker T ⊆ T n(X). Then x = z+T nx ∈ T n(X) for each
n ∈ N, and consequently x ∈ C(T ).
Theorem 1.43 T ∈ L(X) is semi-regular if and only if T ∗ ∈ L(X∗) is semi-
regular.

Proof Suppose first that T is semi-regular. Then, by part (i) of Theorem 1.2, T (X)
is closed so γ (T ) > 0. Theorem 1.41 entails that γ (T n) ≥ γ (T )n > 0 and this
implies, again by part (i) of Theorem 1.2, that T n(X) is closed for every n ∈ N. By
part (ii) of Theorem 1.2 the same argument also shows that T n�(X∗) = T ∗n(X�) is
closed for every n ∈ N. Therefore,

ker T n⊥ = T ∗n(X�) and ⊥ker T ∗n = T n(X). (1.4)
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Now, since T is semi-regular we have ker T ⊆ T n(X) for every n ∈ N, and
consequently

T n(X)⊥ ⊆ ker T ⊥ = T ∗(X∗).

Finally, from the second equality of (1.4) we have ker T ∗n = T n(X)⊥, so ker T ∗n ⊆
T �(X∗) holds for every n ∈ N. Since T �(X∗) is closed, it then follows that T ∗ is
semi-regular.

A similar argument shows that if T � is semi-regular then T is also semi-regular.
�

Theorem 1.44 Let T ∈ L(X) be semi-regular. Then we have
(i) T n is semi-regular for all n ∈ N.

(ii) C(T ) is closed and C(T ) = K(T ) = T∞(X).
(iii) λI − T is semi-regular for all |λ| < γ (T ), where γ (T ) denotes the reduced

minimal modulus.

Proof

(i) If T is semi-regular then, by Lemma 1.41, S := T n has closed range.
Furthermore, S∞(X) = T∞(X) and hence, by Theorem 1.16, ker S ⊆
T∞(X) = S∞(X). From Corollary 1.17 we then conclude that T n is semi-
regular.

(ii) The semi-regularity of T gives, by definition, ker T ⊆ T n(X) for all n ∈ N.
Hence, by Theorem 1.33, we have T∞(X) = C(T ). But T n is semi-regular
for all n ∈ N, so T n(X) is closed for all n ∈ N, so T∞(X) = ⋂∞

n=1 T
n(X) is

closed. By part (ii) of Theorem 1.39 we then conclude that K(T ) = C(T ).
(iii) First we show that C(T ) ⊆ C(λI − T ) for all |λ| < γ (T ). Let T0 : C(T ) →

C(T ) denote the restriction of T to C(T ). From part (ii) we know that C(T ) is
closed and T0 is surjective. Thus, by Lemma 1.10, the equalities

(λI − T0)(C(T )) = (λI − T )(C(T )) = C(T )

hold for all |λ| < γ (T0).

On the other hand, T is semi-regular, so by Theorem 1.33,

ker T ⊆ T∞(X) = C(T ).

This easily implies that γ (T0) ≥ γ (T ), and hence

(λI − T )(C(T )) = C(T ) for all |λ| < γ (T ).

Note that this last equality implies that

C(T ) ⊆ C(λI − T ) for all |λ| < γ (T ). (1.5)
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Moreover, for every λ �= 0 we have T (ker (λI − T )) = ker (λI − T ), so, from part
(ii) and Theorem 1.39, we have

ker (λI − T ) ⊆ C(T ) for all λ �= 0.

From the inclusion (1.5) we then conclude that the inclusions

ker (λI − T ) ⊆ C(λI − T ) ⊆ (λI − T )n(X) (1.6)

hold for all |λ| < γ (T ), λ �= 0 and n ∈ N. Of course, this is still true for λ = 0
since T is semi-regular, so the inclusions (1.6) are valid for all |λ| < γ (T ).

To prove that λI − T is semi-regular for all |λ| < γ (T ), it only remains to
show that (λI − T )(X) is closed for all |λ| < γ (T ). Note that, as a consequence of
Lemma 1.10, we need only consider the case C(T ) �= {0} and C(T ) �= X. Indeed,
if C(T ) = {0} then ker T ⊆ C(T ) = {0}, and hence T is bounded below, while in
the other case C(T ) = X the operator T is surjective.

Let X := X/C(T ), and let T : X → X be the quotient map defined by T x :=
T x, where x ∈ x. Clearly T is continuous. Moreover, T is injective since from
T x = T x = 0 we have T x ∈ C(T ), and this implies, by Theorem 1.42, that
x ∈ C(T ), which yields x = 0.

We show now that T is bounded below. We only need to prove that T has closed
range. To see this we first show the inequality γ (T ) ≥ γ (T ). In fact, for each x ∈ X
and each u ∈ C(T ) we have, since ker T ⊆ C(T ),

‖x‖ = dist(x, C(T )) = dist(x − u,C(T ))
≤ dist(x − u, ker T ) ≤ 1

γ (T )
‖T x − T u‖.

From the equality C(T ) = T (C(T )) we then obtain that

‖T x‖ = inf
u∈C(T ) ‖T x − T u‖ for all u ∈ C(T ),

hence ‖x‖ ≤ 1/γ (T )‖T x‖, from which we obtain that γ (T ) ≥ γ (T ).
Hence T is bounded below. By Lemma 1.10 then λI − T is bounded below for

all |λ| < γ (T ), and hence for all |λ| < γ (T ).
Finally, to show that (λI − T )(X) is closed for all |λ| < γ (T ), let us consider a

sequence (xn) in (λI−T )(X) which converges to x ∈ X. Clearly, the sequence (xn)
converges to x and xn ∈ (λI − T )(X). The last space is closed for all |λ| < γ (T ),
and hence x ∈ (λI − T )(X). Let x = (λI − T )v and v ∈ v. Then

x − (λI − T )v ∈ C(T ) ⊆ (λI − T )(C(T )) for all |λ| < γ (T ),
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and so there exists a u ∈ C(T ) for which x = (λI − T )(v + u), hence x ∈ (λI −
T )(X) for all |λ| < γ (T ). Therefore, (λI − T )(X) is closed for all |λ| < γ (T ),
and, consequently, λI − T is semi-regular for all |λ| < γ (T ). �

Semi-regular operators may be characterized in the following way:

Theorem 1.45 An operator T ∈ L(X) is semi-regular if and only if there exists a
T -invariant closed subspace Y such that the restriction T |Y is onto and the operator
T̃ : X/Y → X/Y induced by T is bounded below. For the subspace Y we can take
Y = T∞(X).

Proof Let T be semi-regular and set Y := T∞(X). Then Y is closed and T (Y ) = Y ,
by Theorem 1.44, and, clearly, the operator T̃ : X/Y → X/Y induced by T
is injective. To show that T̃ has closed range, observe that T (X) is closed by
assumption, and Y ⊆ T (X). We show that T̃ (X/Y ) = T (Y )+ Y is closed. Indeed,
if T xn + Y → x + Y in X/Y then there exists yn ∈ Y such that T xn + yn → x,
thus x ∈ T (X) and x + Y ∈ T̃ (X/Y ). Therefore, T̃ is bounded below.

Conversely, suppose that for a closed subspace Y invariant under T , T |Y is onto
and the operator T̃ : X/Y → X/Y is bounded below. Since T (Y ) = Y we have
Y ⊆ K(T ) ⊆ T∞(X), by Theorem 1.39. If x ∈ ker T then T̃ (x+Y ) = 0 and since
T̃ is injective we then have x ∈ Y . Thus, ker T ⊆ Y ⊆ T∞(X).

To conclude the proof we need only to show that T (X) is closed. Let π : X →
X/Y be the canonical homomorphism. We claim that T (X) = π−1(T̃ (X/Y )). To
see this, observe that if y ∈ T (X) then y = T x for some x ∈ X, so

π(y) = T x + Y = T̃ (x + Y ) ∈ (T̃ (X/Y )),

and hence

T (X) ⊆ π−1(T̃ (X/Y )).

If y ∈ X and Qy ∈ T̃ (X/Y )), then y + Y = T x + Y for some x ∈ X, hence
y ∈ T x + Y ⊆ T (X), since Y ⊆ T (X). Thus, T (X) = π−1(T̃ (X/Y )), and this
subspace is closed, since π is continuous and T̃ has closed range. �

The spectrum of a bounded linear operator T ∈ L(X) can be divided into subsets
in many different ways. Another important part of the spectrum is given by the
semi-regular spectrum defined as

σse(T ) := {λ ∈ C : λI − T is not semi-regular}.

In the literature σse(T ) is sometimes called the Kato spectrum or the Apostol
spectrum. From Theorem 1.44 we see that ρse(T ) := C \ σse(T ) is an open
subset of C, so σse(T ) is a closed subset of C. Since a bounded below operator,
as well as a surjective operator, is semi-regular, we also have σse(T ) ⊆ σap(T ) and
σse(T ) ⊆ σs(T ). Later, in Chap. 2, we shall prove that σse(T ) is non-empty, since it
contains the boundary ∂σ(T ) of the spectrum.
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Theorem 1.46 Let M and N be two closed T -invariant subspaces of X and X =
M ⊕N . Then T is semi-regular if and only if both T |M and T |N are semi-regular.
Consequently,

σse(T ) = σse(T |M) ∪ σse(T |N).

Proof Observe first that ker T |M = M ∩ ker T . We also have T (M) = M ∩T (X).
The inclusion T (M) ⊆ M ∩ T (X) is obvious. Conversely, if y ∈ M ∩ T (X) then
y ∈ M and y = T x. Write x = x1 + x2, with x1 ∈ M and x2 ∈ N . Then
y = T x = T x1+T x2 and since T x1 ∈ M we have T x2 = y−T x1 ∈ M∩N = {0},
so y = T x1 ∈ T (M).

By induction we have (T |M)n(M) = T n(M) = M ∩ T n(X) for every n ∈ N.
Assume now that T is semi-regular. Then

ker T |M = M ∩ ker T ⊆ M ∩ T n(X) = (T |M)n(M),

for every n ∈ N. Moreover, (T |M)(M) = M ∩ T (X) is closed and hence T |M is
semi-regular. In the same way we obtain that T |N is semi-regular.

Conversely, if T |M and T |N are both semi-regular then T (X) = T (M)⊕ T (N)
is closed and ker T |M ⊆ T n(M) and ker T |N ⊆ T n(N) for all n ∈ N, so

ker T = ker T |M ⊕ ker T |N ⊆ T n(M)⊕ T n(N) = T n(X),

and hence T is semi-regular. �
The open set ρse(T ), called the semi-regular resolvent, can canonically be

decomposed into (maximal, open, connected, pairwise disjoint) non-empty com-
ponents. We want show now that the analytic cores are locally constant on each
component� of ρse(T ). To do this we need first to introduce the notion of the gap
between closed linear subspaces and prove some preliminary results.

LetM , N denote two closed linear subspaces of a Banach space X and define

δ(M,N) := sup{dist(u,N) : u ∈ M, ‖u‖ = 1} ifM �= {0},

otherwise we define δ({0}, N) = 0 for any subspace N .
The gap between M and N is then defined by

δ̂(M,N) := max{δ(M,N), δ(N,M)}.

It is easily seen that the function δ̂ is a metric on the set C(X) of all linear closed
subspaces of X, see Kato [195, §2, Chapter IV] and the convergenceMn → M is
obviously defined by δ̂(Mn,M) → 0 as n → ∞. We recall that for two closed
linear subspacesM and N of X we have

δ(M,N) = δ(N⊥,M⊥) and δ̂(M,N) = δ̂(N⊥,M⊥),
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see again Kato’s book [195, Theorem 2.9, Chapter IV]. From these equalities it
easily follows, as n→ ∞, thatMn → M if and only ifMn⊥ → M⊥. Moreover, by
Corollary 2.6 of [195, §2, Chapter IV], we have

δ̂(M,N) < 1 ⇒ dimM = dimN. (1.7)

In the sequel we shall need the following technical lemmas.

Lemma 1.47 Let T ∈ L(X) and consider two arbitrary points λ, μ ∈ C. Then we
have:

(i) γ (λI − T ) · δ(ker (μI − T ), ker (λI − T )) ≤ |μ− λ|;
(ii) min{γ (λI − T ), γ (μI − T )} · δ̂(ker (λI − T ), ker (μI − T )) ≤ |μ− λ|.
Proof The statement is obvious for λ = μ. Suppose that λ �= μ and consider an
element 0 �= x ∈ ker (μI − T ). Then x /∈ ker (λI − T ), so

γ (λI − T )dist (x, ker (λI − T )) ≤ ‖(λI − T )x‖
= ‖(λI − T )x − (μI − T )x‖
= |λ− μ| ‖x‖.

From this estimate we obtain, if Y := {x ∈ ker (μI − T ) : ‖x‖ ≤ 1}, that

γ (λI − T ) · sup
x∈Y

dist (x, ker (λI − T )) ≤ |λ− μ|,

and hence

γ (λI − T ) · δ(ker (λI − T ), ker (μI − T )) ≤ |μ− λ|.

(ii) The inequality follows from (i) by interchanging λ and μ. �
Lemma 1.48 For every x ∈ X and 0 < ε < 1 there exists an x0 ∈ X such that
x − x0 ∈ M and

dist(x0, N) ≥
(
(1 − ε)1 − δ(M,N)

1 + δ(M,N)
)

‖x0‖. (1.8)

Proof Evidently, if x ∈ M it suffices to put x0 = 0. Therefore, we can assume that
x /∈ M . Let X̂ := X/M denote the quotient space and put x̂ := x +M . Clearly,
‖x̂‖ = infz∈x̂ ‖z‖ > 0. We show that there exists an element x0 ∈ X such that

‖x̂0‖ = dist(x0,M) ≥ (1 − ε)‖x0‖.
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Indeed, were it not so, then

‖x̂‖ = ‖̂z‖ < (1 − ε)‖z‖ for every z ∈ x̂

and consequently

‖x̂‖ ≤ (1 − ε) inf
z∈x̂ ‖z‖ = (1 − ε)‖x̂‖.

But this is impossible since ‖x̂‖ > 0. Define

μ := dist(x0, N) = inf
u∈N ‖x0 − u‖.

Clearly, there exists a y ∈ N such that

‖x0 − y‖ ≤ μ+ ε‖x0‖.

From that we then obtain

‖y‖ ≤ (1 + ε)‖x0‖ + μ.

On the other hand, because dist(y,M) ≤ δ(N,M) · ‖y‖, we have

(1 − ε)‖x̂0‖ ≤ dist(x0,M) ≤ ‖x0 − y‖ + dist(y,M)

≤ μ+ ε‖x0‖ + δ(N,M) · ‖y‖
≤ μ+ ε‖x0‖ + δ(N,M)[(1 + ε)‖x0‖ + μ],

from which we deduce that

μ ≥
[

1 − ε − δ(N,M)
1 + δ(N,M) − ε

]
‖x0‖.

The inequality (1.8) is then clear, since ε > 0 is arbitrary. �
Theorem 1.49 Suppose that T ∈ L(X) is semi-regular. Then

γ (λI − T ) ≥ γ (T )− 3|λ| for every λ ∈ C. (1.9)

Proof Clearly, for every T ∈ L(X) and |λ| ≥ γ (T ) we have

γ (λI − T ) ≥ 0 ≥ γ (T )− 3|λ|,

so we need to prove (1.9) only in the case when λ < γ (T ).
Since T is semi-regular we have C(T ) = T∞(X), by Theorem 1.44. If C(T ) =

{0} then ker T ⊆ T∞(X) = {0}, so T is injective, and since T (X) is closed it then
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follows that T is bounded below. From a closer look at the proof of Lemma 1.10 we
can then conclude that

γ (λI − T ) ≥ γ (T )− |λ| ≥ γ (T )− 3|λ|

for every |λ| < γ (T ). The case C(T ) = X is trivial, since in such a case T is onto,
hence T ∗ is bounded below, and consequently

γ (λI − T ) = γ (λI∗ − T ∗) ≥ γ (T ∗)− 3|λ| = γ (T )− 3|λ|.

It remains to prove the inequality (1.9) in the case when C(T ) �= {0} andC(T ) �=
X. Assume that |λ| < γ (T ) and let x ∈ C(T ) = T (C(T )). Then there exists a
u ∈ C(T ) such that x = T u and hence

dist(u, ker T ) ≤ (γ (T ))−1‖T u‖ = (γ (T ))−1‖x‖.

Let ε > 0 be arbitrary and choose w ∈ ker T such that

‖u−w‖ ≤ [(1 − ε)γ (T )]−1‖x‖.

Let

u1 := u−w and μ := (1 − ε)γ (T ).

Clearly, u1 ∈ C(T ), T u1 = x and ‖u1‖ ≤ μ−1‖x‖. Since u1 ∈ C(T ), by repeating
the same procedure we then obtain a sequence (un), where u0 := x and

un ∈ C(T ), T un+1 = un and ‖un‖ ≤ μ−n‖x‖.

Let us consider the function f : D(0, μ)→ X defined as

f (λ) :=
∞∑
n=0

λnun.

Clearly, f (0) = x and f (λ) ∈ ker (λI − T ) for all |λ| < μ. Moreover,

‖x − f (λ)‖ = ‖
∞∑
n=1

λnun‖ ≤ |λ|
μ− |λ| .

Consequently,

dist(x, ker (λI − T )) ≤ |λ|
μ− |λ| ,
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so

δ(ker T , ker (λI − T )) ≤ |λ|
μ− |λ| = |λ|

(1 − ε)γ (T )− |λ|
for every |λ| < μ. Since ε is arbitrary we conclude that

δ(ker T , ker (λI − T )) ≤ |λ|
γ (T )− |λ| for every |λ| < γ (T ). (1.10)

Let δ := δ(ker T , ker (λI − T )). By Lemma 1.48 we can correspond to the
element u and ε > 0 an element v ∈ X such that z := u− v ∈ ker (λI − T ) and

dist(v, ker T ) ≥ 1 − δ
1 + δ (1 − ε)‖v‖.

From this estimate it then follows that

‖(λI − T )u‖ = ‖(λI − T )v‖ ≥ ‖T v‖ − |λ|‖v‖
≥ γ (T ) · dist(v, ker T )− |λ|‖v‖
≥ γ (T )1 − δ

1 + δ (1 − ε)‖v‖ − |λ|‖v‖.

By using inequality (1.10) we then obtain

‖(λI − T )u‖ ≥ [(1 − ε)(γ (T )− 2|λ|)− |λ|]‖v‖
≥ [(1 − ε)(γ (T )− 2|λ|)− |λ|]‖u− z‖
≥ [(1 − ε)(γ (T )− 2|λ|)− |λ|] · dist(u, ker(λI − T )).

From the last inequality we easily obtain that

γ (λI − T ) ≥ (1 − ε)(γ (T )− 2|λ|)− |λ|,

and since ε is arbitrary we then conclude that inequality (1.9) holds. �
In the following result we show that the subspaces K(λI − T ) are constant as λ

ranges through a component� of the semi-regular resolvent ρse(T ).

Theorem 1.50 Let T ∈ L(X) and consider a connected component� of ρse(T ). If
λ0 ∈ � is arbitrarily fixed then

K(λI − T ) = K(λ0I − T ) for every λ ∈ �.
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Proof By Theorem 1.44,

C(λI − T ) = K(λI − T ) = (λI − T )∞(X) for all λ ∈ ρse(T ).

By the first part of the proof of part (iii) of Theorem 1.44 we haveK(T ) ⊆ K(μI −
T ) for every |μ| < γ (T ). Now, take |μ| < 1

4γ (T ) and define S := μI − T . From
Theorem 1.49 we have

γ (S) = γ (μI − T ) ≥ γ (T )− 3|μ| > |μ|,

hence, according to the observation above,

K(μI − T ) = K(S) ⊆ K(μI − S) = K(T ).

From this it then follows that K(μI − T ) = K(T ) when μ is sufficiently small.
Take two arbitrary points λ1, λ2 in �. Write

λ1I − T = (λ1 − λ2)I − (T − λ2I).

If we choose λ1, λ2 sufficiently near to each other, the previous argument shows that

K(λ1I − T ) = K((λ1 − λ2)I − (T − λ2I)) = K(λ2I − T ).

The following standard compactness argument proves that K(λI − T ) = K(μI −
T ) for all λ,μ ∈ �. In fact, join a fixed point λ0 ∈ � with an arbitrary point
λ ∈ � by a polygonal line P ⊂ �. Associate with each point in P a disc in which
the analytic core is constant. By the classical Heine–Borel theorem already finitely
many of these discs cover P , so K(λ0I − T ) = K(λI − T ). Thus, the subspaces
K(λI − T ) are constant on �. �

By Theorem 1.44 if λI − T is a semi-regular operator thenK(λI − T ) = (λI −
T )∞(X), so the statement of Theorem 1.50 is equivalent to saying that the subspaces
(λI − T )∞(X) are constant as λ ranges through a component� of ρse(T ).

The semi-regularity of an operator may be characterized in terms of the
continuity of certain mappings.

Theorem 1.51 If T ∈ L(X) and λ0 ∈ C, then the following statements are
equivalent:

(i) λ0I − T is semi-regular;
(ii) γ (λ0I − T ) > 0 and the mapping λ → γ (λI − T ) is continuous at the point

λ0;
(iii) γ (λ0I −T ) > 0 and the mapping λ→ ker (λI −T ) is continuous at λ0 in the

gap metric;
(iv) The range (λI − T )(X) is closed in a neighborhood of λ0 and the mapping

λ→ (λI − T )(X) is continuous at λ0 in the gap metric.
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Proof There is no loss of generality if we assume that λ0 = 0.
(i) ⇒ (ii) Since T has closed range we have γ (T ) > 0. Moreover, for every |λ| <

γ (T ), the operator λI − T is semi-regular, by Theorem 1.44. Consider |λ| < γ (T )
and |μ| < γ (T ). By Theorem 1.49 we have

|γ (λI − T )− γ (μI − T )| ≤ 3|λ− μ|,

and this obviously implies the continuity of the mapping λ → γ (λI − T ) at the
point 0.

(ii) ⇒ (iii) The continuity of the mapping λ→ γ (λI −T ) at 0 implies that there
exists a neighborhood U of 0 for which

γ (λI − T ) ≥ γ (T )

2
for all λ ∈ U .

From Lemma 1.47 we then have that

δ̂(ker (μI − T ), ker (λI − T )) ≤ 2

γ (T )
|λ− μ| for all λ,μ ∈ U,

and in particular,

δ̂(ker T , ker (λI − T )) ≤ 2

γ (T )
|λ| for all λ ∈ U .

From this estimate we deduce that ker (λI − T )) converges in the gap metric to
ker T , as λ → 0, and consequently the mapping λ → ker (λI − T ) is continuous
at 0.

(iii) ⇒ (i) It is clear that ker (λI−T ) ⊆ T n(X) for every n. For every x ∈ ker T ,
n ∈ N and λ �= 0, we then have

dist(x, T n(X)) ≤ dist(x, ker (λI − T )) ≤ δ(ker T , ker (λI − T )) · ‖x‖.

This estimate implies that

dist(x, T n(X)) ≤ δ̂(ker T , ker (λI − T )) · ‖x‖.

The continuity at 0 of the mapping λ → ker (λI − T ) entails that x ∈ T n(X) for
every n. Hence ker T ⊆ T n(X) for every n = 1, · · · .

To prove the semi-regularity of T it suffices to prove that T n(X) is closed for
n ∈ N. We proceed by induction.

The case n = 1 is obvious from the assumption. Assume that T n(X) is closed.
Then ker T ⊆ T n(X) = T n(X), hence ker T + T n(X) = T n(X) is closed. By
Lemma 1.5 we then have that T (T n(X)) = T n+1(X) is closed. Therefore, (i), (ii)
and (iii) are equivalent.
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(i) ⇒ (iv) If T is semi-regular and D(0, γ (T )) is the open disc cen-
tered at 0 with radius γ (T ) then (λI − T ) is semi-regular for all λ ∈
D(0, γ (T )), by Theorem 1.44. In particular, (λI − T )(X) is closed, and hence
ker (λI − T ∗)⊥ = (λI − T )(X) for all λ ∈ D(0, γ (T )).

Now, by Theorem 1.43 T � is semi-regular, and by the first part of the proof, this
is equivalent to the continuity at 0 of the mapping

λ→ ker (λI − T ∗) = (λI − T )(X)⊥.
Since

δ̂(T (X)⊥, (λI − T )(X)⊥) = δ̂(T (X), (λI − T )(X)),
we then conclude that the mapping λ → (λI − T )(X) is continuous at 0.

(iv) ⇒ (iii) Let U be a neighborhood of 0 such that (λI − T )(X) is closed for
every λ ∈ U . Then γ (T ) > 0, so

δ̂(ker T ∗, ker (λI − T ∗)) = δ̂(⊥ker T ∗,⊥ ker (λI − T ∗))

= δ̂(T (X), (λI − T )(X)).
Hence the mapping λ → γ (λI − T ∗) = γ (λI − T ) is continuous at 0. �
Theorem 1.52 Let � be a connected component of ρse(T ) and fix λ0 ∈ �. Then

K(λ0I − T ) =
∞⋂
n=0

(λnI − T )(X) =
∞⋂
n=1

(λnI − T )(X), (1.11)

where (λn) is a sequence of distinct points of � which converges to λ0.

Proof We first show the second equality in (1.11). Trivially, the inclusion

∞⋂
n=0

(λnI − T )(X) ⊆
∞⋂
n=1

(λnI − T )(X)

holds for every T ∈ L(X).
To show the opposite inclusion, suppose that x ∈⋂∞

n=1(λnI − T )(X). Then

dist(x, (λ0I − T )(X)) ≤ δ̂((λnI − T )(X), (λ0I − T )(X)) · ‖x‖
for every n ∈ N. Since λn → λ0, from Theorem 1.51 it then follows that x ∈
(λ0I − T )(X) = (λ0I − T )(X). Therefore, the equality

∞⋂
n=0

(λnI − T )(X) =
∞⋂
n=1

(λnI − T )(X) (1.12)

is proved.
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It remains to prove the first equality in (1.11). By Theorem 1.50 we have

K(λ0I − T ) = K(λnI − T ) ⊆ (λnI − T )(X), for all n ∈ N,

and hence

K(λ0I − T ) ⊆
∞⋂
n=1

(λnI − T )(X).

Conversely, let x ∈ ⋂∞
n=1(λnI − T )(X). From equality (1.12) we know that

x ∈ (λ0I − T )(X), so there exists an element u ∈ X such that x = (λ0I − T )u.
Write

x = (λnI − T )u+ (λ0 − λn)u.

Since x ∈ (λnI − T )(X) for every n ∈ N, we have that (λ0 − λn)u belongs
to
⋂∞
n=1(λnI − T )(X). Now, by assumption, λn �= λ0 for every n ∈ N, so

u ∈⋂∞
n=1(λnI − T )(X). This shows that

x = (λ0I − T )u ∈ (λ0I − T )(
∞⋂
n=1

(λnI − T )(X)),

from which the inclusion

∞⋂
n=1

(λnI − T )(X) ⊆ (λ0I − T )(
∞⋂
n=1

(λnI − T )(X))

follows. The opposite inclusion is clearly satisfied. By Theorem 1.39 we then
obtain that

∞⋂
n=1

(λnI − T )(X) ⊆ K(λ0I − T ),

which concludes the proof. �
The following example shows that the product of two semi-regular operators,

also commuting semi-regular operators, need not be semi-regular.

Example 1.53 LetH denote a Hilbert space with an orthonormal basis (ei,j ) where
i, j are integers for which i × j ≤ 0. Define T , S ∈ L(H) and S ∈ L(H) by the
assignment:

T ei,j :=
{

0 if i = 0, j > 0
ei+1,j otherwise,
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and

Sei,j :=
{

0 if j = 0, i > 0
ei,j+1 otherwise.

Then

T Sei,j = ST ei,j =
{

0 if i = 0, j ≥ 0, or j = 0, i ≥ 0,
ei+1,j+1 otherwise.

Hence T S = ST and, as is easy to verify,

ker T =
∨
j>0

{ei,0} ⊂ T∞(H),

where
∨
j>0{e0,j } denotes the linear subspace of H generated by the set {ej : j >

0}. Analogously we have

ker S =
∨
i>0

{ei,0} ⊂ S∞(H).

Moreover, both T and S have closed range, so T and S are semi-regular. On the
other hand, e0,0 ∈ ker T S and e0,0 /∈ (T S)(H), thus T S is not semi-regular.

The next example shows that the set of all semi-regular operators need not be an
open subset of L(X).

Example 1.54 Let H be a Hilbert space with an orthonormal basis (ei,j ) where i, j
are integers and i ≥ 1. Let T be defined by:

T ei,j :=
{
ei,j+1 if j �= 0,
0 if j = 0.

Clearly T (H) is closed and

ker T =
∨
i>1

{e0,j } ⊂ T∞(H),

thus T is semi-regular.
Now let ε > 0 be arbitrarily given and define S ∈ L(H) by

Sei,j :=
{ ε
i
ei,0 if j = 0,

0 if j �= 0.
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It is easy to see that ‖S‖ = ε. Moreover, since S is a compact operator having an
infinite-dimensional range, the range S(H) is not closed. LetM denote the subspace
generated by the set {ei,0 : i ≥ 1}. Then the subspace T (H) is orthogonal to M
and hence is orthogonal to S(H), since S(H) ⊆ M . Moreover, (T + S)(H) =
T (H) + S(H), from which we deduce that (T + S)(H) is not closed, and hence
T + S is not semi-regular.

Theorem 1.55 Let T , S ∈ L(X) be commuting operators such that T S is semi-
regular. Then both T and S are semi-regular. In particular, if T n is semi-regular
then T is semi-regular.

Proof It suffices only to show that one of the two operators, say T , is semi-regular.
From the semi-regularity of T S we obtain

ker T ⊆ ker (T S) ⊆
∞⋂
n=1

(T nSn)(X) ⊆
∞⋂
n=1

T n(X). (1.13)

We show now that T (X) is closed. Let (yn) := (T xn) be a sequence of T (X)
which converges to some y0. Then

Syn = ST xn = T Sxn ∈ (T S)(X)

and (Syn) converges to Sy0. Since by assumption (T S)(X) is closed, we have Sy0 ∈
(T S)(X) = (ST )(X). Consequently, there exists an element z0 ∈ X such that
Sy0 = ST z0 and hence

y0 − T z0 ∈ ker S ⊆ ker (T S).

From (1.13) we deduce that

y0 − T z0 ∈
∞⋂
n=1

T n(X) ⊆ T (X).

From this we then obtain that y0 ∈ T (X), so T (X) is closed and T is semi-regular.
�

The class of all upper semi-Fredholm operators is defined by

�+(X) := {T ∈ L(X) : α(T ) <∞ and T (X) isclosed}

and the class of all lower semi-Fredholm operators is defined by

�−(X) := {T ∈ L(X) : β(T ) <∞}.
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The class of all semi-Fredholm operators is defined as�±(X) := �+(X)∪�−(X),
while the class of the Fredholm operators is defined as �(X) := �+(X) ∩�−(X).
The index of T ∈ �±(X) is defined by

ind (T ) := α(T )− β(T ).

An easy example of a semi-regular operator which is not Fredholm is given by
an injective finite-rank operator T acting on an infinite-dimensional X. Indeed, T
is obviously semi-regular, since T (X) is finite-dimensional and hence closed, and
obviously β(T ) = codim(T ) = ∞.

The classes�+(X), �−(X), and�(X) are open subsets of L(X) (see Appendix
A) and give rise to the following spectra. The upper semi-Fredholm spectrum,
defined as

σusf(T ) := {λ ∈ C : λI − T /∈ �+(X)},

the lower semi-Fredholm spectrum, defined as

σlsf(T ) := {λ ∈ C : λI − T /∈ �−(X)},

and the semi-Fredholm spectrum (also known in the literature as the Wolf spectrum),
defined as

σsf(T ) := {λ ∈ C : λI − T /∈ �±(X)}.

The semi-Fredholm region of T is defined as ρsf(T ) := C \ σsf(T ). If ρusf(T ) :=
C \ σusf(T ) and ρlsf(T ) := C \ σlsf(T ) then ρsf = ρusf(T ) ∪ ρlsf(T ). The essential
spectrum (also called the Fredholm spectrum) is defined as

σe(T ) := {λ ∈ C : λI − T /∈ �(X)}.

The Fredholm region of T is the set ρf(T ) := C \ σe(T ).
Remark 1.56 All the spectra defined above are closed subsets of C. Moreover, these
spectra are non-empty if X is an infinite-dimensional Banach space. That σe(T ) is
non-empty is an easy consequence of the Atkinson characterization of Fredholm
operators, which says that T ∈ L(X) is a Fredholm operator if and only if the
residual class T̂ := T +K(X) is invertible in the Calkin algebra L := L(X)/K(X),
where K(X) denotes the two-sided ideal of all compact operators, see Appendix
A. Consequently, σe(T ) = σ(T̂ ) is non-empty if X is infinite-dimensional. Also
σusf (T ) and σlsf (T ) are non-empty; this will be proved in Chap. 2.

Theorem 1.57 If T ∈ L(X) then the boundary ∂σe(T ) of the essential spectrum is
contained in σusf (T ) ∩ σlsf (T ).
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Proof If λ0 ∈ ∂σe then there exists a sequence {λn} which converges to λ0 such
that λnI − T ∈ �(X). By Atkinson’s characterization of Fredholm operators the
residual class λnÎ − T̂ is invertible for each n ∈ N in the Calkin algebra L. But
λ0I − T /∈ �(X), so λ0Î − T̂ is not invertible, and since λnÎ − T̂ → λ0Î − T̂ ,
as n → ∞, it then follows that λ0Î − T̂ is neither injective nor surjective. Hence
λ0I − T /∈ �+(X) ∪�−(X), thus λ0 ∈ σusf (T ) ∩ σlsf (T ). �

The punctured neighborhood theorem for semi-Fredholm operators (see
Appendix A) establishes that if T ∈ �+(X) then there exists an ε > 0 such
that λI + T ∈ �+(X) and α(λI + T ) is constant on the punctured neighborhood
0 < |λ| < ε. Moreover,

α(λI + T ) ≤ α(T ) for all |λ| < ε , (1.14)

and

ind (λI + T ) = ind T for all |λ| < ε.

Analogously, if T ∈ �−(X) then there exists an ε > 0 such that λI + T ∈ �−(X)
and β(λI + T ) is constant on the punctured neighborhood 0 < |λ| < ε. Moreover,

β(λI + T ) ≤ β(T ) for all |λ| < ε, (1.15)

and

ind (λI + T ) = ind T for all |λ| < ε.

Definition 1.58 Let T ∈ �±(X), X a Banach space. Let ε > 0 be as in (1.14) or
in (1.15). If T ∈ �+(X) the jump of T is defined by

jump (T ) := α(T )− α(λI + T ), 0 < |λ| < ε,

while if T ∈ �−(X), the jump is defined by

jump (T ) := β(T )− β(λI + T ), 0 < |λ| < ε.

The continuity of the index ensures that both definitions of the jump coincide
whenever T is a Fredholm operator.

We have seen in Example 1.54 that the set of semi-regular operators SR(X) is,
in general, not open. Since the sets �(X), �+(X) and�−(X) are open, an obvious
consequence is that SR(X) does not coincide with one of these sets. In the sequel,
we set T∞ := T |T∞(X).

Lemma 1.59 If T ∈ �+(X) then T∞ is a Fredholm operator.
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Proof Since α(T ) < ∞, from Theorem 1.33 we have β(T∞) = 0, and from the
inclusion ker T∞ ⊆ ker T it then follows that ker T is finite-dimensional, thus T∞
is a Fredholm operator. �
Theorem 1.60 A semi-Fredholm operator T ∈ L(X) is semi-regular precisely
when T has jump (T ) = 0.

Proof Since T (X) is closed it suffices to show the equivalence

jump (T ) = 0 ⇔ N∞(T ) ⊆ T∞(X) .

Assume first T ∈ �+(X) and N∞(T ) ⊆ T∞(X). Observe that

α(λI + T ) = α(λI + T∞) for all λ ∈ C.

For λ = 0 this is clear, since ker T ⊆ N∞(T ) ⊆ T∞(X) implies that ker T =
ker T∞. For λ �= 0 we have, by part (ii) of Theorem 1.14,

ker T ⊆ N∞(λI + T ) ⊆ T∞(X),

so that ker (λI + T = ker (λI + T∞).
Now, by Theorem 1.33 we know that β(T∞) = 0 and hence, by Theorem 1.10,

there exists an ε > 0 such that β(λI + T∞) = 0 for all |λ| < ε. By Lemma 1.59 we
know that T∞ is Fredholm, so we can assume ε is such that

ind (λI + T∞) = ind (T∞) for all |λ| < ε.

Therefore α(λI + T∞) = α(T∞) for all |λ| < ε and hence α(λI + T ) = α(T ) for
all |λ| < ε, thus jump (T ) = 0.

Conversely, suppose that T ∈ �+(X) and jump (T ) = 0, namely there exists an
ε > 0 such α(λI + T ) is constant for |λ| < ε. Then

α(T∞) ≤ α(T ) = α(λI + T ) = α(λI + T∞) for all 0 < |λ| < ε.

But T∞ is Fredholm, by Lemma 1.59, and hence, from the punctured neighborhood
theorem, we can choose ε > 0 such that α(λI + T∞) ≤ α(T∞) for all |λ| < ε. This
shows that α(T∞) = α(T ) and consequently, N∞(T ) ⊆ T∞(X).

To conclude the proof, we need to consider the case T ∈ �−(X) and jump (T ) =
0. In this case, T ∗ ∈ �+(X∗) and jump (T ) = jump (T ∗) = 0. From the first part
of the proof we deduce that N∞(T ∗) ⊆ T ∗∞(X∗). From Corollary 1.17 it then
follows that ker T ∗n ⊆ T ∗(X∗) for all n ∈ N, or equivalently T n(X)⊥ ⊆ ker T ⊥
for all n ∈ N. Since all these subspaces are closed then T n(X) ⊇ ker T for all
n ∈ N, so, by Corollary 1.17 we conclude that N∞(T ) ⊆ T∞(X). �
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1.5 The Kato Decomposition

The following definition comes from Kato’s classical treatment [195] of the
perturbation theory of semi-Fredholm operators.

Definition 1.61 An operator T ∈ L(X), X a Banach space, is said to admit a
generalized Kato decomposition, abbreviated as GKD, if there exists a pair of T -
invariant closed subspaces (M,N) such that X = M ⊕ N , the restriction T |M is
semi-regular and T |N is quasi-nilpotent.

Evidently, every semi-regular operator has a GKD M = X and N = {0} and a
quasi-nilpotent operator has a GKDM = {0} and N = X.

A relevant case is obtained if we assume in the definition above that T |N is
nilpotent, i.e. there exists a d ∈ N for which (T |N)d = 0. In this case the operator
T is said to be of Kato-type of order d .

Evidently, if λ0I − T admits a generalized Kato decomposition then λ0I
� −

T � also admits a generalized Kato decomposition. More precisely, if T admits a
GKD(M,N) then the pair (N⊥,M⊥) is a GKD for λ0I

� − T �.
An operator T ∈ L(X) is said to be essentially semi-regular if it admits a GKD

(M,N) such that N is finite-dimensional. Note that if T is essentially semi-regular
then T |N is nilpotent, since every quasi-nilpotent operator on a finite-dimensional
space is nilpotent.

Hence we have the following implications:

T semi-regular ⇒ T essentially semi-regular ⇒ T of Kato-type

⇒ T admits a GKD.

In the sequel we reassume some results concerning essentially semi-regular
operators. The reader may find a well-organized exposition of the basic results
concerning this class of operators in the book of Müller [243, §21], where the
essentially semi-regular operators are called essentially Kato operators.

(i) T ∈ L(X) is essentially semi-regular if and only if T (X) is closed and there
exists a finite-dimensional subspace F of X such that ker T ⊆ T∞(X)+ F .

(ii) If T ∈ L(X) is essentially semi-regular then T n is essentially semi-regular for
every n ∈ N.

(iii) T ∈ L(X) is essentially semi-regular if and only if T ∗ ∈ L(X∗) is essentially
semi-regular.

(iii) If T and S commutes and T S is essentially semi-regular then both T and S are
essentially semi-regular.

(iv) If T ∈ L(X) is essentially semi-regular then there exists an ε > 0 such that
T + S is essentially semi-regular for every S ∈ L(X) such that ST = T S and
‖S‖ < ε.

(v) If T ∈ L(X) is essentially semi-regular then T +K is essentially semi-regular
for every finite-rank operatorK ∈ L(X).
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We have already observed that a semi-Fredholm operator is, in general, not semi-
regular. The following important result was first observed by Kato [195], for a
simpler proof see also Müller [243, Theorem 16.21].

Theorem 1.62 Every semi-Fredholm operator T ∈ L(X) is essentially semi-
regular, in particular is of Kato-type.

In the sequel we see that some of the properties already observed for semi-regular
operators may be extended to operators which admit a GKD.

Theorem 1.63 Suppose that (M,N) is a GKD for T ∈ L(X). Then we have:
(i) K(T ) = K(T |M) andK(T ) is closed;

(ii) kerT |M = kerT ∩M = K(T ) ∩ ker T .

Proof

(i) To show the equality K(T ) = K(T |M), we need only prove that K(T ) ⊆ M .
Let x ∈ K(T ) and, according to the definition ofK(T ), choose a sequence (un)
in X, and δ > 0 such that

x = u0, T un+1 = un, and ‖un‖ ≤ δn‖x‖ for all n ∈ N.

Obviously, T nun = x for all n ∈ N. From the decomposition X = M ⊕ N we
know that x = y + z, un = yn + zn, with y, yn ∈ M and z, zn ∈ N . Then

x = T nun = T nyn + T nzn,

and hence, by the uniqueness of the decomposition, y = T nyn and z = T nzn
for all n. Let P denote the projection of X onto N alongM . From the estimate

‖((T |N)P)n‖1/n ≤ ‖(T |N)n‖1/n‖Pn‖1/n = ‖(T |N)n‖1/n‖P‖1/n,

we deduce that (T |N)P is also quasi-nilpotent, since, by assumption, T |N is
quasi-nilpotent. Therefore, if ε > 0, there is a positive integer n0 such that

‖(T P )n‖1/n = ‖((T |N)P)n‖1/n < ε,

for all n > n0. We have

‖z‖ = ‖T nzn‖ = ‖T nPun‖ = ‖(T P )nun‖ ≤ εnδn‖x‖, (1.16)

for all n > n0. Since ε is arbitrary, the last term of (1.16) converges at 0, so
z = 0 and this implies that x = y ∈ M .

The last assertion is a consequence of part (ii) of Theorem 1.44, since the
restriction T |M is semi-regular.



1.5 The Kato Decomposition 43

(ii) From part (i) we have K(T ) ⊆ M and, since T |M is semi-regular, from
Theorem 1.33 and part (i) we also have that

ker (T |M) ⊆ (T |M)∞(M) = K(T |M) = K(T ).

From this we then conclude that

K(T ) ∩ ker T = K(T ) ∩M ∩ ker T = K(T ) ∩ ker (T |M) = ker (T |M),

so part (ii) is also proved. �
For operators of Kato-type the hyper-range and the analytic core coincide:

Theorem 1.64 Let T ∈ L(X), X a Banach space, be of Kato-type of order d , with
a GKD (M,N). Then we have:

(i) K(T ) = T∞(X) = (T |M)∞(M);
(ii) ker (T |M) = ker T ∩ T∞(X) = ker T ∩ T n(X) for all natural n ≥ d;

(iii) We have T (X) + ker T n = T (M) ⊕ N for every natural n ≥ d . Moreover,
T (X)+ ker T n is closed in X for every natural n ≥ d .

Proof

(i) We have (T |N)d = 0. For n ≥ d we have

T n(X) = T n(M)⊕ T n(N) = T n(M) (1.17)

and hence T∞(X) = (T |M)∞(M). From part (ii) of Theorem 1.44, the semi-
regularity of T |M implies that (T |M)∞(M) = K(T |M) and the last set, by
Theorem 1.63, coincides with K(T ).

(ii) Let n ≥ d . Clearly, T n(X) = T n(M). From the equalities (1.17) and part (ii)
of Theorem 1.63 we obtain

ker (T |M) = ker T ∩K(T ) ⊆ ker T ∩ T n(X) = ker T ∩ T n(M)
⊆ ker T ∩M = ker (T |M).

Hence for all n ≥ d , ker (T |M) = ker T ∩ T n(X).
(iii) It is obvious that if n ≥ d then N ⊆ ker T n, so

T (M)⊕N ⊆ T (X)+ ker T n.

Conversely, if n ≥ d then

ker T n = ker (T |M)n ⊕ ker (T |N)n = ker (T |M)n ⊕N

and from the semi-regularity of T |M it then follows that ker T n ⊆ T (M)⊕N .
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Because T (X) = T (M)⊕ T (N) ⊆ T (M)⊕N, we then have

T (X)+ ker T n ⊆ T (M)⊕N.

Hence T (X)+ ker T n = T (M)⊕N .
To complete the proof we show that T (M) ⊕ N is closed. Let M × N be

provided with the canonical norm

‖(x, y)‖ := ‖x‖ + ‖y‖ (x ∈ M,y ∈ N). (1.18)

Clearly, M × N with respect to this norm is complete. Let  : M × N →
M ⊕N = X denote the topological isomorphism defined by

(x, y) := x + y for every x ∈ M,y ∈ N. (1.19)

We have (T (M),N) = T (M)⊕N and hence, since (T (M),N) is closed in
M × N , the subspace T (M)⊕N is closed in X. �

If T ∈ L(X) is of Kato-type then λI − T is semi-regular on a punctured disc
centered at 0:

Theorem 1.65 If T ∈ L(X) is of Kato-type then there exists an ε > 0 such that
λI − T is semi-regular for all 0 < |λ| < ε.
Proof Let (M,N) be a GKD for T such that T |N is nilpotent.

First we show that (λI − T )(X) is closed for all 0 < |λ| < γ (T |M),
where γ (T |M) denotes the minimal modulus of T |M . Since T |N is nilpotent, the
restriction λI − T |N is bijective for every λ �= 0, thus N = (λI − T )(N) for every
λ �= 0, and therefore

(λI − T )(X) = (λI − T )(M)⊕ (λI − T )(N) = (λI − T )(M)⊕N

for every λ �= 0. By assumption T |M is semi-regular, so by Theorem 1.44 (λI −
T )|M is semi-regular for every |λ| < γ (T |M), and hence, for these values of λ, the
set (λI − T )(M) is a closed subspace ofM .

We show now that (λI −T )(X) is closed for every 0 < |λ| < γ (T |M). Consider
the Banach space M × N provided with the canonical norm defined in (1.18) and
let  : M × N → M ⊕ N = X denote the topological isomorphism defined as
in (1.19). Then for every 0 < |λ| < γ (T |M) the set

[(λI − T )(M)×N] = (λI − T )(M)⊕N = (λI − T )(X)

is closed since the product (λI − T )(M)× N is closed inM × N .
We show now that there exists an open disc D(0, ε) such that

N∞(λI − T ) ⊆ (λI − T )∞(X) for all λ ∈ D(0, ε) \ {0}.
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Since T is of Kato-type, the hyper-range is closed and coincides with K(T ), by
Theorems 1.63 and 1.64. Therefore, T (T∞(X)) = T∞(X). Let T0 := T |T∞(X).
The operator T0 is onto and hence, by part (ii) of Lemma 1.10, λI − T0 is also onto
for all |λ| < γ (T0), so

(λI − T )(T∞(X)) = T∞(X) for all |λ| < γ (T0).

Since the hyper-range T∞(X) is closed, by Theorem 1.39, we then have

T∞(X) ⊆ K(λI − T ) ⊆ (λI − T )∞(X) for all |λ| < γ (T0).

From Theorem 1.14, part (ii), we then conclude that

N∞(λI − T ) ⊆ T∞(X) ⊆ (λI − T )∞(X) for all 0 < |λ| < γ (T0). (1.20)

Since (λI − T )(X) is closed for all 0 < |λ| < γ (T |M), from the inclusions (1.20)
we then deduce the semi-regularity of λI − T for all 0 < |λ| < ε, where ε :=
min {γ (T0), γ (T |M)}. �

Some special classes of semi-Fredholm operators are given by the class B+(X)
of all upper semi-Browder operators, defined as

B+(X) := {T ∈ �+(X) : p(T ) <∞},

and by B−(X) the class of all lower semi-Browder operators, defined as

B−(X) := {T ∈ �−(X) : q(T ) <∞}.

The class of all Browder operators is defined by B(X) = B+(X)∩B−(X). Clearly,

B+(X) := {T ∈ �(X) : p(T ) = q(T ) <∞}.

These classes, together with some other related classes of operators, will be treated
in more detail in Chap. 3. It is easy to see that if T ∈ B−(X) then the subspace M
in the Kato decomposition (M,N) is uniquely determined and M = T∞(X), thus
T |M is onto.

Lemma 1.66 If T ∈ L(X) is essentially semi-regular then the operator T̃ :
X/T∞(X) → X/T∞(X) is upper semi-Browder.

Proof Let (M,N) be the corresponding Kato decomposition for whichX = M⊕N ,
T |M is semi-regular, and T |N is nilpotent with dimN <∞. Clearly,

T∞(X) = (T |M)∞(M) ⊆M.

Moreover,T∞(X) is closed and T (T∞(X)) = T∞(X), by Theorems 1.63 and 1.64.
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Let k ≥ 1 and x = x1 ⊕ x2, x1 ∈ M and x2 ∈ N , satisfy T kx ∈ T∞(X). Then
(T |M)x2 ∈ T∞(X), thus x ∈ N+T∞(X) and dim ker T k ≤ dimN . Consequently,
N∞(T̃ ) ≤ dimN < ∞. Let π : X → X/T∞(X) be the canonical projection. As
T∞(X) ⊆ T (X), and since the range of T̃ is the set

{T x + T∞(X), x ∈ X} = π(T (X)),

then the range of T̃ is closed, hence T̃ is upper semi-Browder. �
In the sequel we give further characterizations of essentially semi-regular

operators. These characterizations, in a sense, are a natural extension of the result
of Theorem 1.45, established for semi-regular operators, to the case of essentially
semi-regular operators.

Theorem 1.67 For a bounded operator T ∈ L(X), the following conditions are
equivalent:

(i) T is essentially semi-regular;
(ii) there exists a closed T -invariant subspace Y ofX such that the restriction T |Y

is lower semi-Fredholm and the induced operator T̃ : X/Y → X/Y is upper
semi-Fredholm;

(iii) there exists a closed T -invariant subspace Y ofX such that the restriction T |Y
is lower semi-Browder and the induced operator T̃ : X/Y → X/Y is upper
semi-Browder;

(iv) there exists a closed T -invariant subspace Y ofX such that the restriction T |Y
is onto and the induced operator T̃ : X/Y → X/Y is upper semi-Browder;

(v) there exists a closed T -invariant subspace Y ofX such that the restriction T |Y
is lower semi-Browder and the induced operator T̃ : X/Y → X/Y is bounded
below.

Proof By Lemma 1.66 we have (i) ⇒ (iv), and the implications (iv) ⇒ (iii) ⇒ (ii)
and (v) ⇒ (ii) are obvious. We prove (ii) ⇒ (i).

Suppose that statement (ii) holds. We show first that T (X) is closed. Let π :
X → X/Y be the canonical projection. If z ∈ T (X) then z = T x for some x ∈ X.
Then π(z) = T x + Y = T̃ (x + Y ) belongs to the range R(T̃ ) of T̃ , so that T (X) ⊆
π−1(R(T̃ )). Let z ∈ X such that π(y) ∈ R(T̃ ), i.e., y + Y = T x + Y . Then, for
some finite-dimensional subspace F of Y we have

y ∈ T (X)+ Y ⊆ T (X)+ (F + T (Y )) ⊆ T (X)+ F,

thus

π−1(R(T̃ )) ⊆ T (X)+ F ⊆ π−1(R(T̃ ))+ F.

Evidently π−1(R(T̃ )) + F is closed, since π is continuous, R(T̃ ) is closed and F
is finite-dimensional, so T (X)+ F is closed and hence T (X) is also closed.
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To show that T is essentially semi-regular, we only need to prove that ker T ⊆
G + T∞(X) for some finite-dimensional subspace G. As π(ker T ) ⊆ ker T̃ and
ker T̃ is finite-dimensional, there exists a finite-dimensional subspace G1 ⊆ ker T
such that ker T ⊆ G1 + ker T |Y . The operator T |Y is lower semi-Fredholm and
hence essentially semi-regular, so there exists a finite-dimensional subspace G2 of
Y such that

ker T |Y ⊆ G2 + (T |Y )∞(Y ).

Therefore, if G := G1 +G2, we have

ker T ⊆ G1 + ker T |Y ⊆ G1 +G2 + (T |Y )∞(Y ) ⊆ G+ T∞(X),

so T is essentially semi-regular.
(i) ⇒ (v) Let (M,N) be the corresponding Kato decomposition for T , i.e., X =

M ⊕N , T |M semi-regular, T |N nilpotent and dimN <∞. Set

Y := N ⊕ (T |M)∞(M) = N ⊕ T∞(X),

see Theorem 1.64. Evidently,Y is closed and because T∞(X) = K(T ), by Theorem
1.64, we have T (T∞(X)) = T∞(X). This implies that the restriction T |Y is a lower
semi-Browder operator. Denote by T̃ : X/Y → X/Y the operator induced by T . If
x = x1 ⊕ x2, x1 ∈ M , x2 ∈ N , satisfies T x ∈ Y then T x1 ∈ (T |M)∞(M), so that
x1 ∈ (T |M)∞(M) and x ∈ Y . Hence ker T̃ = {0}. We show now that the range
R(T̃ ) of T̃ is closed. Suppose that in the topology ofX|Y we have T zk+M → z+M
as k → ∞, with z, zk ∈ X. Then z ∈ T (X)+ Y = T (X)+Y , since Y ⊆ T (X)+N .
Consequently, x + Y ∈ R(T̃ ), hence R(T̃ ) is closed and T̃ is bounded below. �

1.6 Operators with a Topological Uniform Descent

We start this section with some purely algebraic lemmas, which will be used in the
sequel. For abbreviation we use the symbol X1 ∼= X2 to denote that the two linear
spaces X1 and X2 are isomorphic.

Lemma 1.68 Let U , V and W be linear subspaces of a vector space X and E
a linear subspace of a vector space Y . For every linear operator T : X → Y

we have:

(a) If U ⊆ W then [U + V ] ∩W = U + (V ∩W).
(b) U/(U ∩ V ) ∼= (U + V )/V .
(c) T −1(T (U)) = ker T + U .
(d) T (U ∩ T −1(E) = T (U) ∩ E.
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Proof The assertion (a) is the so-called modular law, see [209]. To show (b), let [x]
denote a coset in the quotient (U + V )/V . Define for every u ∈ U Ju := [u]. Then
J is a linear mapping from U into (U + V )/V . If [x] is an element of (U + V )/V ,
then x = u+ v with u ∈ U and v ∈ V , hence [x] = [u]. Therefore, J is onto. Since
the kernel of J is U ∩ V , (b) is proved. The equalities (c) and (d) follow from easy
calculations. �

If two quotient spaces are linearly isomorphic under an isomorphism induced by
the identity, as in (b), we say that these quotient spaces are naturally isomorphic. In
the following lemma we establish some other isomorphisms, which will be useful
in the sequel.

Lemma 1.69 Let T be a linear operator in the linear space X. Then we have:

(i) For every k = 0, 1, . . . and n = 0, 1, . . . we have

T n(X)

T n+k(X)
∼= X

T k(X)+ ker T n
.

(ii) For n = 0, 1, . . . we have

ker T n+1

[ker T n + T (X)] ∩ ker T n+1
∼= ker T ∩ T n(X)

ker T ∩ T n+1(X)
.

Proof

(i) Let [y] denote any coset in the quotient T
n(X)

T n+k , and for every x ∈ X define

J : X → T n(X)

T n+k by Jx := [T nx]. If Jx = 0, then T nx = T n+kz for some

z ∈ X, and hence x = T kz ∈ ker T n. This shows the inclusion

ker J ⊆ T k(X)+ ker T n.

Conversely, if x ∈ T k(X)+ ker T n, then T nx ∈ T n+k(X), and hence Jx = 0.
This shows the equality ker J = T k(X)+ ker T n, from which we obtain

T n(X)

T n+k(X)
∼= X

ker J
.

(ii) Let [y] denote any coset in the quotient ker T∩T n(X)
ker T∩T n+1 and define the map

J : ker T n+1 → ker T ∩ T n(X)
ker T ∩ T n+1(X)

by

Jx := [T nx] for each x ∈ ker T n+1.
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In order to prove our isomorphism it suffices to show that J is onto, and that

ker J = [ker T n + T (X)] ∩ ker T n+1.

Evidently, if

[y] ∈ ker T ∩ T n(X)
ker T ∩ T n+1(X)

,

then y = T nx ∈ ker T for some x ∈ X. Clearly, x ∈ ker T n+1 and Jx =
[T nx] = [y], so J is onto. Take x ∈ ker J . Clearly, T nx ∈ ker T ∩ T n+1(X),
and T nx = T n+1z for some z ∈ X. But then, x − T z ∈ ker T n, so x ∈
ker T n + T (X). This shows the inclusion

ker J ⊆ [ker T n + T (X)] ∩ ker T n+1.

We show the opposite inclusion. Let x ∈ [ker T n + T (X)] ∩ ker T n+1. Then
x = u+ T z for some u ∈ ker T n and z ∈ X, and hence

T nx = T nu+ T n+1z = T n+1z,

from which we conclude that Jx = 0. Therefore

ker J = [ker T n + T (X)] ∩ ker T n+1,

and this completes the proof. �
Since for every n we have ker T n ⊆ ker T n+1 we can consider, for every n, the

mapping

�n : ker T n+2/ ker T n+1 → ker T n+1/ ker T n

induced by T and defined as

�n(z+ ker T n+1) := T z+ ker T n z ∈ ker T n+2.

Analogously, since T n+1(X) ⊆ T n(X), we can consider, for every n, the sequence
of mappings

n : T n(X)/T n+1(X)→ T n+1(X)/T n+2(X)

defined as

n(z+ T n+1(X)) := T z+ T n+2(X), z ∈ T n(X).

Evidently, every map�n is onto, while n is injective.
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For every n let us denote by kn(T ) the dimension of the kernel of the map �n.
In the following theorem we give useful information on the kernel of �n, and the
cokernel of n.

Theorem 1.70 Let T be a linear operator on a vector spaceX, and n a nonnegative
integer.

(i) the kernel of n is naturally isomorphic to the quotient

ker T ∩ T n(X)
ker T ∩ T n+1(X)

.

(ii) The cokernel of �n is naturally isomorphic to the quotient

ker T n+1 + T (X)
ker T n + T (X) .

(iii) kn(T ) = dim ker T∩T n(X)
ker T ∩T n+1(X)

.
(iii) kn(T ) is equal to the codimension of the image of the linear mappingn. More

precisely,

kn(T ) = dim
ker T n+1 + T (X)
ker T n + T (X) .

Proof Using Lemma 1.68 we have

ker �n = [T n+1(X)+ ker T ] ∩ T n(X)
T n+1(X)

= T n+1(X)+ [ker T ∩ T n(X)]
T n+1(X)

,

which is naturally isomorphic to ker T∩T n(X)
ker T∩T n+1(X)

, so part (i) is proved. The proof of
part (ii) is similar, so it is omitted.

(iii) kn(T ) = dim ker �n, by definition, so the equality follows from part (i).
(iv) The cokernel U of �n is the quotient

ker T n+1

[ker T n+1 ∩ T (X)] + ker T n
.

Another application of Lemma 1.68 shows that T n induces an isomorphism from
the cokernel U of n onto the quotient

ker T ∩ T n(X)
ker T ∩ T n+1(X)

,



1.6 Operators with a Topological Uniform Descent 51

and the latter space is linearly isomorphic to ker n. Therefore, by part (ii), we have

kn(T ) = dim ker �n = dim U = dim
ker T n+1 + T (X)
ker T n + T (X) .

�
For every linear operator T on a vector space X define

cn(T ) := dim
T n(X)

T n+1(X)

and

c′n(T ) := dim
ker T n+1

ker T n
.

By Theorem 1.70, we have

c0(T ) ≥ c1(T ) ≥ · · ·
and, analogously,

c′0(T ) ≥ c′1(T ) ≥ · · · .
Moreover, by Theorem 1.70, we also have

cn(T ) <∞ ⇒ kn(T ) = cn(T )− cn+1(T )

and

c′n(T ) <∞ ⇒ kn(T ) = c′n(T )− c′n+1(T ).

Note that it is possible that kn(T ) <∞, while both cn(T ) and c′n(T ) are infinite.

Lemma 1.71 Let T be a linear operator on a vector space X. Then cn(T ) =
codim [T (X)+ ker T n].
Proof T n(X)

T n+1(X)
is isomorphic to X

T (X)+ker T n , by part (i) of Lemma 1.69. �

Definition 1.72 Let T be a linear operator on a vector space X and let d be a
nonnegative integer. T is said to have uniform descent for n ≥ d if kn(T ) = 0 for
all n ≥ d . We say that T has almost uniform descent if k(T ) :=∑∞

n=0 kn(T ) <∞.

Note that the condition kn(T ) = 0 means that

ker T = ker T ∩ (X) = ker T ∩ T 2(X) = · · · = ker T ∩ T∞(X),

so that kn(T ) = 0 for all n ∈ N if and only if ker T ⊆ T∞(X).
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If M and N are (not necessarily closed) subspaces of a Banach space X, then
we write M ⊆e N (M is said to be essentially contained in N) if there exists a
finite-dimensional subspace F ofX such thatM ⊆ N +F . Clearly,M ⊆e N if and
only if the quotient M/M ∩ N is finite-dimensional. If M ⊆e N and N ⊆e M we
writeM =e N . Evidently, k(T ) <∞ means that there exists a d ∈ N such that

ker T =e ker T ∩ T (X) =e · · · =e ker T ∩ T d(X) = ker T ∩ T∞(X).

Thus, k(T ) < ∞ if and only if ker T ⊆e T∞(X), while the condition kn(T ) < ∞
for all n ∈ N is equivalent to saying that ker T m ⊆e T n(X) for all m,n ∈ N.

Corollary 1.73 Suppose that T is a linear operator on a vector space X.

(i) If T has finite nullity α(T ), or finite defect β(T ), then T has uniform descent
for n ≥ 1.

(ii) If T has finite descent p then T has uniform descent for n ≥ p.
(iii) If T has finite descent q then T has uniform descent for n ≥ q .
Proof

(i) Suppose that α(T ) <∞. Since α(T n) <∞ for every n ≥ 0, by Lemma 1.21,
the quotient spaces ker T n+2/ ker T n+1 are all finite-dimensional, so the maps
�n are isomorphisms for all n ≥ 0. Analogously, if β(T ) < ∞ then β(T n) <
∞ and hence the maps n are isomorphisms for all n ≥ 0.

(ii) If n ≥ p we have ker T n = ker T n+1, so ker T n+1/ kerT n = {0}.
(iii) If n ≥ q we have T n(X) = T n+1(X), so T n(X)/T n+1(X) = {0}. �

The operators which have topological uniform descent may be characterized in
several ways:

Theorem 1.74 If T is a linear operator on a vector space X and d is a fixed
nonnegative integer, then the following statements are equivalent:

(i) T has uniform descent for each n ≥ d;
(ii) The sequence of subspaces {ker T ∩ T n(X)} is constant for n ≥ d;

(iii) ker T ∩ T d(X) = ker T ∩ T∞(X);
(iv) The maps induced by T from ker T n+2/ ker T n+1 to ker T n+1/ ker T n are

isomorphisms for n ≥ d;
(v) The sequence of subspaces {ker T n + T (X)} is constant for n ≥ d;

(vi) ker T d + T (X) = N∞(T )+ T (X).
Proof The equivalence of (i), (ii), (iv) and (v) follows from Theorem 1.70 and,
clearly, (iii) implies (ii) and (vi) implies (v). If (ii) holds then T d(X) ∩ ker T ⊆
T n(X) for all n ≥ d , so that T d(X)∩ker T ⊆ T∞(X) from which the equality (iii)
easily follows. The proof of the implication (iv) ⇒ (v) is similar. �
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Let T ∈ L(X), X a Banach space. The operator range topology on T (X) is the
topology induced by the norm ‖ · ‖T defined by:

‖y‖T := inf
x∈X{‖x‖ : y = T x}.

For a detailed discussion of operator ranges and their topology we refer the reader
to [147] and [159].

To study the topological properties of the maps induced by T n, we will
always assume that in T n(X) is given the unique operator range topology under
which T n(X) becomes a Banach space continuously imbedded in X. Then all
the restrictions of bounded linear operators to maps between operator ranges are
continuous, by the closed graph theorem, see Grabiner [159, pp. 1433–1444] or
Filmore and Williams [147, pp. 255–257].

We shall need in the sequel the following two lemmas.

Lemma 1.75 Suppose that T ∈ L(X, Y ) has closed range and E ⊆ X, F ⊆ Y are
linear subspaces such that ker T ⊆ E and F ⊆ T (X). Then
(i) T (E) = T (E).

(ii) T −1(F ) = T −1(F ).

Proof The statements (i) and (ii) immediately follow once we observe that T
induces a linear homomorphism from X/ ker T onto T (X), and that a subspace Z
containing ker T is closed if and only if Z/ ker T is a closed subspace ofX/ ker T .

�
In the following lemma we give some equivalences in the operator range

topology.

Lemma 1.76 Let T ∈ L(X) and n be a nonnegative integer. If the map T̂ :
T n(X)/T n+1 → T n+1(X)/T n+2 induced by T has a finite-dimensional kernel,
then the following statements are equivalent:

(i) T n+1(X) is closed in the operator range topology on T n(X);
(ii) T n+2(X) is closed in the operator range topology on T n+1(X);

(iii) T n+2(X) is closed in the operator range topology on T n(X).

Proof Since T n+1(X) is continuously embedded in T n(X) it suffices to prove
the equivalence (i) ⇔ (ii). Denote by Tn : T n(X) → T n+1(X) the restriction
T |T n(X). Obviously, Tn is onto, and by Lemma 1.75, T n+2(X) is closed in the
topology of T n+1(X) if and only if T −1

n (T n+2(X)) is closed in the topology of
T n(X). By assumption T n+1(X) is an operator range which has finite codimension
in T −1

n (T n+2(X)). By using the fact that operator ranges of finite codimension in a
Banach space are closed, it then follows that T n+1(X) is closed in the topology of
T n(X) if and only if T −1

n (T n+2(X)) is closed in this topology. �
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Definition 1.77 An operator T ∈ L(X), X a Banach space, is said to have
topological uniform descent for n ≥ d if T has uniform descent for n ≥ d and
T n(X) is closed in the operator range topology of T d(X) for each n ≥ d .

Theorem 1.78 If T ∈ L(X), X a Banach space, has uniform descent for n ≥ d ,
then the following assertions are equivalent:

(i) T has topological uniform descent for n ≥ d;
(ii) There is an integer n ≥ d and k ∈ N such that T n+k(X) is closed in the

operator range topology on T n(X);
(iii) For each n ≥ d and k ∈ N, T n+k(X) is closed in the operator range topology

on T n(X);
(iv) There is an n ≥ d and k ∈ N such that ker T n + T k(X) is closed in X;
(v) For all n ≥ d and for all k ∈ N, ker T n + T k(X) is closed in X. This is also

true for k = ∞.

Proof The equivalence of (i), (ii), and (iii) is immediate from Theorem 1.74. Now,
for each fixed n and k, T n induces a bounded operator from X to T n(X), with
respect to the operator range topology. Hence, from Lemma 1.75, T n+k(X) is closed
in the range operator topology on T n(X) if and only if T −n[T n+k(X)] = kerT n +
T k(X) is a closed subspace in the topology of X. This completes the proof. �

The following theorem is the major result on the structure of operators with

topological uniform descent. In the sequel if E is a subspace of T d(X), then E
d

denotes the closure of E in the operator range topology.

Theorem 1.79 Let T ∈ L(X) be with topological uniform descent for n ≥ d . Then
we have:

(i) The restriction of T to T∞(X) is onto.
(ii) The map induced by T on T d(X)/T∞(X) is bounded below.

(iii) The restriction of T to T d(X) ∩ N∞(T ) is onto.
(iv) The map T̂ : X/N∞(T ) → X/N∞(T ) defined by T̂ [x] = [T x] is bounded

below.

Proof Let Y := T d(X) and denote by S the restriction T |Y . Then S ∈ L(Y ) has
topological uniform descent for n ≥ 0 and has closed range. From Theorem 1.74,
part (ii), we have that ker S ⊆ Sn(Y ) for all n, so that

S−1(S∞(Y )) =
∞⋂
n=1

S−1(Sn+1(Y )) =
∞⋂
n=1

(Sn(Y )+ ker S) = S∞(Y ).

A simple application of Lemma 1.68, part (d), yields S(S∞(Y )) = S∞(Y ). Now,
S∞(Y ) = T∞(X), so the restriction of T to T∞(X) is onto. Because

S−1(S∞(Y )) = T d(X) ∩ T −1(T∞(X)),
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the map induced by T on T d(X)/T∞(X) is injective, and since S has closed range,
this induced map also has closed range. This proves (i) and (ii).

Clearly, for every operator T we have T −1(N∞(T )) = N∞(T ). Moreover, S
has uniform descent for n ≥ 0 and since, by part (v) of Theorem 1.74, we have
N∞(S) ⊆ S(Y ), then S(N∞(S)) = N∞(S). A direct application of Lemma 1.75

gives S(N∞(S)d) = N∞(S)d and S−1(N∞(S)d) = N∞(S)d .
It is easily seen that S∞(Y ) = T d(X) ∩ N∞(T ), hence T −d (N∞(S)) =

N∞(T ). Applying Lemma 1.75, part (b), to the map induced by T d from X onto

T d(X) we then obtain N∞(T ) = T −d(N∞(S)d), so we have

T −1(N∞(T )) = T −1T −d(N∞(S)d) = T −dT −1(N∞(S)d)

= T −d (N∞(S)d) = N∞(T ).

Hence the map T̂ induced by T on X/N∞(T ) is one-to-one. From part (vi) and
part (v) of Theorem 1.74 it then follows that T (X) + N∞(T ) is closed, and hence
T (X)+ N∞(T ) = T (X)+ N∞(T ) is closed, so (iv) is proved.

From N∞(S)d = T d(X) ∩ N∞(T )
d

we also have

T (T d(X) ∩ N∞(T )
d
) = T d(X) ∩ N∞(T )

d
,

so, in order to complete the proof of part (iii), it suffices to prove the equality

T d(X) ∩ N∞(T ) = T d(X) ∩ N∞(T )
d
. (1.21)

Since T −d(N∞(T )) = N∞(T ), the left-hand side of equality (1.21) is
T d(N∞(T )). An application of part (i) of Lemma 1.75 to the map induced by
T d from X onto T d(X) then shows that the right-hand side of equality (1.21)
coincides with T d(N∞(T )), hence equality (1.21) is proved and this completes the
proof of the theorem. �

The following lemma concerns some identities involving ranges and kernels of
operators having topological uniform descent that will be needed in the sequel.

Lemma 1.80 Let T ∈ L(X) be with topological uniform descent for n ≥ d . Then
we have:

(i) T∞(X)+ ker T d = T∞(X)+ N∞(T ) = T∞(X)+ N∞(T ).
(ii) T d(X) ∩ N∞(T ) = T∞(X) ∩ N∞(T ).

(iii) T d(X) ∩ N∞(T ) = T∞(X) ∩ N∞(T ).
(iv) [T∞(X) ∩ N∞(T )] = [T∞(X) ∩ N∞(T )].
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Proof

(i) From Theorem 1.74, part (iii), we know that, for each n ≥ d we have T n(X)∩
ker T ⊆ T∞(X). Applying T −n to both sides of the latter inclusion, and by
using part (c) of Lemma 1.68, we then obtain ker T n+1 ⊆ T∞(X) + ker T n,
or equivalently,

T∞(X)+ ker T n+1 = T∞(X)+ ker T n.

By induction we then deduce that

T∞(X)+ ker T d = T∞(X)+ N∞(T ).

Since, T∞(X)+ ker T d is a closed subspace, by part (v) of Theorem 1.78 we
then conclude that

T∞(X)+ N∞(T ) = T∞(X)+ N∞(T ).

(ii) The proof follows similarly to part (i), by applying T n to both sides of the set
inclusion N∞(T ) ⊆ T (X)+ ker T n for n ≥ d .

(iii) Using part (ii), equality (1.21), and the fact that T∞(X) is closed in the
operator range topology on T d(X), we obtain

T∞(X) ∩ N∞(T ) ⊆ T d(X) ∩ N∞(T ) = (T∞(X) ∩ N∞(T )d

⊆ T∞(X) ∩ N∞(T ),

from which the equality of part (iii) follows directly.
(iv) This follows by taking the closure in the topology of X of the equality (iii)

proved above. �
The quantity k(T ) defined in Definition 1.72 may be characterized in several

ways as follows:

Theorem 1.81 If T ∈ L(X) then k(T ) coincides with each of the following
quantities:

(a) sup{dim [ker T/(ker T ∩ T n(X))]};
(b) dim [ker T/ ker T ∩ T∞(X)];
(c) sup{dim [T (X)+ ker T n)/T (X)]};
(d) dim [(T (X)+ N∞(T ))/T (X)].
Proof From part (i) of Theorem 1.70 it follows that the dimension of the quotient
ker T/(ker T ∩T n(X)) for every n ∈ N is equal to k0(T )+k1(T ) · · ·+kn−1(T ), so,
from the definition of k(T ), we conclude that k(T ) coincides with the quantity (a).
A similar argument, by using part (ii) and (iii) of Theorem 1.70, shows that k(T )
coincides with the quantity in (c).
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Evidently, the quantities in (a) and (b) coincide when k(T ) = ∞, since ker T ∩
T∞(X) ⊆ ker T ∩ T n(X). Suppose now that k(T ) < ∞. From part (a) it then
follows that for some integer d we have

ker T ∩ T d(X) = ker T ∩ T n(X) ⊆ T∞(X) f or n ≥ d.

From this it then follows that the quantities in (a) and (b) also coincide when k(T ) <
∞. The equality of the quantities in (c) and (d) may be proved in a similar way. �

The following characterization of operators having almost uniform descent, and
closed ranges T k(X) for all k ∈ N, follows immediately from Lemma 1.76.

Theorem 1.82 Suppose that for T ∈ L(X) we have k(T ) <∞. Then the following
statements are equivalent:

(i) T k(X) is closed for some k ∈ N;
(ii) T k(X) is closed for each k ∈ N;

(iii) T has topological uniform descent for n ≥ k(T ).
Essentially semi-regular operators have topological uniform descent. More

precisely, we have:

Corollary 1.83 Let T ∈ L(X). We have:
(i) T is a semi-regular operator if and only if T has topological uniform descent

for n ≥ 0.
(ii) If T is a essentially semi-regular operator then T has topological uniform

descent for n ≥ d := k(T ). Furthermore, every Kato-type operator of order
d has topological uniform descent for n ≥ d .

Proof

(i) By Theorem 1.44, if T is semi-regular then T k is semi-regular for every k ∈ N,
thus T k(X) is closed. Since ker T ⊆ T k(X) for every k ∈ N it then follows
that ker T + T k(X) = T k(X) is closed, so T ∈ L(X) has topological uniform
descent for n ≥ 0, by part (iv) of Theorem 1.78.

(ii) We know that T is essentially semi-regular if T (X) is closed and there
exists a finite-dimensional subspace F for which ker T ⊆ T∞(X) + F . By
Theorem 1.81 it then follows that the essentially semi-regular are precisely
those operators T for which T (X) is closed and k(T ) < ∞. Finally, if T
is essentially semi-regular then T n is essentially semi-regular for each n, so
T n(X) is closed for each n, and hence, by Theorem 1.82, T has topological
uniform descent for n ≥ k(T ). The second assertion follows from part (iii) of
Theorems 1.64 an 1.78. �

The next theorem describes the quantity k(T ) in terms of the nullity and the
defect of maps induced by T .
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Theorem 1.84 Let T ∈ L(X). Then we have
(i) k(T ) is the dimension of the kernel of the map induced by T on X/T∞(X).

(ii) k(T ) is the dimension of the range of the restriction T |N∞(T ).
(iii) If T has closed range then k(T ) is the codimension of the range of the

restriction T |N∞(T ).

Proof We only prove statement (iii), omitting the proofs of part (i) and part (ii),
which are similar and simpler.

Suppose first that k(T ) < ∞. From part (iv) of Theorem 1.79 we have
T −1(N∞(T )) = N∞(T ). Using Lemma 1.68 and part (i) of Lemma 1.80, we
see that the cokernel of the restriction T |N∞(T ) is

N∞(T )
T (X) ∩ N∞(T )

∼= T (X)+ N∞(T )
T (X)

= T (X)+ N∞(T )
T (X)

,

and the dimension of these quotients is exactly k(T ), by Theorem 1.81.
To conclude the proof, consider the case where k(T ) = ∞. Statement (iii)

then follows similarly from part (d) of Theorem 1.81, together with the fact that
T (N∞(T )) ⊆ T (X) ∩ N∞(T ), so the proof is complete. �

In the remaining part of this section we give some perturbation results of
operators T having topological uniform descent. We consider bounded operators
S which commute with T for which T − S is “sufficiently small” in the sense of the
following definition.

Definition 1.85 Suppose that T ∈ L(X), X a Banach space, has topological
uniform ascent for n ≥ d , and let S ∈ L(X) be an operator which commutes with T .
We say that S − T is sufficiently small if the norm of the restriction (S − T )|T d(X)
is less than the reduced minimum modulus γ (T |T d(X)).

Note that if T d(X) is closed in X and is given the restriction norm, it is easily
seen that ‖S − T ‖ is no greater than the norm of its restriction to T d(X), so the
definition above is essentially a restriction of ‖S − T ‖.

The next theorem gives some information on sufficiently small perturbations
when T has closed range and has topological uniform descent for n ≥ 0. This
in particular applies to semi-Fredholm operators.

Theorem 1.86 Suppose that T ∈ L(X) has closed range and has topological
uniform descent for n ≥ 0. Suppose that ST = T S and S − T is sufficiently small.
Then

(i) S(X) is closed and S has topological uniform descent for n ≥ 0.
(ii) dim (Sn(X)/Sn+1(X)) = dim (X/T (X)) for all n ≥ 0.

(iii) dim (ker Sn+1/ ker Sn) = dim ker T for all n ≥ 0.
(iv) S∞(X) = T∞(X).
(v) N∞(S) = N∞(T ).
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Proof Let Y be any of the four Banach spaces T∞(X), X/T∞(X), N∞(T ) and
X/N∞(T ). The proof is based on considering the maps induced by T and S on
these spaces. Let T̂ and Ŝ be the maps induced by T and S on Y . By Theorem 1.79
we know that T̂ is either bounded below or onto, and obviously ‖Ŝ− T̂ ‖ ≤ ‖S−T ‖.
Since both T∞(X) and N∞(T ) contain ker T and are contained in T (X), by using
part (iii) and part (iv) of Theorem 1.74, we easily obtain γ (T̂ ) ≥ γ (T ). Hence, if
S − T is sufficiently small, then ‖Ŝ − T̂ ‖ ≤ γ (T̂ ). Suppose now that T̂ is bounded
below. A trivial calculation yields that Ŝ is also bounded below and

γ (Ŝ) ≥ γ (T̂ )− ‖Ŝ − T̂ ‖. (1.22)

Analogously, by duality, if T̂ is onto then Ŝ is onto and inequality (1.22) also holds.
To show assertion (i), let us consider the cases Y = T∞(X) and Y = X/N∞(T ).

Then S(T∞(X)) = T∞(X) and S−1(N∞(T )) ⊆ N∞(T ), thus, by using
Lemma 1.80, part (i), we obtain

ker S ⊆ N∞(S) ⊆ N∞(T ) ⊆ T∞(X) ⊆ S∞(X) ⊆ S(X), (1.23)

which, by Theorem 1.74, implies that S has uniform descent for n ≥ 0.
(ii) Consider the case Y = X/T∞(X). Then T̂ and Ŝ are both bounded below.

Moreover, Y/T̂ (Y ) and Y/Ŝ(Y ) both have the same dimension (a proof of this may
be found in [156, Corollary V.1.3, p. 111]). From (1.23) it then follows that S(X) is
closed and that the quotients X/S(X) and X/T (X) have the same dimension. The
assertion (ii) then follows from the fact that S has uniform descent for n ≥ 0, by
part (i).

(iv) To prove the equality S∞(X) = T∞(X), we use the maps induced on
X/T∞(X). For each 0 ≤ λ ≤ 1, define Sλ := T +λ(S −T ). We need only to show
that the hyper-range S∞

λ (X) is locally constant. Since each Sλ has closed range and

uniform descent for n ≥ 0, it will be enough to prove that if ‖S − T ‖ ≤ γ (T )
2 , then

S∞(X) = T∞(X). By (1.23) we need only to show that S∞(X) ⊆ T∞(X). As we
observed above we have ‖Ŝ− T̂ ‖ ≤ ‖S−T ‖ and γ (T̂ ) ≥ γ (T ), so from (1.22) we
have ‖T̂ − Ŝ‖ ≤ γ (Ŝ). Therefore, by using the inclusions (1.23), with S replaced
by T̂ and T replaced by Ŝ, we obtain that the hyper-range of Ŝ is contained in the
hyper-range of T̂ and this is equal to 0. Hence S∞(X) ⊆ T∞(X), thus equality (iv)
is proved.

The proofs of parts (iii) and (v) are omitted, since they follow by using an
argument similar to that given above, where the maps induced on X/T∞(X) are
replaced by the maps induced on N∞(T ). �

Let us consider the case when T has topological uniform descent n ≥ d �= 0. The
previous theorem describes the restriction of the perturbed operator S to T d(X). In
the sequel we need the following technical result, which provides a useful tool for
studying S in terms of its restrictions to T d(X). We omit the proof, which is very
similar to the proof of Theorem 1.70.
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Lemma 1.87 Suppose that T and S are commuting linear operators on a vector
space X. If n, d ∈ N are nonnegative integers, we have:

(i) The mapping � induced by T d from the quotient Sn(X)/Sn+1(X) to the
quotient (SnT d)(X)/(Sn+1T d)(X) is onto. The kernel of � is naturally
isomorphic to the space (Sn(X) ∩ ker T d)/(Sn+1(X) ∩ ker T d).

(ii) The mapping  induced by the identity on X from the quotient (ker Sn+1 ∩
T d(X))/(ker Sn ∩ T d(X)) to ker Sn+1/ kerSn is injective. Furthermore, the
cokernel of the mapping is naturally isomorphic to the quotient (kerSn+1 +
T d(X))/(ker Sn + T d(X)).

(iii) T d induces an isomorphism from ker T d+n+1/ kerT d+n onto the quotient
(ker T n+1 ∩ T d(X))/(ker T n ∩ T d(X)).

Now we consider arbitrary small commuting perturbations of operators having
topological uniform descent.

Theorem 1.88 Suppose that T ∈ L(X) has topological uniform descent form ≥ d ,
and that S ∈ L(X) commutes with T . If S − T is sufficiently small, then:

(i) dim (T m(X)/T m+1(X)) ≤ dim (Sn(X)/T n+1(X)) for all n ≥ 0 and m ≥ d .
(ii) dim (ker T m+1/ ker T m)) ≤ dim(ker Sn+1/ ker Sn) for all n ≥ 0 and m ≥ d

(iii) T∞(X) ⊆ S∞(X) ⊆ T∞(X)+ N∞(T ).
(iv) T∞(X) ∩ N∞(T ) ⊆ N∞(S) ⊆ N∞(T ).

Proof Since T has topological uniform descent for m ≥ d , the dimension of
T m(X)/T m+1(X), as well as the dimension of ker T m+1/ ker T m, is constant
for m ≥ d . Therefore, parts (i) and (ii) follow directly from Theorem 1.86 and
Lemma 1.87.

For the proof of (iii), let us denote by Ŝ the restriction of S to Y := T d(X). By
Theorem 1.86, part (iv), we have Ŝ∞(Y ) = T∞(X), and since Ŝ∞(Y ) ⊆ S∞(X)
we then have T∞(X) ⊆ S∞(X). Now, applying T −d to both sides of the identity
T∞(X) = ⋂∞

n=1 T
dSn(X), and using part (c) of Lemma 1.68 and part (a) of

Theorem 1.79, we then obtain

T∞(X)+ ker T d =
∞⋂
n=1

[Sn(X)+ ker T d ] ⊇ S∞(X).

The assertion (iii) then follows directly from part (i) of Lemma 1.80.
To prove (iv), observe that from part (v) of Theorem 1.86 we obtain

T d(X) ∩ N∞(T )
d = T d(X) ∩ N∞(Ŝ)

d ⊆ S∞(X).

The first inclusion of part (iv) now follows from the equality (1.21) and part (iii) of
Lemma 1.80. Finally, as observed in the proof of Theorem 1.86, the map induced

by S on T d(X)/T d(X) ∩ N∞(T )
d

is one-to-one. Hence, as in the proof of part (iv)
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of Theorem 1.79, we can conclude that S−1(N∞(T )) ⊆ N∞(T ). This obviously
implies N∞(S) ⊆ N∞(T ), so the proof is complete. �

We now consider the important case, when S − T is invertible. This case, of
course, subsumes the case S = λI − T , when λ �= 0.

Theorem 1.89 Suppose that T ∈ L(X) has topological uniform descent for n ≥ d ,
and that S ∈ L(X) commutes with T . If S − T is sufficiently small and is invertible,
then:

(i) S has closed range and topological uniform descent for n ≥ 0.
(ii) dim (Sn(X)/Sn+1(X)) = dim (T d(X)/T d+1(X)), for all n ≥ 0.

(iii) dim (ker T n+1/ ker T n) = dim (ker T d+1/ ker T d) for all n ≥ 0.
(iv) S∞(X) = T∞(X)+ N∞(T ).
(v) N∞(S) = [T∞(X) ∩ N∞(T )].
Proof We first show the inclusions

N∞(S) ⊆ T∞(X) and N∞(T ) ⊆ S∞(X).

Let us consider the invertible operator U := S − T . Since S and T commute, it
follows from the binomial theorem that for each fixed k, there is a bounded operator
W , depending on k, for which

U−kSk = I − TW.

Hence, if x ∈ ker Sk then x = T nWnx ∈ T n(X) for all n. Since k is arbitrary, we
then have N∞(S) ⊆ T∞(X), and by interchanging the roles of S and T we also
deduce the second inclusion N∞(T ) ⊆ S∞(X).

(i) By Theorem 1.86, part (i), we know that ST d(X) is closed in the topology of
T d(X), so that

T −d(ST d(X)) = S(X)+ ker T d = S(X)

is closed in X. The inclusion N∞(S) ⊆ T∞(X), together with part (iii) of
Theorem 1.88, yields N∞(S) ⊆ S∞(X), which implies, by Theorem 1.74, that
S has topological uniform descent for n ≥ 0.

The equalities in (ii) and (iii) easily follow from Theorem 1.86, part (ii) and part
(iii), and Theorem 1.88, part (i) and part (ii).

(iv) The equality easily follows from the inclusion N∞(T ) ⊆ S∞(X), together
with Theorem 1.88, part (iv).

(v) By Theorem 1.88, part (iv), we obtain T∞(X) ∩ N∞(T ) ⊆ N∞(S)
and N∞(S) ⊆ T∞(X) ∩ N∞(T ). By taking closures, and applying part (v) of
Lemma 1.80, we then conclude the proof of (iv). �
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Since an operator which has topological uniform descent n ≥ 0 is semi-regular
we easily have:

Corollary 1.90 Suppose that T ∈ L(X) has topological uniform descent for n ≥ d .
If S ∈ L(X) is an invertible operator which commutes with T and is sufficiently
small, then T + S is semi-regular. Moreover,

(T + S)∞(X) = T∞(X)+ N∞(T ) and N∞(T + S) = T∞(X) ∩ N∞(T ).

Theorem 1.89 has some important consequences, if we assume further properties
on ker T ∩ T d(X) and T (X)+ ker T d .

Corollary 1.91 Suppose that T ∈ L(X) has topological uniform descent for n ≥ d ,
and that S ∈ L(X) commutes with T . If S − T is sufficiently small and is invertible,
then the following assertion holds:

(i) If ker T ∩ T d(X) has finite dimension, then S is upper semi-Fredholm and
α(S) = dim (ker T ∩ T d(X)).

(ii) If T (X) + ker T d has finite codimension, then S is lower semi-Fredholm and
β(S) = codim (T (X)+ ker T d).

Proof We know that S(X) is closed, by Theorem 1.89. Furthermore,

dim
ker T n+1

ker T n
= dim (ker T ∩ T d(X)),

and

dim
T n(X)

T n+1(X)
= codim (T (X)+ ker T d).

Again, by Theorem 1.89 we have that α(S) = dim (ker T ∩ T d(X)) and β(S) =
codim (T (X)+ ker T d), from which we deduce that (i) and (ii) hold. �

The next corollary is an immediate consequence of part (i) and part (ii) of
Theorem 1.89 applied to some special classes of operators having topological
uniform descent.

Corollary 1.92 Suppose that T ∈ L(X) has topological uniform descent for n ≥ d ,
and that S ∈ L(X) commutes with T . If S − T is sufficiently small and is invertible,
then:

(i) S has infinite ascent or descent if and only if T does.
(ii) S cannot have finite ascent p(S) > 0, or finite descent q(S) > 0.

(iii) S is onto if and only if T has finite descent.
(iv) S is injective (or also bounded below) if and only if T has finite descent.
(v) S is invertible if and only if p(T ) = q(T ) <∞.
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The following corollary is just a special case of Corollary 1.92, part (v).

Corollary 1.93 Suppose that λ belongs to the boundary of the spectrum ∂σ(T ),
and λI − T has uniform descent. Then p(λI − T ) = q(λI − T ) < ∞, so λ is a
pole of the resolvent.

A more precise result than that of Corollary 1.93 will be obtained in Chap. 2,
by using the localized SVEP. We conclude this section by proving that the dual of
an operator having topological uniform descent may have not topological uniform
descent.

Example 1.94 We first give an example for which T 2(X) = T (X) and T (X) is
not closed. Let X be a Hilbert space with an orthonormal basis (ei,j ). Let T be
defined by:

T ei,j :=
⎧⎨
⎩

0 if j = 1,
1
i
ei,1 if j = 2,
ei,j−1 otherwise.

Let M1 denote the subspace generated by the set {ei,j : j ≥ 2, i ≥ 1}, and M2
the subspace generated by the set {ei,2 : i ≥ 1}. It is easily seen that T 2(X) =
T (X) = M1 + T (M2). Further, if M3 denotes the subspace generated by the set
{ei,1 : i ≥ 1}, the intersection T (X) ∩M3 is not closed, from which we deduce that
T (X) is not closed. Therefore, q(T ) ≤ 1 so that T has topological uniform descent.
We show that T ∗ does not have uniform topological descent. In fact, suppose that
T ∗ has topological uniform descent n ≥ d . Then T ∗(X∗) + ker T ∗d is closed, by
part (v) of Theorem 1.78. Since T 2(X) = T (X) we then have ker T ∗ = ker T ∗2,
so p(T ∗) ≤ 1. By Theorem 1.19 we also have T ∗(X∗) ∩ ker T ∗d = {0} and this,
by Theorem 1.30, implies that T ∗ has closed range, or equivalently, T (X) is closed,
and this is impossible. Therefore, T ∗ does not have uniform topological descent.

1.7 Quasi-Fredholm Operators

The class of quasi-Fredholm operator was first introduced by Labrousse [208], who
considered this class in the case of Hilbert space operators. Consider the set

�(T ) := {n ∈ N : m ≥ n,m ∈ N ⇒ T n(X) ∩ ker T ⊆ T m(X) ∩ ker T }.

The degree of stable iteration is defined as dis(T ) := inf�(T ) if �(T ) �= ∅, while
dis(T ) = ∞ if �(T ) = ∅.
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Definition 1.95 T ∈ L(X) is said to be quasi-Fredholm of degree d if there exists
a d ∈ N such that:

(a) dis(T ) = d ,
(b) T n(X) is a closed subspace of X for each n ≥ d ,
(c) T (X)+ ker T d is a closed subspace of X.

Evidently, condition (a) entails that the quantity kn(T ), introduced in the previous
section, is equal to 0 for every n ≥ d , hence, from part (ii) of Theorem 1.74, we see
that every quasi-Fredholm operator has uniform descent for n ≥ d . In the sequel,
byQF(d) we denote the class of all quasi-Fredholm operators of degree d .

Theorem 1.96 If T ∈ L(X) then the following implications hold:

T ∈ �±(X) ⇒ T quasi-Fredholm ⇒ T has topological uniform descent.

In particular, if T ∈ QF(d) then T has topological uniform descent for n ≥ d .
Proof Every semi-Fredholm operator T has topological uniform descent for n ≥ 0,
by Corollary 1.83, so, by Theorem 1.74, T n(X) + ker T is constant for all n ≥ 1.
Moreover, T n is semi-Fredholm for all n ∈ N, hence all T n(X) are closed.
Condition (c) is trivially satisfied, by Theorem 1.78. This shows the first implication.
As observed before, T has uniform descent. Since condition (iv) of Theorem 1.78
is satisfied by part (c) of the definition of quasi-Fredholm operators, it then follows
that T has topological uniform descent for n ≥ d . �
Remark 1.97 The converse of the second implication in Theorem 1.96 does not hold
in general. The operator defined in Example 1.94 has topological uniform descent
but is not quasi-Fredholm since T n(X) = T (X) is not closed for all n ∈ N.

In the sequel we will need the following lemmas.

Lemma 1.98 Let T ∈ L(X) and letm ∈ N∪{0}, and n ≥ k ≥ 1. If T n(X)+ker T m

is closed then T n−k(X)+ ker T m+k is closed. In particular, if T n(X) is closed then
T (X)+ kerT n−1 is closed.

Proof We first show the equality

T n−k(X)+ ker T m+k = T −k[T n(X)+ ker T m]. (1.24)

To show this equality it suffices to prove the inclusion ⊇, since the opposite
inclusion is trivial. Let z ∈ T −k[T n(X)+ ker T m], i.e.,

T kz ∈ T n(X)+ ker T m.

Then

T kz = T nx + u for some x ∈ X,u ∈ ker T m,
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from which we obtain

u = T kz − T k(T n−kx) ∈ T k(X).

Let v ∈ X be such that u = T kv. Clearly,

T m+kv = T mT kv = T mu = 0,

from which we obtain v ∈ ker T m+k . Then we have

T k(z− T n−kx − v) = T kz + T nx − T ìkv = T kz− T nx − u = 0,

thus, z− T n−kx − v ∈ ker T k and hence

z ∈ T n−k(X)+ ker T m+k + kerT k.

Because ker T n ⊆ ker T n+k we then conclude that z ∈ T n−k(X) + ker T m+k , so
the equality (1.24) is proved. Since T n(X) + ker T m is closed by assumption, this
equality entails that T n−k(X)+ ker T m+k is closed.

The last assertion is immediate, by taking m = 0 and n = k + 1. �
Lemma 1.99 Let T ∈ L(X) and let n ∈ N ∪ {0}. If T n(X) is closed and T (X) +
ker T n is closed then T n+1(X) is closed.

Proof Let (yk) be a sequence of elements of T n+1(X) which converges to some
z ∈ X. Then there exist uk ∈ X such that yk = T n+1uk , and since T n+1(X) ⊆
T n(X), we have that yk ∈ T n(X), and hence z ∈ T n(X). Let u ∈ X be such
that z = T nu. Obviously, T n(u − T uk) → 0 as k → ∞. Consider the operator
T n : X/ ker T n → X induced by T n. Evidently, T n is bounded below, and T n(u−
T uk + ker T n) → 0 as k → ∞, so the quotient classes u − T uk + ker T n → 0
in X/ ker T n. Therefore there exists for each k an element vk ∈ ker T n such that
T uk + vk → u ∈ T (X)+ ker T n, from which we conclude z ∈ T n+1(X). �

The following result plays a crucial role in the characterization of quasi-
Fredholm operators.

Theorem 1.100 Let T ∈ L(X), d ∈ N and suppose that ki(T ) < ∞ for all i ≥ d .
Then the following statements are equivalent:

(i) there exists an n ≥ d + 1 such that T n(X) is closed;
(ii) T j (X) is closed for every j ≥ d;

(iii) T j (X)+ ker T m is closed for all m, j ∈ N with m+ j ≥ d.
Proof The implications (iii) ⇒ (ii) ⇒ (i) are clear, while the implication (ii) ⇒ (iii)
follows from Lemma 1.98. It only remains to show that (i) ⇒ (ii).
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Suppose T n(X) is closed and let us consider first the case n ≥ d + 1. Then, by
Lemma 1.98, T (X)+ ker T n−1 is closed. Since ki(T ) <∞ for all j ≥ d we have

T (X)+ ker T n−1 ⊂e T (X)+ ker T n ⊂e T (X)+ ker T n+1 ⊂e · · ·

and this gives that T (X) + ker T j is closed for every j ≥ n. By Lemma 1.99,
inductively we obtain that T j (X) is closed for every j ≥ n.

Consider the other case d ≤ j ≤ n. We show that T n−1(X) is closed. Observe
first that

T (X)+ ker T n−1 = T −(n−1)(T n(X)),

so T (X) + ker T n−1 is closed. Further, T n(X) ∩ ker T is closed and it has finite
codimension in T n−1(X) ∩ ker T , and hence is closed by Theorem 1.70. By the
Neubauer lemma (see Appendix A), we then conclude that T n−1(X) is closed. By
repeating these arguments, we conclude that T j (X) is also closed for every d ≤
j ≤ n. �

Theorem 1.100 in particular applies to operators having finite ascent p := p(T )
(in this case, by Corollary 1.73, ki(T ) = 0 for all i ≥ p) or applies to operators
having finite descent q := q(T ) <∞ (in this case, ki(T ) = 0 for all i ≥ q).

Corollary 1.101 Let T ∈ L(X), and suppose that T has finite ascent p := p(T ) <
∞. Then the following statements are equivalent:

(i) there exists an n ≥ p + 1 such that T n(X) is closed;
(ii) T j (X) is closed for every j ≥ p;

(iii) T j (X)+ ker T m is closed for all m, j ∈ N with m+ j ≥ p.
Analogous statements hold if T has finite descent q := q(T ) <∞.

Dealing with quasi-Fredholm operators, another application of Theorem 1.100
gives a characterization of these operators:

Theorem 1.102 T ∈ L(X) is quasi-Fredholm if and only if there exists a p ∈ N

such that T (X)+ ker T p = T (X)+ N∞(T ) and T p+1(X) is closed.

Proof If T ∈ QF(d), then T has uniform topological descent for n ≥ d , so, by
Theorem 1.74, the sequence (T (X) + kerT n) is constant for n ≥ d . Hence, for
n ≥ d we have

T (X)+ ker T d = T (X)+ kerT n = T (X)+ N∞(T ).

Moreover, T n(X) is closed for all n ≥ d , by definition of the class QF(d).
Conversely, suppose that there exists a p ∈ N such that T (X) + ker T p =
T (X) + N∞(T ) and T p+1(X) is closed. Then T (X) + ker T n = T (X) + ker T p

for all n ≥ p, and hence the sequence of subspaces (T (X) + ker T n) is constant
for all n ≥ p, or equivalently, by Theorem 1.74, kn(T ) = 0 for all n ≥ p. By
Theorem 1.100, then T n(X) is closed for all n ≥ p. Moreover, T (X) + kerT p is
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closed, since it coincides with the set T −p(T p+1(X)). Hence, T is quasi-Fredholm
of degree p. �

The operators QF(d) may be characterized in terms of semi-regularity as
follows:

Theorem 1.103 Suppose that T ∈ L(X) and d ∈ N. Then the following statements
are equivalent:

(i) T ∈ QF(d);
(ii) there exists an integer n ≥ 0 such that T n(X) is closed and the restriction

Tn := T |T n(X) is semi-regular.
Proof (i) ⇒ (ii) We know that T d(X) is closed. Consider the restriction Td :=
T |T d(X). Then the range of Td is T d+1(X), which is closed, and the equalities

ker Td = ker T ∩ T d(X) = ker T ∩ T m(X)

hold for all m ≥ d . The latter intersection is obviously contained in the range of
T md , so the operator Td is semi-regular.

(ii) ⇒ (i) Suppose that T n(X) is closed and that the restriction Tn := T |T n(X)
is semi-regular. Observe first that the range of T kn is T n+k(X). Since Tn is semi-
regular, T kn is semi-regular for each k = 1, 2, . . . , so T n+k(X) is closed for each
k = 1, 2, . . . . The semi-regularity of Tn gives that ker Tn = ker T ∩ T n(X) ⊆
T n+k(X), from which we obtain ker ∩T n(X) ⊆ ker T ∩ T n+k(X). On the other
hand, T n+k(X) ⊆ T n(X), so ker T ∩ T n(X) = ker T ∩ T n+k(X) for all k =
1, 2, . . . . By Theorem 1.74 it then follows that

ker T n + T (X) = ker T n+k + T (X) = N∞(T )+ T (X).

But T n+1(X) is closed, thus T is quasi-Fredholm, by Theorem 1.102. �
Evidently, by part (iii) of Theorem 1.103,

T semi-regular ⇒ T quasi-Fredholm.

The dual of a quasi-Fredholm operator is also quasi-Fredholm:

Theorem 1.104 T ∈ QF(d) if and only if T ∗ ∈ QF(d).
Proof Suppose that T ∈ QF(d). Then T n(X), and hence T ∗n(X∗), is closed for all
n ≥ d . We show first that for n ≥ d we have

ker T ∗ ∩ T ∗n(X∗) = [T (X)+ ker T n]⊥. (1.25)

To see this note that since ker T ∗ ∩ T ∗n(X∗) is closed, we have

⊥[ker T ∗ ∩ T ∗n(X∗)]⊥ = ker T ∗ ∩ T ∗n(X∗).
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It is easily seen that T (X)+ ker T n ⊆⊥ [ker T ∗ ∩ T ∗n(X∗)], so that

ker T ∗ ∩ T ∗n(X∗) =⊥ [ker T ∗ ∩ T ∗n(X∗)]⊥ ⊆ [T (X)+ ker T n]⊥.

On the other hand, from T (X) ⊆ T (X)+ ker T n and ker T n ⊆ T (X)+ ker T n we
deduce that

[T (X)+ ker T n]⊥ ⊆ T (X)⊥ + (ker T n)⊥ ⊆ ker T ∗ ∩ T ∗n(X∗),

hence the proof of equality (1.25) is complete. Now, since T has uniform descent,
the sequence {T (X) + ker T n} is constant for n ≥ d , by Theorem 1.74, and hence
the sequence {ker T ∗ ∩ T ∗n(X∗)} is also constant for n ≥ d , i.e., dis(T ∗) = d .
Since T ∗d+1(X∗) is closed, T ∗ ∈ QF(d).

Conversely, suppose that T ∗ is quasi-Fredholm of degree d . By Theorem 1.100,
T ∗j (X∗) is closed for all j ≥ d , hence T j (X) is closed for all j ≥ d , and by the
Sum theorem (see Appendix A) we have

T ∗j (X∗) ∩ kerT ∗ = (kerT j )⊥ ∩ T (X)⊥ = (kerT j + T (X))⊥, (1.26)

for all j ≥ d . Moreover, from the equality

T −j (T j+1(X)) = kerT j + T (X) for all j ≥ d,

we deduce that ker T j + T (X) is closed for all j ≥ d . Since kj (T ∗) = 0 for all
j ≥ d , from Eq. (1.26) we then obtain

kerT j +T (X) = ⊥[(kerT j +T (X))⊥] = ⊥[(kerT d +T (X))⊥] = kerT d +T (X),

for all j ≥ d . Therefore, ker T d + T (X) = N∞(T )+ T (X), and since T d+1(X) is
closed, by Theorem 1.102, T is quasi-Fredholm. �

A natural question is: when is a quasi-Fredholm operator of Kato-type? We shall
prove that this is always the case for Hilbert space operators, while for Banach space
operators it is true under some additional conditions. We first need a preliminary
lemma.

Lemma 1.105 Suppose that T ∈ L(X) has uniform descent n ≥ d and j ≥ 1.
Then ker T j ∩ T d(X) ⊆ T∞(X).

Proof We prove the statement by induction on j . We have

ker T ∩ T d(X) = ker T ∩ T n(X) ⊆ T n(X) for all n ≥ d,
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so ker T ∩ T d(X) ⊆ T∞(X). Suppose that the statement is true for some j ≥ 1.
Let x ∈ ker T j+1 ∩ T d(X) and n ≥ d . Then

T x ∈ ker T j ∩ T d(X) ⊆ T n+1(X),

so T x = T n+1y for some y ∈ X. Therefore, x − Ty ∈ ker T and x = T ny + u for
some u ∈ ker T . Clearly, also u ∈ T d(X), and hence

x ∈ T n(X)+ (ker T ∩ T d(X)) ⊆ T n(X)

holds for all n ≥ d . Therefore, x ∈ T∞(X). �
Theorem 1.106 Let T ∈ L(X), X a Banach space, be quasi-Fredholm of degree d .
Suppose that T (X) + ker T d and ker T ∩ T d+1(X) are complemented. Then T is
of Kato-type.

Proof If T ∈ QF(d) then T d(X) is closed, and, by Lemma 1.105,

ker T i ∩ T d(X) ⊆ T∞(X) ⊆ T j (X) for all i, j ≥ 0.

If d = 0 then T0 = T is semi-regular, and hence of Kato-type. Suppose d ≥ 1
and let L be a closed subspace for which X = (ker T ∩ T d(X)) ⊕ L. Consider the
following subspaces Nj , inductively defined for each j = 0, 1, . . . , d as follows:
N0 = 0, while

Nj+1 := T −1(Nj ) ∩ L for all j < d.

Clearly, T (Nj+1) ⊆ Nj ∩T (X). On the other hand, if x ∈ Nj ∩T (X), then x = T u
for some u ∈ X, and writing u = v + w, with v ∈ ker T ∩ T d(X) and w ∈ L,
we have u − v = w ∈ L and T (u − v) = T u = x. Thus u − v ∈ Nj+1 and
x ∈ T (Nj+1), so Nj ∩ T (X) ⊆ T (Nj+1). Therefore

Nj ∩ T (X) = T (Nj+1), for all j < d.

We prove by induction on j that Nj ⊆ Nj+1 for all 0 ≤ j < d . This inclusion
is clear for j = 0. Suppose that Nj ⊆ Nj+1 for j > 0, and let x ∈ Nj+1. Then
T x ∈ Nj ⊆ Nj+1 and hence x ∈ T −1(Nj+1). Since x ∈ Nj+1 ⊆ L, we have
x ∈ Nj+2, so

Nj ⊆ Nj+1 for all 0 ≤ j < d.

It is easily seen that Nj ⊆ ker T j for all j . We now prove by induction on j the
following inclusion

ker T j ⊆ Nj + ker T j ∩ T d(X). (1.27)
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This inclusion is obvious for j = 0. For j = 1 we have

ker T = ker T ∩ L+ (ker T ∩ T d(X)) = N1 + ker T ∩ T d(X).

Let j ≥ 1 and suppose ker T j ⊆ Nj + ker T j ∩ T d(X). If x ∈ ker T j+1 then
T x ∈ ker T j , and so T x = v1 + v2 for some v1 ∈ Nj and

v2 ∈ ker T j ∩ T d(X) = ker T j ∩ T d+1(X) = T (ker(T j+1) ∩ T d(X).

Thus, v1 ∈ Nj ∩ T (X) = T (Nj+1) and

x ∈ Nj+1 + ker T j+1 ∩ T d(X)+ ker T

= Nj+1 + ker T j+1 ∩ T d(X)+ (ker T ∩ L)+ (ker T ∩ T d(X))
= Nj+1 + ker T j+1 ∩ T d(X),

from which the inclusion (1.27) follows. We show now by induction that

Nj ∩ T d(X) = {0} for all j ≤ d. (1.28)

For j = 0 it is clear. Let j > 0 and Nj ∩ T d(X) = {0}. If x ∈ Nj+1 ∩ T d(X) then
T x ∈ Nj ∩ T d(X) and by the induction assumption we deduce that T x = 0. Thus,
x ∈ ker T ∩ T d(X), and x ∈ Nj+1 ⊆ L, hence x = 0, which proves (1.28).

We show now that T is of Kato-type. Set N := Nd . Then N is T -invariant and
N ⊆ ker T d , (T |N)d = 0, so T |N is nilpotent. Furthermore, ker T d ⊆ N+T d(X)
and N ∩ T d(X) = {0}. Note also that the space N + T d(X) = kerT d + T d(X) is
closed, by Theorem 1.78. Since T ∗ ∈ QF(d), by Theorem 1.104, we can use the
same construction as above for T ∗. By assumption T (X)+ker T d is complemented,
and kerT ∗∩T ∗d(X∗) = [T (X)+ker T d ]⊥, so we can choose aw∗-closed subspace
L′ of X∗ such that

X∗ = (ker T ∗ ∩ T ∗d(X∗))⊕ L′.

As before, for all 0 ≤ i < d we can construct subspacesMi of X∗ byM0 = {0} and
Mi+1 = T ∗−1Mi ∩ L′. Note that all the subspacesMi are w∗-closed. We have

T ∗(Md) ⊆ Md ⊆ ker T ∗d .

Moreover,Md ∩ T ∗d (X∗) = {0} and

ker T ∗d ⊆ Md + T ∗d(X∗),

where the latter space is closed.
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Finally, setM := ⊥Md . Clearly, T (M) ⊆ M and

M = ⊥Md ⊇ ⊥ker T ∗d = T d(X).

We have

M + ker T d = ⊥Md + ⊥T ∗d(X∗) = ⊥[Md ∩ T ∗d (X∗)] = X,

where the equality

⊥Md + ⊥T ∗d(X∗) = ⊥[Md ∩ T ∗d(X∗)]

follows by the Sum theorem (see Appendix A), since the space Md + T ∗d (X∗) is
closed. Furthermore,

T d(X) = ⊥ker T ∗d ⊇ ⊥[Md + T ∗d(X∗)] = ⊥Md ∩ ⊥T ∗d(X∗) = M ∩ ker T d .

Thus,

M +N ⊇ M + T d(X)+N ⊇ M + ker T d = X.

But,

M ∩N ⊆ M ∩ ker T d ∩N ⊆ T d(X) ∩N = {0},

thusX = M⊕N . As proved before, T |N is nilpotent, so we have only to show that
T |M is semi-regular. Let TM = T |M . If x ∈ ker TM then

x ∈ ker T ∩M ⊆ ker T d ∩M ⊆M ∩ ker T d ∩ T d(X)
⊆ M ∩ T∞(X) = TM∞(M).

Further, TMd(M) = T d(X) and hence TMd(M) is closed. Therefore, TMd is semi-
regular, and hence T |M is also semi-regular. �

Since every closed subspace of a Hilbert space is complemented, by Theo-
rem 1.106 we have:

Corollary 1.107 Every quasi-Fredholm operator acting on a Hilbert space is of
Kato-type.

We now want to show that a finite-dimensional perturbation of a quasi-Fredholm
operator is also quasi-Fredholm. We first need to do some preliminary work.

Lemma 1.108 If T ,K ∈ L(X) and K ∈ L(X) is finite-dimensional, then
(T +K)n(X) =e T n(X).
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Proof We have

(T +K)n − T n =
n−1∑
j=0

[T j (T +K)n−j − T j+1(T +K)n−j−1]

=
n−1∑
j=0

T jK(T +K)n−j−1,

from which we see that (T +K)n − T n is finite-dimensional. Consequently, (T +
K)n(X) =e T n(X). �
Lemma 1.109 Let T ∈ QF(d) and let K ∈ L(X) be one-dimensional. If Td :=
T |T d(X) and x0 ∈ ker Td then, for every n ∈ N, there exist vectors x1, x2, . . . xn in
the hyper-range of Td such that T xj = xj−1, with xi ∈ ker K for all j = 1, 2, . . . n.

Proof Let M := T d(X) and set Td := T |T d(X). We proceed by induction on n.
For n = 0 the statement is obvious. Suppose that the statement is true for n, i.e.,
there exist x1, x2, . . . xn in the hyper-range T∞

d (M) of Td such that T xj = xj−1,
with xi ∈ ker K for all j = 1, 2, . . . n. Since Td is semi-regular, see the proof
of Theorem 1.106, Td∞(M) = K(Td), by Theorem 1.44, so there exists a vector
xn+1 ∈ T∞

d (M) such that Td xn+1 = xn. IfKxn+1 = 0 then the statement holds for
n+1. Suppose thatKxn+1 �= 0, and let k be the smallest integer for which ker T kd is
not contained in ker K . Clearly, k ≤ n+1, since xn+1 ∈ ker T n+1

d \ker K . SinceK
is one-dimensional, we can find z ∈ ker T kd ⊆ T∞

d (M) such thatK(xn+1 − z) = 0.
Set

yn+1 := xn+1 − z, yn := Td yn+1, yn−1 := T 2
d yn+1,

and

yn−1−k := T kd yn+1 = T kd xn+1 = xn+1−k,

yn−k = xn−r , . . . , y1 = x1.

Evidently, yj ∈ T∞
d (M), and Td yj = yj−1 for j = 1, . . . n + 1. Moreover,

Kyn+1 = 0 and Kxj = 0 for 1 ≤ j ≤ n + 1 − k. If n + 2 − k ≤ j ≤ n

then

Kyj = K(yj − x1)+Kxj = K(yj − xj ) = 0,

since yj − xj ∈ ker T k−1
d by definition of k. �
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Quasi-Fredholm operators are stable under (not necessarily commuting) finite-
dimensional perturbations:

Theorem 1.110 If T ∈ L(X) is quasi-Fredholm and K ∈ L(X) is finite-
dimensional then T +K is quasi-Fredholm.

Proof Suppose that T ∈ QF(d). It is sufficient to prove the case where K is one-
dimensional. Since, by Lemma 1.108, (T + K)n(X) =e T n(X) for every n ∈ N,
(T + K)n(X) is closed if and only if T n(X) is closed. To show that T + K is
quasi-Fredholm it is sufficient to prove, by Theorem 1.102, that

(T +K)(X)+ ker T d = (T +K)(X)+ N∞(T +K).

Since T ∈ QF(d) then T has topological uniform descent for n ≥ d , so, by
Lemma 1.105, kerT ∩ T d(X) ⊆ T∞(X) and T d(X), T d+1(X) are both closed.
If M := T d(X) and Td; = T |M , then T d is semi-regular, by Theorem 1.103. We
claim that ker Td ⊆ (T +K)∞(X). Indeed, since

kerTd = ker T ∩ T d(X) =e ker (T +K) ∩ (T +K)d(X),

we have

ker (T +K) ∩ (T +K)d(X) ⊆e (T +K)∞(X).

This means that

ker (T +K) ∩ (T +K)n(X) = ker (T +K) ∩ (T +K)∞(X)

for some n ≥ d . By taking xn as in Lemma 1.109 we have

(T +K)nxn = (T +K)n−1xn−1 = · · · = (T +K)x1 = x0,

thus x0 ∈ (T + K)n(X) for each n, and hence kerTd ⊆ (T + K)∞(X), which
concludes the proof. �

The quasi-Fredholm spectrum is defined as

σqf (T ) := {λ ∈ C : λI − T is quasi-Fredholm}.

The spectrum σqf (T ) is a closed subset of C, which may be empty. This is the
case, for instance, for the null operator 0. A less trivial example may be obtained
as follows. The spectrum σqf (T ) is a subset of the Drazin spectrum, which will be
studied later, and the Drazin spectrum can be empty, as in the case of an algebraic
operator. Note that, by Theorem 1.110, we have σqf (T ) = σqf (T + K) for all
finite-dimensional operatorsK .
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1.8 Semi B-Fredholm Operators

This section concerns a class of operators, introduced by Berkani et al., which
extends the class of semi-Fredholm operators. For every T ∈ L(X) and nonnegative
integer n, let us denote by Tn the restriction of T to T n(X) viewed as a map from
the space T n(X) into itself (we set T0 = T ).

Definition 1.111 An operator T ∈ L(X), X a Banach space, is said to be B-
Fredholm, (respectively, semi B-Fredholm, upper semi B-Fredholm, lower semi
B-Fredholm), if for some integer n ≥ 0 the range T n(X) is closed and Tn is
a Fredholm operator (respectively, semi-Fredholm, upper semi-Fredholm, lower
semi-Fredholm).

It is easily seen that every nilpotent operator, as well as any idempotent bounded
operator, is B-Fredholm. Therefore the class of B-Fredholm operators contains the
class of Fredholm operators as a proper subclass.

Theorem 1.112 Let T ∈ L(X) and suppose that T n(X) is closed and Tn is a
Fredholm operator (respectively, semi-Fredholm, upper semi-Fredholm, lower semi-
Fredholm). For every m ≥ n, T m(X) is closed and Tm is a Fredholm operator
(respectively, semi-Fredholm, upper semi-Fredholm, lower semi-Fredholm), with
ind Tm = ind Tn.

Proof Suppose that Tn : T n(X) → T n(X) is Fredholm and let m ≥ n. Then T m−n
n

is a Fredholm operator on T n(X), so that T m−n
n (T n(X)) = T m(X) is a closed

subspace of T n(X), and hence is closed in X. Clearly,

ker Tm = ker T ∩ T m(X) ⊆ ker T ∩ T n(X) = ker Tn,

so α(Tm) < ∞. Since β(Tn) < ∞ and the range of Tn is T n+1(X), there exists a
finite-dimensional subspace U of T n(X) such that T n(X) = U + T n+1(X). Then

T m(X) = T m−n(X)+ T m+1(X),

and Tm has range T m+1(X) of finite codimension in T m(X). Consequently,
β(Tm) <∞, so the restriction Tm is Fredholm. By Lemma 1.69 we have

dim
ker T ∩ T n(X)

ker T ∩ T n+1(X)
= dim

ker T n+1 + T (X)
ker T n + T (X) ,

and, by Lemma 1.71, we also have

dim
T n(X)

T n+1(X)
= dim

X

T (X)+ ker T n
,
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and analogously,

dim
T n+1(X)

T n+2(X)
= dim

X

T (X)+ ker T n+1 .

Therefore, α(Tn) − α(Tn+1) = β(Tn) − β(Tn+1), so ind Tn+1 = indT[n]. An
inductive argument then proves that ind Tm = ind Tn for all m ≥ n.

The assertions concerning semi-Fredholm operators are proved in a similar way.
�

The previous theorem has a crucial role, since it permits us to extend the
concept of index to semi B-Fredholm operators. Indeed, the index of semi B-
Fredholm operators is independent of the choice of the integer n which appears
in the following definition. It is clear that in the case of semi-Fredholm operators
we recover the usual notion of index.

Definition 1.113 Let T ∈ L(X) be semi B-Fredholm and let n ∈ N be such that Tn
is a Fredholm operator. Then the index indT of T is defined as the index of Tn.

The upper semi-Fredholm operators (respectively, the lower semi-Fredholm
operators) are exactly the upper semi B-Fredholm operators (respectively, the lower
semi B-Fredholm operators) for which we have α(T ) < ∞ (respectively, β(T ) <
∞):

Theorem 1.114 Let T ∈ L(X). Then we have:
(i) T is upper semi B-Fredholm and α(T ) <∞ ⇔ T ∈ �+(X).

(ii) T is lower semi B-Fredholm and β(T ) <∞ ⇔ T ∈ �−(X).

Proof (i) If T is upper semi B-Fredholm then there exists an n ∈ N such that T n(X)
is closed and Tn is upper semi-Fredholm. Since α(T ) <∞ then α(T n) <∞, hence
T n is upper semi-Fredholm. From the classical Fredholm theory then T is also upper
semi-Fredholm. The converse is obvious.

Part (ii) may be proved in a similar way. �
The next corollary is an obvious consequence of Theorem 1.114, since every

semi-Fredholm operator has closed range.

Corollary 1.115 If T ∈ L(X) is injective and upper semi B-Fredholm then T is
bounded below.

Every semi B-Fredholm operator T has topological uniform descent. Indeed, we
show now that every semi B-Fredholm operator is quasi-Fredholm.

Theorem 1.116 Every semi B-Fredholm operator is quasi Fredholm. More pre-
cisely, we have:

(i) T is upper semi B-Fredholm if and only if there is an integer d such that T ∈
QF(d) and ker T ∩ T d(X) has finite dimension.
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(ii) T is lower semi B-Fredholm if and only if there is an integer d such that T ∈
QF(d) and T (X)+ ker T d has finite codimension.

(iii) T is B-Fredholm if and only if there is an integer d such that T ∈ QF(d),
ker T ∩T d(X) has finite dimension and T (X)+ker T d has finite codimension.

Proof

(i) Let n ∈ N such that T n(X) is closed and Tn is upper semi-Fredholm. Then
α(Tn) < ∞ and since ker T ∩ T m(X) ⊆ ker T ∩ T n(X) = ker Tn for each
m ≥ n, it then follows that the sequence of subspaces {ker T∩T k(X)} becomes
stationary for k large enough. This shows, by Theorem 1.74, that T has uniform
descent d = dis(T ) and dim (ker T ∩T d(X)) <∞. Since, by Theorem 1.112,
T[m] is upper semi-Fredholm for allm ≥ n, T m(X) is closed for allm ≥ n. By
using Theorem 1.100, we then conclude that T m(X) is closed for all m ≥ d .
Moreover,

T (X)+ ker T d = (T d)−1(T d+1(X))

is a closed subspace of X, so T ∈ QF(d).
Conversely, suppose T ∈ QF(d) and dim (ker T ∩ T d(X)) < ∞. Then

T n(X) is closed for all n ≥ d . Moreover,

α(Td) = dim (ker T ∩ T d(X)) <∞,

thus Td is upper semi-Fredholm.
(ii) The proof is similar to that of part (i). If T is lower semi B-Fredholm and Tn is

lower semi-Fredholm on the Banach space T n(X), then, by Lemma 1.71,

β(Tn) = dim
T n(X)

T n+1(X)
= dim

X

T (X)+ ker T d
,

hence the sequence (T (X) + ker T k)k becomes stationary for k large enough.
Since

dim
ker T ∩ T k(X)

ker T ∩ T k+1(X)
= dim

ker T k+1 + T (X)
ker T k + T (X) ,

we then conclude, by Theorem 1.74, that T has uniform descent d = dis(T )
and T (X)+ker T d has finite codimension. Moreover, by Theorem 1.112, Tm is
upper semi-Fredholm for all m ≥ n, so T m(X) is closed for all m ≥ n. Using
Theorem 1.100, we then conclude that T m(X) is closed for all m ≥ d . Hence
T ∈ QF(d).
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Conversely, suppose that T ∈ QF(d) and that T (X) + ker T d has finite
codimension. Then T n(X) is closed for all n ≥ d . Moreover, by Lemma 1.71,
we have

β(Td) = dim
T d(X)

T d+1(X)
= dim

X

T (X)+ ker T d
<∞,

from which we see that Td is lower semi-Fredholm.
(iii) This easily follows from part (i) and (ii). �

The following punctured disc theorem is obtained by combining Corollary 1.91
and Theorem 1.116, in the special case when S = λI −T , with λ sufficiently small.

Theorem 1.117 Suppose that T ∈ L(X) is upper semi B-Fredholm. Then there
exists an open disc D(0, ε) centered at 0 such that λI − T is upper semi-Fredholm
for all λ ∈ D(0, ε) \ {0} and

ind (λI − T ) = ind (T ) for all λ ∈ D(0, ε).

Moreover, if λ ∈ D(0, ε) \ {0} then

α(λI − T ) = dim (ker T ∩ T d(X)) for some d ∈ N,

so that α(λI − T ) is constant as λ ranges over D(0, ε) \ {0} and

α(λI − T ) ≤ α(T ) for all λ ∈ D(0, ε).

Analogously, if T ∈ L(X) is lower semi B-Fredholm then there exists an open
disc D(0, ε) centered at 0 such that λI − T is lower semi-Fredholm for all λ ∈
D(0, ε) \ {0} and

ind (λI − T ) = ind (T ) for all λ ∈ D(0, ε).

Moreover, if λ ∈ D(0, ε) \ {0} then

β(λI − T ) = codim (ker T d + T (X)) for some d ∈ N,

so that β(λI − T ) is constant as λ ranges over D(0, ε) \ {0} and

β(λI − T ) ≤ β(T ) for all λ ∈ D(0, ε).

Theorem 1.117 may be viewed as an extension of the classical punctured
neighborhood theorem for semi-Fredholm operators (see Appendix A) to semi B-
Fredholm operators.
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Theorem 1.118 If T ∈ L(X) is quasi-Fredholm then there exists an ε > 0 such
that N∞(λI − T ) ⊆ (λI − T )∞(X) for all 0 < |λ| < ε. If T is semi B-Fredholm
then λI − T is semi-regular in a suitable punctured open disc centered at 0.

Proof Observe first that if T is quasi-Fredholm of degree d then T n(X) is closed
for all n ≥ d , so T∞(X) is closed. Furthermore, by Theorem 1.79 the restriction
T |T∞(X) is onto, so T (T∞(X)) = T∞(X). Let T0 := T |T∞(X). Clearly, T0 is
onto and hence, by Theorem 1.10, λI − T is onto for all |λ| < ε, where ε := γ (T0)

is the minimal modulus of T0. Therefore,

(λI − T )(T∞(X)) = T∞(X) for all |λ| < ε.

Since T∞(X) is closed, by Theorem 1.39 it then follows that

T∞(X) ⊆ K(λI − T ) ⊆ (λI − T )∞(X) for all |λ| < ε.

By part (ii) of Theorem 1.14 we have N∞(λI − T ) ⊆ T∞(X) for all λ �= 0, so we
conclude that

N∞(λI − T ) ⊆ (λI − T )∞(X) for all 0 < |λ| < ε,

and the first assertion is proved.
To show the second assertion, suppose that T is semi B-Fredholm. By The-

orem 1.117, there exists an open disc D centered at 0 such that λI − T is
semi-Fredholm for all λ ∈ D \ {0}. Since semi-Fredholm operators have closed
range, the last assertion easily follows. �

The B-Fredholm operators on Banach spaces may be characterized through
a decomposition which is similar to the Kato decomposition (but recall that a
Fredholm operator may be non-semi-regular):

Theorem 1.119 Let T ∈ L(X), X a Banach space. Then

(i) T is B-Fredholm if and only if there exist two closed invariant subspacesM and
N such that X =M ⊕N , T |M is Fredholm and T |N is nilpotent.

(ii) T is B-Fredholm of index 0 if and only if there exist two closed invariant
subspacesM and N such that X = M ⊕ N , T |M is Fredholm having index 0
and T |N is nilpotent.

Proof

(i) If T is B-Fredholm then, by Theorem 1.116, there is an integer d for which
T ∈ QF(d), ker T ∩T d(X) has finite dimension and T (X)+ ker T d has finite
codimension, and hence both subspaces are complemented. By Theorem 1.106,
T is of Kato-type, so there exist two closed T -invariant subspaces M and N
such that X = M ⊕ N , T |N is nilpotent of order d , and T |M is semi-regular.
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Define αn(T ) := α(Tn) = dim (ker T ∩ T n(X)) < ∞ and βn(T ) :=
dim T n(X)

T n+1(X)
<∞. Clearly,

αd(T |M) = αd(T |N)+ αd(T |M) = αd(T ) <∞,

and

βd(T |M) = βd(T |N)+ βd(T |M) = βd(T ) <∞.

Since kj (T |M) = 0 for all j , we conclude that α0(T |M) = αd(T |M) < ∞
and β0(T |M) = βd(T |M) <∞, so T |M is Fredholm.

(ii) The proof is clear from part (i). �
According to Caradus [87] an operator T ∈ L(X) is said to be generalized

Fredholm if there exists an operator S ∈ L(X) such that T ST = T and
I −ST −T S ∈ �(X). Examples of generalized Fredholm operators are projections
and finite-dimensional and Fredholm operators. This class of operators has been
studied in several papers by Schmoeger [275, 277–281], and a remarkable result
is that an operator T is generalized Fredholm if and only if there exist two closed
invariant subspacesM andN such thatX = M⊕N , T |M is Fredholm and T |N is a
finite rank nilpotent operator, see [280, Theorem 1.1]. Therefore, by Theorem 1.119,
every generalized Fredholm operator is B-Fredholm, but the converse is not true.
For instance, a nilpotent operator with non-closed range is a B-Fredholm operator
but not a generalized Fredholm operator. The relationship between B-Fredholm
operators and generalized Fredholm operators is fixed by the following theorem.

Theorem 1.120 T ∈ L(X) is B-Fredholm if and only if there exists an n ∈ N such
that T n is a generalized Fredholm operator.

Proof As observed above, every generalized Fredholm operator is B-Fredholm.
Suppose that T is B-Fredholm. Then, by Theorem 1.119, T = T1 ⊕ T2, where
T1 is Fredholm and T2 is nilpotent. Let T2

n = 0. Then

T n = T1
n ⊕ T2

n = T1
n ⊕ 0,

and since T1
n is Fredholm we then conclude that T n is generalized Fredholm. �

The following concept of invertibility was introduced in [267] and was inspired
by the work of Drazin [123].

Definition 1.121 Let A be an algebra with unit e. An element a ∈ A is said to be a
Drazin invertible element of degree n if there is an element b ∈ A such that

anba = an, bab = b, ab = ba. (1.29)

The element b is called the Drazin inverse (of degree n). If a ∈ A satisfies the
equalities (1.29) for k = 1 then a is said to be group invertible.
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Theorem 1.122 An element a has at most one Drazin inverse. If it exists, the Drazin
inverse of a belongs to the second commutant of a, i.e., the Drazin inverse of a
commutes with every x ∈ A which commutes with a.

Proof Suppose that b1 and b2 are Drazin inverses of a, with corresponding integers
m1 andm2 in the first equality of (1.29) and letm := max{m1,m2}. Then b1a

m+1 =
am = am+1b2 and b1 = b1

2a and b2 = ab2
2. By induction, we easily have b1 =

b1
k+1ak and b2 = akb2

k+1 for k = 1, 2, . . . . In particular b1 = b1
m+1am and

b2 = amb2
m+1. Hence

b1 = b1 = b1
m+1am = b1

m+1am+1b2 = b1ab2

and similarly we obtain b2 = b2ab1, so that b1 = b2.
To prove the second assertion, assume that ax = xa and let b be the Drazin

inverse of a. We have

bamx = bxam = bxam+1b = bam+1xb = amxb.

Hence bm+1amx = amxbm+1, and because b = bm+1am we then obtain

bx = bm+1amx = amxbm+1 = xbm+1am = xb,

which concludes the proof. �
Let a ∈ A be Drazin invertible. The index i(a) of a is the least non-negative

integer n for which the equations (1.29) have a solution.
Drazin [123] proved a number of interesting properties which we now mention,

in the following remark, without proof. We shall also reassume some other basic
properties of group invertible elements.

Remark 1.123 Let A denote a Banach algebra with unit e.

(a) An element a ∈ A is Drazin invertible of degree n if and only if an is group
invertible in A, see [267, Lemma 1 and Corollary 5].

(b) An element a ∈ A is group invertible if and only if a admits a commuting
generalized inverse, i.e. there is a b ∈ A such that ab = ba and aba = a, or
equivalently there exists a b ∈ A such that aba = a and e−ab−ba is invertible
in A, see [275, Theorem 3.3 and Proposition 3.9].

(c) If a, b ∈ A are two commuting Drazin invertible elements then ab is Drazin
invertible, see [72, Proposition 2.6].

(d) If a ∈ A has a Drazin inverse b, then ak has Drazin inverse bk for all k ∈ N.
(e) The Drazin inverse b of an element a ∈ A, if it exists, is also Drazin invertible.

The index of b is equal to 1 and the Drazin inverse of b is a2b.
(f) If a ∈ A has Drazin inverse b then the Drazin inverse of b is a if and only if a

has index 1.
(g) If a has Drazin inverse b and b has Drazin inverse c then the Drazin inverse of

c is a.
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If a ∈ A is Drazin invertible, denote by aD its Drazin inverse.

Theorem 1.124 Let A denote a Banach algebra with unit e and a, b ∈ A. Then ab
is Drazin invertible if and only if ba is Drazin invertible. Moreover,

(ba)D = b((ab)D)2a and (ab)D = a((ba)D)2b, (1.30)

and |i(ba)− i(ab)| ≤ 1.

Proof Let d be the Drazin inverse of ab and let k := i(ab). Then d(ab) = (ab)d ,
d(ab)d = d , and

(ab)kd(ab) = (ab)k.

Let u := bd2a. We have

u(ba) = bd2aba = bd2aba = bda,

and

(ba)b = (ba)bd2a = (ba)babd3a = bababd3a = bda,

from which we obtain that u(ba) = (ba)u. From u(ba) = bda it then follows that

u(ba)u = (bda)bd2a = (bdab)abd2(da) = (bdab)abd2(da)

= bd2a = u,

and

(ba)k+1u(ba) = (ba)k+1bda = (ba)k+1b(abd2)a = b(ab)kab(abd2)a

= b(ab)k+1abd2a = b(ab)k+1da = b(ab)ka = (ba)k+1.

Therefore, ba is Drazin invertible and its Drazin inverse is (ba)D = b((ab)D)2a.
Evidently, i(ba) ≤ i(ab)+ 1.

A similar argument shows that if ba is Drazin invertible, then ab is Drazin
invertible with Drazin inverse

(ab)D = a((ba)D)2b

and i(ab) ≤ i(ba)+ 1. �
Let F(X) denote the two-sided ideal of all finite-dimensional operators in L(X),

and denote by L the normed algebra L(X)/F(X) provided with the canonical
quotient norm. Let π : L(X) → L be the canonical quotient mapping. The well-
known Atkinson’s theorem says that T ∈ �(X) if and only if π(T ) is invertible
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in L. A version of Atkinson’s theorem may be stated for B-Fredholm theory as
follows:

Theorem 1.125 T ∈ L(X) is B-Fredholm if and only if π(T ) is a Drazin invertible
element of the algebra L.

Proof We know that T is generalized Fredholm if and only if π(T ) is group
invertible in the Calkin algebra L. Using Theorem 1.120 we see that T is B-
Fredholm precisely when π(T n) = π(T )n is group invertible for some n ∈ N.
By using (b) of Remark 1.123 we then conclude that T is B-Fredholm if and only if
π(T ) is Drazin invertible in L. �

The class of B-Fredholm operators is stable under finite-dimensional
perturbation:

Theorem 1.126 If T , S ∈ L(X) are B-Fredholm operators. Then we have:

(i) If T S = ST then ST is B-Fredholm. Moreover, ind (ST ) = ind (S)+ ind (T ).
(ii) If K ∈ F(X) then T +K is B-Fredholm and ind (T +K) = ind T .

Proof

(i) We have π(ST ) = π(S)π(T ) = π(S)π(T ). By using (c) of Remark 1.123 we
then deduce that π(ST ) is Drazin invertible in L, hence ST is B-Fredholm by
Theorem 1.125. Furthermore, according to Theorem 1.117, choose n0 ∈ N such
that 1

n
I−T and 1

n
I−S are Fredholm operators for n ≥ n0, ind ( 1

n
I−T ) = ind T

and ind ( 1
n
I − S) = ind S. Choosing n large enough, the difference

ST −
(

1

n
I − S

)(
1

n
I − T

)
= 1

n

(
1

n
I − (T + S)

)

is of small norm. As both ST and
(

1
n
I − S

) (
1
n
I − T

)
are B-Fredholm then,

by Theorem 1.117,

ind (ST ) = ind

[(
1

n
I − S

)(
1

n
I − T

)]
.

But both 1
n
I − S and 1

n
I − T are Fredholm, so

ind

[(
1

n
I − S

)(
1

n
I − T

)]
= ind

(
1

n
I − S

)
+ ind

(
1

n
I − T

)
,

and this implies ind (ST ) = ind (S)+ ind (T ).
(ii) Since π(T +K) = π(T ) then T +K is B-Fredholm, again by Theorem 1.125.

By Theorem 1.117 we may choose n0 ∈ N such that 1
n
I −T , 1

n
I − (T +K) are

Fredholm, and ind ( 1
n
I − T ) = ind (T ) and ind ( 1

n
I − (T +K) = ind (T +K).
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Since 1
n
I − T is Fredholm then ind ( 1

n
I − (T + K)) = ind ( 1

n
I − T ), thus

ind (T +K) = ind T . �
Theorem 1.127 Let T ∈ L(X) and X = M ⊕ N , whereM and N are two closed
subspaces of X. If T is B-Fredholm then T |M and T |N are B-Fredholm.

Proof We show that U := T |N is B-Fredholm. Let P be the projection of X
onto N along M . Clearly R is B-Fredholm and commutes with T , so by part
(i) of Theorem 1.126, T P is B-Fredholm. Consequently, there exists an integer
n ∈ N such that (T P )n(X) is closed and the restriction (T P )n = T P |(T P )n(X) is
Fredholm. Since (T P )n(X) = U(X) and (T P )n = U , then U is B-Fredholm. �

Consider now the Calkin algebra L(X)/K(X) provided with the usual quotient
norm, where K(X) denotes the two-sided ideal in L(X) of all compact operators.
Let τ : L(X) → L(X)/K(X) be the canonical quotient mapping. By Atkinson’s
characterization of Fredholm operators we know that T ∈ �(X) if and only if
τ (T ) is invertible in L(X)/K(X). The following example shows that the analogue
of Theorem 1.125 is not true if we replace L(X)/F(X) with L(X)/K(X).

Example 1.128 Let (λn) be a sequence in C which converges to 0 and assume
that λn �= 0 for all n. Let �2(N) denote the space of all 2-summable sequences
of complex numbers, and denote by T the operator on the Hilbert space �2(N)

defined by:

T (x1, x2, . . . ) := (λ1x1, λ2x2, . . . ) for all (xn) ∈ �2(N).

Then

T n(x1, x2, . . . ) := (λ1
nx1, λ2

nx2, . . . ).

Since λkn �= 0 for all k and λkn → 0, as k → ∞, T n ∈ K(X) and T n is not a finite-
dimensional operator for every n. Hence, T n(X) is not closed for all n, thus T is
not B-Fredholm. Obviously, the image τ (T ) in the Calkin algebraL(X)/K(X) is 0,
so τ (T ) is Drazin invertible. This example also shows that the class of B-Fredholm
operators is not stable under compact perturbations. Indeed, 0 is B-Fredholm while
0 + T = T is not B-Fredholm.

Theorem 1.129 If T ∈ L(X) then the following assertions are equivalent:
(i) T is B-Fredholm;

(ii) T m is B-Fredholm for all integers m > 0;
(iii) T m is B-Fredholm for some integer m > 0.

Proof The implication (i) ⇒ (ii) follows from Theorem 1.126. The implication (ii)
⇒ (iii) is obvious. (iii) ⇒ (i) Suppose that T m is B-Fredholm for some integerm >
0. Then there exist an integer n such that T nm(X) is closed, and T mn : T nm(X) →
T nm(X) is Fredholm. Since

ker T ∩ T nm(X) ⊆ ker T m ∩ T nm(X),
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it then follows that ker T ∩ T nm(X) has finite dimension, by Theorem 1.116.
Moreover, the inclusions

T (n+1)m(X) ⊆ T nm+1(X) ⊆ T nm(X)

entail that T nm+1(X) has finite codimension in T nm(X). Consequently, Tnm is a
Fredholm operator and hence T is B-Fredholm.

The next result shows that a characterization similar to that of Theorem 1.119
established for Fredholm operators on Banach spaces also holds for semi B-
Fredholm operators in the case of Hilbert space operators.

Theorem 1.130 If T ∈ L(H), H a Hilbert space, then T is semi B-Fredholm
(respectively, upper semi B-Fredholm, lower semi B-Fredholm) if and only if there
exist two closed T -invariant subspaces M and N such that X = M ⊕ N , T |M is
semi-Fredholm (respectively, upper semi-Fredholm, lower semi Fredholm) and T |N
is nilpotent.

Proof Suppose that T is semi B-Fredholm. Then T is quasi-Fredholm, so, by
Corollary 1.107, T is of Kato-type, i.e. there exist closed invariant subspacesM and
N such thatX = M⊕N , T |M is semi-regular and T |N nilpotent. Let (T |N)d = 0.
From parts (ii) and (iii) of Theorem 1.64 we know that ker T |M = ker T ∩ T d(X)
and TM(M) = T (M)⊕N = T (X)+ ker T d . Now, if T is upper semi B-Fredholm
then ker T |M = ker T ∩ T d(X) has finite dimension and since the range of T |M
is closed, since T |M is semi-regular, T |M is upper semi-Fredholm. If T is lower
semi B-Fredholm, then there exists a finite-dimensional subspace Y of H such that
H = Y ⊕ T (M) ⊕ N . Let PM denote the projection of H onto M along N . Then
M = PM(Y )+ T (M), from which we deduce that T (M) has finite codimension on
M . Therefore, T |M is lower semi-Fredholm.

Conversely, suppose that there exist closed invariant subspaces M and N such
that H = M ⊕ N , T |M is semi-Fredholm and T |N is nilpotent of order d . Then
(T |M)d is semi-Fredholm, and hence T d(H) = T d(M) is a closed subspace ofM ,
so is a closed subspace of H . Evidently, Td = (T |M)d , so, using Theorem 1.112,
and the fact that T |M is semi-Fredholm, we conclude that Td is semi-Fredholm,
hence T is semi B-Fredholm.

The proofs of the assertions concerning upper semi B-Fredholm and lower semi
B-Fredholm operators are omitted.

�
We also omit the proof of the following theorem, since it is similar to The-

orem 1.129, and may be easily obtained by using Theorem 1.130 instead of
Theorem 1.119.

Theorem 1.131 If T ∈ L(H), H a Hilbert space. Then the following assertions
are equivalent:

(i) T is upper semi B-Fredholm, (respectively, lower semi B-Fredholm);
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(ii) T m is upper semi B-Fredholm, (respectively, lower semi B-Fredholm), for all
integer m > 0;

(iii) T m is upper semi B-Fredholm, (respectively, lower semi B-Fredholm), for some
integer m > 0.

1.9 Drazin Invertible Operators

A bounded operator T which is Drazin invertible in the Banach algebra A := L(X)
is simply said to be Drazin invertible. Drazin invertibility for operators may be
characterized in several ways:

Theorem 1.132 If T ∈ L(X) then the following statements are equivalent:
(i) T is Drazin invertible, i.e. there is an S ∈ L(X) such that T S = ST , ST S = S

and T nST = T n for some n ∈ N;
(ii) there is an S ∈ L(X) which commutes with T and n ∈ N such that T n+1S =

T n;
(iii) p(T ) = q(T ) ≤ n;
(iv) T = T1 ⊕ T2, where T1 is nilpotent and T2 is invertible;
(v) Either 0 /∈ σ(T ) or 0 ∈ iso σ(T ), and the restriction of T onto the range P(X)

of the spectral projection associated at {0} is nilpotent.
Proof (i) ⇒ (ii) Suppose that there exists an S ∈ L(X) which commutes with T
such that ST S = S and T nST = T n. Then

T n+1S = T T nS = T nST = T n.

(ii) ⇒ (iii) We have

T n(X) = [T n+1S](X) ⊆ T n+1(X),

hence q(T ) ≤ n. If x ∈ ker T n+1 then T nx = ST n+1x = 0, so x ∈ ker T n and,
consequently, p(T ) <∞.

(iii) ⇒ (iv) If p := p(T ) = q(T ) then, by Theorem 1.35,X = ker T p ⊕ T p(X)
and, by Theorem 1.36, 0 is a pole of the resolvent of T and T p(X) is closed, since
it coincides with the kernel of the spectral projection associated with 0. Let T1 :=
T | ker T p and T2 := T |T p(X). Then T1

p = 0 and because ker T p = ker T p+1

and T p(X) = T p+1(X) it is easily seen that T2 is invertible.
(iv) ⇔ (v) If X = X1 ⊕X2 with T1 = T |X1 nilpotent and T2 = T |X2 invertible

then either 0 /∈ σ(T ) or 0 ∈ iso σ(T ). Moreover, X1 coincides with the range of
the spectral projection associated with 0, hence (iv) ⇒ (v). The reverse implication
(v)⇒ (iv) is clear, so (iv) and (v) are equivalent.

(iv) ⇒ (i) Define S := 0 ⊕ T2
−1 and let n ∈ N be such that T1

n = 0. Then S
satisfies (i). �
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From Theorem 1.119 we immediately have

Corollary 1.133 Every Drazin invertible operator is B-Fredholm.

In the sequel we denote by S the Drazin inverse of a Drazin invertible operator,
i.e.,

T nST = T n, ST S = S, T S = ST . (1.31)

The next result shows that the index of T ∈ L(X), where T is regarded as an
element of the Banach algebra A := L(X), coincides with the order of the pole
p := p(T ) = q(T ) of the resolvent of T .

Theorem 1.134 If T ∈ L(X) is Drazin invertible of index i(T ) = k then p(T ) =
q(T ) = k.
Proof Let S be the Drazin inverse of T . We have

T S = ST ST S = S T kST = T k, (1.32)

and hence, by Theorem 1.132, p(T ) = q(T ) ≤ k. On the other hand, if p :=
p(T ) = q(T ) then X = kerT p ⊕ T p(X) and if we denote by P the spectral
projection associated with {0} then T1 := T | kerP is invertible and the operator
S := T1

−1(I − P) is well-defined, since (I − P)(X) = kerP . It is easily seen that
T S = ST = I − P . Moreover,

ST S = T S2 = (I − P)S = S,

since S(X) = (I − P)(X), and

T p+1S = T pT S = T p(I − P) = (I − P)T p = T p,

since T p(X) = (I − P)(X)). Therefore, i(T ) ≤ p. �
By Theorem 1.132 we know that T ∈ L(X) is Drazin invertible if and only if

there exist two closed invariant subspaces Y and Z such that X = Y ⊕ Z and, with
respect to this decomposition,

T = T1 ⊕ T2, with T1 := T |Y nilpotent and T2 := T |Z invertible. (1.33)

Moreover, by Theorem 1.122, the Drazin inverse S of T , if it exists, is uniquely
determined, and in the proof of Theorem 1.132, it has been observed that S may be
represented, with respect to the decompositionX = Y ⊕ Z, as the directed sum

S := 0 ⊕ S2 with S2 := T2
−1. (1.34)
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Theorem 1.135 Suppose that T ∈ L(X) is Drazin invertible with p := p(T ) =
q(T ) ≥ 1. If P is the spectral projection associated with {0} and S is the Drazin
inverse of T , then

(i) P = I − T S, ker S = ker (T p) = P(X).
(ii) S(X) = ker P = T p(X).

(iii) S is Drazin invertible and p(S) = q(S) = 1. The Drazin inverse of S is T ST .

Proof

(i) The equality P = I − T S has been observed in the proof of Theorem 1.134.
If p := p(T ) = q(T ) then P(X) = ker T p and kerP = T p(X), by
Theorem 1.36. If x ∈ X then Sx = 0 if and only if Px = x, from which
we obtain that ker S = P(X).

(ii) From P = I − T S = I − ST it is easily seen that S(X) = ker P .
(iii) Evidently, S is Drazin invertible, since from the decomposition (1.34) we know

that S is the direct sum of a nilpotent operator and an invertible operator. Let
U := T ST . Then

S2U = SUS = ST ST S = S.

Furthermore,

SU = ST ST = T ST S = US,

and

USU = T ST ST ST = T ST ST = T ST = U.

Therefore, U = T ST is the Drazin inverse of S, and obviously i(S) = 1. �
A simple consequence of the spectral mapping theorem for the spectrum shows

that if T ∈ L(X) is invertible then the points of the spectrum of the inverse T −1 are
the reciprocals of the spectrum σ(T ), i.e.

σ(T −1) =
{

1

λ
: λ ∈ σ(T )

}
.

The relationship of “reciprocity” observed above, between the nonzero parts of
the spectrum, is also satisfied when we consider Drazin invertibility.

Theorem 1.136 Suppose that T ∈ L(X) is Drazin invertible with Drazin inverse
S. Then

σ(S) \ {0} =
{

1

λ
: λ ∈ σ(T ) \ {0}

}
. (1.35)
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Proof If T is invertible then S = T −1, so (1.35) is clear. Suppose that 0 ∈ σ(R). By
Theorem 1.132 T = T1⊕T2, where T1 is nilpotent, T2 is invertible, and S := 0⊕S2,
with S2 := T2

−1. Clearly,

σ(T ) = σ(T1) ∪ σ(T2) = {0} ∪ σ(T2) and σ(S) = {0} ∪ σ(S2),

where 0 /∈ σ(T2) and 0 /∈ σ(S2). Since S2 is the inverse of T2, we then conclude
that the nonzero part of the spectrum of S is given by the reciprocals of the nonzero
points of the spectrum of T . �

The spectral mapping theorem also holds for the approximate point spectrum, so,
by using similar arguments as above, we obtain

σa(S) \ {0} =
{

1

λ
: λ ∈ σa(T ) \ {0}

}
. (1.36)

An operator T ∈ L(X) is said to be relatively regular if there is an S ∈
L(X) such that T ST = T . S is also called a pseudo inverse of T . An operator
T is relatively regular if and only if ker T and T (X) are both complemented,
see Appendix A. In general, a relatively regular operator admits infinite pseudo-
inverses, in fact, if S is a pseudo-inverse then all operators of the form ST S + U −
ST UT S, with U ∈ L(X) arbitrary, are pseudo-inverses of T , see [87, Theorem 2].
The next example shows that for a pseudo-inverse formula (1.35), in general, does
not hold.

Example 1.137 Let T be the unilateral right shift in �2(N), defined as

T (x1, x2, . . . ) := (0, x1, x2, . . . ) for all (xn) ∈ �2(N),

then T is relatively regular. Indeed, the range of T is closed and hence comple-
mented in the Hilbert space �2(N), and the same happens for the kernel ker T ,
so T is relatively regular. We have σ(T ) = D(0, 1). Consequently, the points of
σ(S) \ {0}, for any pseudo-spectral inverse S of T , cannot be the reciprocals of
σ(T ) \ {0}, otherwise σ(S) would be unbounded.

Remark 1.138 The Drazin inverse S of a Drazin invertible operator is relatively
regular, since ST S = S, and T is a pseudo-inverse of S. But generally a Drazin
invertible operator T may have no pseudo-inverse. For instance, if V ∈ L(X) does

not have a closed range then the operator T :=
(

0 0
V 0

)
is nilpotent, since T 2 = 0,

and hence is Drazin invertible, but T has no pseudo-inverse, since its range is not
closed.

An interesting generalization of Drazin invertibility has been introduced by
Koliha [201], see also [202]. In the case of the Banach algebra L(X), an operator
T ∈ L(X) is said to be generalized Drazin invertible if 0 /∈ acc σ(T ), i.e. either T
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is invertible or 0 is an isolated point of σ(T ). This is equivalent to saying that there
exists an operator B ∈ L(X), called the generalized Drazin inverse of T , such that

ST S = S, T S = ST and T (I − T S) is quasi-nilpotent,

see, for instance, Djordjević and Rakočević [114].

1.10 Left and Right Drazin Invertible Operators

The concept of Drazin invertibility suggests the following definition:

Definition 1.139 T ∈ L(X), X a Banach space, is said to be left Drazin invertible
if p := p(T ) < ∞ and T p+1(X) is closed, while T ∈ L(X) is said to be right
Drazin invertible if q := q(T ) <∞ and T q(X) is closed.

The operator considered in Example 1.94 shows that the condition q = q(T ) <

∞ does not entail that T q(X) is closed. Clearly, T ∈ L(X) is both right and left
Drazin invertible if and only if T is Drazin invertible. In fact, by Theorem 1.36, if
0 < p := p(T ) = q(T ) then T p(X) = T p+1(X) is the kernel of the spectral
projection P0 associated with the spectral set {0}. We show now that the concepts
of Drazin invertibility may be characterized in a very simple way by means of the
restrictions Tn := T |T n(X).
Theorem 1.140 If T ∈ L(X) then we have:

(i) T is left Drazin invertible if and only if there exists a k ∈ N such that T k(X)
is closed and Tk is bounded below. In this case T j (X) is closed and Tj is
bounded below for all natural numbers j ≥ k.

(ii) T is right Drazin invertible if and only if there exists a k ∈ N such that T k(X)
is closed and Tk is onto. In this case T j (X) is closed and Tj is onto for all
natural numbers j ≥ k.

(iii) T is Drazin invertible if and only if there exists a k ∈ N such that T k(X) is
closed and Tk is invertible. In this case T j (X) is closed and Tj is invertible for
all natural numbers j ≥ k.

Proof

(i) Suppose p := p(T ) < ∞ and that T p+1(X) closed. Then Tp is injective
and R(Tp) = T p+1(X) is closed. Conversely, if T[k] is bounded below for
some k ∈ N then, by Lemma 1.23, p := p(T ) < ∞ and by Remark 1.25 we
have p ≤ k, and hence p + 1 ≤ k + 1. Since R(Tk) = T k+1(X) is closed
then, by Lemma 1.100, T p+1(X) is closed and, consequently, T is left Drazin
invertible. The last assertion is clear, by Remark 1.25, Tj is injective for all
j ≥ k and T j (X) is closed, again by Lemma 1.100.

(ii) Suppose that q := q(T ) <∞ and T q(X) is closed, then R(Tq) = T q+1(X) =
T q(X), so Tq is onto. Conversely, suppose that T k(X) is closed and Tk is onto
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for some k ∈ N. Then, by Lemma 1.23, q = q(T ) < ∞ and q + 1 ≤ k + 1.
By Lemma 1.100, T q(X) is closed, and hence T is right Drazin invertible. By
Lemma 1.100, T j (X) is closed for all j ≥ k, and, by Remark 1.25, Tj is onto
for all j ≥ k.

(iii) Clear. �
Theorem 1.141 Every left Drazin invertible operator T is upper semi B-Fredholm
with ind T ≤ 0; every right Drazin invertible T operator is lower semi B-Fredholm
with ind T ≥ 0. Every Drazin invertible operator T is a B-Fredholm operator
having index ind T = 0.

Proof Suppose that T is left Drazin invertible. By Theorem 1.140, Tn is bounded
below for some n ∈ N, in particular Tn is upper semi-Fredholm. Hence T is upper
semi B-Fredholm, and, by part (i) of Theorem 1.22, ind Tn ≤ 0. Analogously, if T
is right Drazin invertible, then, by Theorem 1.140, Tn is onto for some n ∈ N, in
particular Tn is lower semi B-Fredholm. Again, part (ii) of Theorem 1.22 implies
that ind Tn ≥ 0. The last assertion is clear. �

The next result characterizes the left Drazin invertible and the right Drazin
invertible operators among the operators which have topological uniform descent.

Theorem 1.142 Suppose that T ∈ L(X). Then the following statements are
equivalent:

(i) T is left Drazin invertible;
(ii) T is quasi-Fredholm and has finite ascent;

(iii) T has topological uniform descent and has finite ascent.
Dually, the following statements are equivalent:

(iv) T is right Drazin invertible;
(v) T is quasi-Fredholm and has finite descent:

(vi) T has topological uniform descent and has finite descent.

Proof The implications (i) ⇒ (ii) ⇒ (iii) are obvious, so, in order to show the
equivalences of the statements (i), (ii), and (iii), it suffices to prove the implication
(iii) ⇒ (i).

Suppose that p := p(T ) <∞ and T has topological uniform descent for n ≥ p.
By Theorem 1.74 we know that ker T j + T k(X) is closed in X for all k ∈ N and
j ≥ p. In particular, ker T p + T k(X) is closed in X for all integers k ≥ 0. By
Corollary 1.101 it then follows that T p+1(X) is closed, and hence T is left Drazin
invertible.

The implications (iv) ⇒ (v) ⇒ (vi) are obvious, so, in order to show the
equivalences of the statements (iv), (v), and (vi), we only need to prove the
implication (vi) ⇒ (iii).

Suppose that q := q(T ) <∞ and T has topological uniform descent for n ≥ q .
By Lemma 1.19 we know that the condition q = q(T ) < ∞ entails that for every
n ∈ N and m ≥ q the subspace T n(X) admits a complementary subspace Yn ⊆
ker T m, hence X = ker T m + T n(X) for all n ∈ N, m ≥ q. In particular, the sums
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ker T m + T n(X) for all n ∈ N and m ≥ q are closed. From Corollary 1.101 it then
follows that T q(X) is closed. Therefore T is right Drazin invertible. �

By Theorem 1.22, if T is a Fredholm operator with index 0 and either p(T )
or q(T ) is finite then T is Browder. This result, in the framework of B-Fredholm
theory, may be generalized as follows:

Theorem 1.143 For an operator T ∈ L(X) the following statements hold:
(i) If T is upper semi B-Fredholm with index ind T ≤ 0 and q(T ) < ∞, then T

is Drazin invertible.
(ii) If T is lower semi B-Fredholm with index ind T ≥ 0 and p(T ) < ∞, then T

is Drazin invertible.
(iii) If T is B-Fredholm with index ind T = 0 and has either ascent or descent

finite, then T is Drazin invertible.

Proof

(i) By Theorem 1.142 we know that T is right Drazin invertible, thus ind T ≥ 0
by Theorem 1.141. Hence ind T = 0, so that there exists an n ∈ N such that
T m(X) is closed and Tm is Fredholm with indTm = α(Tm) − β(Tm) = 0 for
all m ≥ n. Now, since q := q(T ) < ∞, it is evident that the range R(Tm)
of Tm is T m+1(X) = T m(X) for all m ≥ q, thus Tm is onto. If we choose
m ≥ max{n, q} then Tm is both onto and Fredholm with index 0, so α(Tm) =
β(Tm) = 0, i.e., Tm is invertible. Consequently, T km is invertible for all k ∈ N,
from which we deduce that

kerT k ∩ T m(X) = ker T km = {0} for all k ∈ N,

and this implies that p(T ) <∞, by Lemma 1.19.
(ii) By Theorem 1.142 we know that T is left Drazin invertible, thus ind T ≤ 0

by Theorem 1.141. Hence ind T = 0, so for some n ∈ N, T m(X) is closed
and Tm is Fredholm with indTm = α(Tm) − β(Tm) = 0 for all m ≥ n. By
Lemma 1.19, the assumption p := p(T ) <∞ entails that

ker Tm = ker T ∩ T m(X) = {0} for all naturalm ≥ p.

Choosingm ≥ max{n, p} then Tm is both injective and is Fredholm with index
ind Tm = −β(Tm) = 0, hence Tm is invertible. Consequently,

T m+1(X) = R(Tm) = T m(X),

and hence q(T ) <∞.
(iii) This is evident from part (i) and (ii). �
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We now show that the concepts of left and right Drazin invertibility are dual to
each other:

Theorem 1.144 For every T ∈ L(X) the following equivalences hold:
(i) T is left Drazin invertible ⇔ T ∗ is right Drazin invertible.

(ii) T is right Drazin invertible ⇔ T ∗ is left Drazin invertible.
(iii) T is Drazin invertible if and only if T ∗ is Drazin invertible.

Proof

(i) Suppose that T is left Drazin invertible. Then p := p(T ) < ∞ and, by
Corollary 1.73, T has uniform descent for n ≥ p. Since T p(X) is closed,
Theorem 1.100 entails that T p+1(X) is also closed, and hence T ∗p+1(X∗) is
closed. From the equality ker T p = ker T p+1 and from the classical closed
range theorem (see Appendix A) we then deduce that

T ∗p(X∗) = [ker T p]⊥ = [ker T p+1]⊥ = T ∗p+1
(X∗).

This shows that T ∗ has finite descent q := q(T ∗) ≤ p and since T ∗q(X∗) =
T ∗p(X∗) is closed it then follows that T ∗ is right Drazin invertible.

Conversely, suppose that T ∗ is right Drazin invertible. Then q := q(T ∗) <
∞ and T ∗q(X∗) is closed. From the equality T ∗q(X∗) = T ∗q+1(X∗) and from
the closed range theorem we then obtain:

ker T q = ⊥[T ∗q(X∗)] = ⊥[T ∗q+1
(T ∗)] = ker T q+1,

and hence p := p(T ) ≤ q . Since T ∗q+1(X∗) is closed then T q+1(X) is also
closed, again by Theorem 1.100 it then follows that T p+1(X) is closed, so T
is left Drazin invertible.

(ii) This may be proved in a similar way to part (i).
(iii) This is obvious, since both left and right Drazin invertibility entail Drazin

invertibility. �
The concepts of Drazin invertibility may be relaxed as follows. For every linear

operator T on a vector spaceX consider the quantities already introduced: cn(T ) =
dim T n(X)

T n+1(X)
and c′n(T ) = dim ker T n+1

ker T n . Evidently, the descent q(T ) is the infimum
of the set {n ∈ N : cn(T ) = 0} (also here the infimum of an empty set is defined to
be ∞), while the ascent is the infimum of the set {n ∈ N : c′n(T ) = 0}.
Definition 1.145 For a linear operator T on a vector space X the essential descent
is defined as

qe(T ) := inf{n ∈ N : cn(T ) <∞},
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while the essential ascent is defined as

pe(T ) := inf{n ∈ N : c′n(T ) <∞}.

If T ∈ L(X) is such that pe(T ) < ∞ and T pe(T )+1(X) is closed then T is said to
be essentially left Drazin invertible, while T ∈ L(X) is said to be essentially right
Drazin invertible if qe(T ) <∞ and T qe(T )(X) is closed.

Note that if q := qe(T ) < ∞ then T q(X) =e T n(X) for all n ≥ q , and T has
finite essential descent if and only if there exists a d ∈ N such that cn(T ) < ∞ for
all n ≥ d .

Remark 1.146 In the sequel we list some important properties of the essential
ascent and descent:

(i) If T has finite ascent p(T ) then pe(T ) = p(T ). Analogously, if T has finite
descent q(T ) then qe(T ) = q(T ).

(ii) If both pe(T ), qe(T ) are finite then pe(T ) = qe(T ) and T pe(T )(X) is a
complemented subspace of X, see [245, Chap. III, Lemma 11]. T has both
pe(T ), qe(T ) finite if and only if T is B-Fredholm, see [63, Corollary 3.7] or
[245, Chap. III, Theorem 12].

(iii) If T has essential finite ascent then T n(X) is closed for some n > pe(T ) if
and only if T n(X) is closed for all n ≥ pe(T ), see [163].

(iv) Every essentially left or right Drazin invertible operator is quasi-Fredholm.
More precisely, T is essentially left Drazin invertible if and only if T is quasi-
Fredholm and Td := T |T d(X) is upper semi-Fredholm (as usual, d = dis(T )
is the degree of stable iteration). Analogously, T is essentially right Drazin
invertible if and only if T is quasi-Fredholm and Td := T |T d(X) is lower
semi-Fredholm, [63, Corollary 3.5].

(v) T is essentially left Drazin invertible if and only if T is upper semi B-
Fredholm and analogously, T is essentially right Drazin invertible if and only
if T is lower semi B-Fredholm, [63, Theorem 3.6].

(vi) It is easily seen that T is essentially left (respectively, right) Drazin invertible
if and only if its dual T ∗ is essentially right (respectively, left) Drazin
invertible.

(vii) The essential ascent spectrum and the essential descent spectrum are compact
subsets of C, see [150] and [85]

(viii) Evidently, every lower semi-Fredholm operator has finite essential descent.
As observed in Lemma 1.19, T ∈ L(X) has finite descent if and only if
X = T (X)+ ker T d for some integer d ≥ 0. Similarly, T ∈ L(X) has finite
essential descent if and only if T (X) + ker T d has finite codimension for
some integer d ≥ 0, see [163].
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1.11 Comments

The concept of the algebraic core of an operator was introduced by Saphar [270],
while the analytic core was introduced by Vrbová [294] and further studied by
Mbekhta [233]. Theorem 1.33 is due to Aiena and Monsalve [19].

The theory of semi-regular operators has its origins in Kato’s classical treatment
[195] of perturbation theory, but these operators did not originally go by this name.
Kato’s pioneering work led many other authors to study this class of operators, in
particular it was extensively studied by Mbekhta [229, 230, 233, 234], Mbekhta
and Ouahab [236], and Schmoeger [273]. Originally the semi-regular spectrum was
investigated for operators acting on Hilbert spaces by Apostol [51], and for this
reason this spectrum was sometimes called the Apostol spectrum. This spectrum
was defined, for Hilbert space operators, as the set of all complex λ such that
either λI − T is not closed or λ is a discontinuity point for the function λ →
(λI − T )−1, see Theorem 1.51. Later the results of Apostol were generalized to
Banach space operators by Mbekhta [229, 230], and Mbekhta and Ouahab [236],
see also Harte [172] and Müller [243]. The methods adopted in the fourth section
are strongly inspired by the work of Mbekhta and Ouahab [236], and Schmoeger
[272]. Example 1.53 and Theorem 1.55 are taken from Müller [243].

The generalized Kato decomposition was studied in several papers by Mbekhta
[230, 231] and [232]. The particular case of essentially semi-regular operators
was systematically investigated by Müller and Rakočević [263]. The material
presented here is completely inspired by Müller in [243], and Theorem 1.67 is
taken from Kordula, Müller and Rakočević [205]. The fundamental result that a
semi-Fredholm operator is essentially semi-regular was proved by Kato [195]. The
section concerning the operators having uniform descent is entirely based on the
work by Grabiner [162], while the sections relative to quasi-Fredholm operators are
modeled after Labrousse [208], Mbekhta [230] and Berkani [62]. Theorem 1.110
was proved by Mbekhta and Müller [235].

The work of Berkani et al. [62–64, 71, 72] also inspired the section concerning
B-Fredholm theory. Theorem 1.106 is taken from an unpublished paper of Müller,
which also proved, for Banach space operators, Theorem 1.130 previously proved
by Berkani [62] for Hilbert space operators. The concept of Drazin invertibility in
associative rings and semigroups were introduced by Drazin [123], and has been
investigated by several authors, see for instance Patricio and Hartwig [255], Wang
and Chen [295], Roch and Silbermann [267].

The formula (1.30) for the Drazin inverse of ba is due to Cline [96] and it is a
useful tool to finding the Drazin inverse of a sum of two elements and that of a block
matrix, see [255]. Numerous mathematicians have studied the analogue of Cline’s
formula for other kinds of “invertibility”, see Barnes [56], Corach et al. [102]. The
last section concerning Drazin invertible operators is patterned after Caradus [87],
and Caradus et al. [88]. Theorem 1.118 is taken from [38], while Theorem 1.142 is
taken from Aiena and Triolo [26].



Chapter 2
Local Spectral Theory

In this chapter we shall introduce an important property, defined for bounded linear
operators on complex Banach spaces, the so-called single-valued extension property
(SVEP). This property dates back to the early days of local spectral theory and
appeared first in Dunford [140] and [141]. Subsequently, this property has received
a more systematic treatment in the classical texts by Dunford and Schwartz [143],
as well as those by Colojoară and Foiaş [98], by Vasilescu [292] and, more recently,
by Laursen and Neumann [216], and Aiena [1].

The single-valued extension property has a basic importance in local spectral the-
ory since it is satisfied by a wide variety of linear bounded operators in the spectral
decomposition problem. An important class of operators which enjoys this property
is the class of all decomposable operators on Banach spaces, which includes normal
operators on Hilbert spaces, Riesz operators and more generally operators which
have a discrete spectrum. Another class of operators, not necessarily decomposable,
is given by the class of all multipliers defined on a semi-prime commutative Banach
algebra, and in particular by the class of all convolution operators of group algebras
L1(G), where G is a locally compact abelian group. Other classes of operators
which satisfy the SVEP are obtained by the H(p)-operators, which will be studied
in Chap. 4, and these classes include several kinds of operators on Hilbert spaces,
obtained by weakening, in some way, the condition of normality. As we shall see in
Chaps. 5 and 6, a localized version of the single-valued extension property will be a
very precious tool for establishing Browder-type and Weyl-type theorems.

In the first section we introduce the basic tools of local spectral theory, as the local
spectrum and the local spectral subspace XT (F) associated to a subset F ⊆ C, and
we give an important characterization of the analytic coreK(T ) as a special case of
a local spectral subspace. In the second section, we introduce the concept of a glocal
local subspace, a somewhat more useful variant of the concept of an analytic local
subspace, which is better suited for operators without the single-valued extension
property. The third section also deals with another important subspace in local
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spectral theory: the quasi-nilpotent part of an operator. This subspace, which is
the glocal spectral subspace associated with the set {0}, also has a relevant role
in Fredholm theory.

The fourth section is devoted to the study of a localized version of the single-
valued extension property, in particular we shall employ the basic tools of local
spectral theory to establish a variety of conditions that ensure the single-valued
extension property at a point λ0. We shall see that the relative positions of all the
subspaces introduced in the previous section are intimately related to the SVEP at a
point. Most of the conditions which entail the localized SVEP at a point λ0 involve
the kernel type and the range type of subspaces previously introduced, as well as the
analytic core and the quasi-nilpotent part of λ0I − T . Furthermore, in this section
we shall give results concerning the particular case that λ0 is an isolated point of
the spectrum, or is an isolated point of the approximate point spectrum σap(T ), or,
dually, λ0 is an isolated point of the surjectivity spectrum σs(T ).

In the fifth section we shall show that the localized single-valued extension
property behaves canonically under the Riesz functional calculus, while in the
sixth section we shall see that for operators having topological uniform descent,
in particular for a quasi-Fredholm operator T , the SVEP at 0 is equivalent to several
other conditions, some of them concerning the quasi-nilpotent part and the analytic
core of T .

The seventh section deals with the preservation of the localized SVEP under
some commuting perturbations, in particular we show that the localized SVEP is
preserved under Riesz commuting perturbations, while the global SVEP is preserved
under algebraic commuting perturbations. We shall also study the preservation of the
localized SVEP under quasi-nilpotent equivalence. In this chapter we will introduce
another local spectral property, the Dunford property (C), which is stronger than
the SVEP. The last part of the chapter is centred around the spectral properties of
the product of operators RS and SR, and we shall show that these products share
many spectral properties, as well as many local spectral properties. We shall also
consider the case when RSR = R2 and SRS = S2. The last section concerns the
transmission of many local spectral properties from a Drazin invertible operator R
to its Drazin inverse S.

2.1 The Single-Valued Extension Property

Before introducing the typical tools of local spectral theory, and in order to give
a first motivation, we begin with some considerations on spectral theory. It is well
known that the resolvent function R(λ, T ) := (λI − T )−1 of T ∈ L(X), X a
Banach space, is an analytic operator-valued function defined on the resolvent set
ρ(T ). Setting

fx(λ) := R(λ, T )x for any x ∈ X,
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the vector-valued analytic function fx : ρ(T )→ X trivially satisfies the equation

(λI − T )fx(λ) = x for all λ ∈ ρ(T ). (2.1)

Suppose that T ∈ L(X) is a bounded operator on a Banach space X such that the
spectrum σ(T ) has an isolated point λ0, and let P0 denote the spectral projection of
T associated with λ0. It is known that the spectrum of the restriction T0 := T |P0(X)

is {λ0}, thus λI−T0 is invertible for all λ �= λ0. Let x ∈ P0(X). Obviously, Eq. (2.1)
has the analytic solution

gx(λ) := (λI − T0)
−1x for all λ ∈ C \ {λ0}.

This shows that it is possible to find analytic solutions of the equation (λI −
T )fx(λ) = x for some, and sometimes even for all, values of λ that are in the
spectrum of T .

These considerations property lead to the following concepts:

Definition 2.1 Given an arbitrary operator T ∈ L(X), X a Banach space, let ρT (x)
denote the set of all λ ∈ C for which there exists an open neighborhood Uλ of λ in
C and an analytic function f : Uλ → X such that the equation

(μI − T )f (μ) = x holds for all μ ∈ Uλ. (2.2)

If the function f is defined on the set ρT (x) then f is called a local resolvent
function of T at x. The set ρT (x) is called the local resolvent of T at x. The local
spectrum σT (x) of T at the point x ∈ X is defined to be the set

σT (x) := C \ ρT (x).

Evidently ρT (x) is the open subset of C given by the union of the domains of all
the local resolvent functions. Moreover,

ρ(T ) ⊆ ρT (x) and σT (x) ⊆ σ(T ).

It is immediate to check the following elementary properties of σT (x):

(a) σT (0) = ∅;
(b) σT (αx + βy) ⊆ σT (x) ∪ σT (y) for all x, y ∈ X;
(c) For every F ⊆ C, σλI+T (x) ⊆ F if and only if σT (x) ⊆ F − {λ}. In particular,

σ(λI−T )(x) ⊆ {0} if and only if σT (x) ⊆ {λ}.
The next example shows that σT (x) may also be empty for some x �= 0.

Example 2.2 Let R and L denote the right shift and the left shift on �2(N),
respectively. Obviously, LR = I and L is the adjoint of R. Let {ek : k ≥ 0} be
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the canonical orthonormal basis of �2(N) and set

x :=
∞∑
k=1

1

k
ek.

Then Lx = x
2 . Now, for |λ| > 1

2 , an easy computation shows that the function

f (λ) :=
∞∑
k=0

Lkx

λk+1

satisfies the equality (λI − L)f (λ) = x. Also, if we set

g(λ) :=
∞∑
k=0

Rk+1λkx,

then it is easily seen that

(λI − L)g(λ) =
∞∑
k=1

Rk+1λk+1x −
∞∑
k=1

Rkλkx = x for all |λ| ≤ 1,

in particular for all |λ| ≤ 1
2 . Hence σL(x) = ∅.

Lemma 2.3 If T , S ∈ L(X) commutes then σT (Sx) ⊆ σT (x).
Proof Let f : U → X be an analytic function on the open set U ⊆ C for which
(μI −T )f (μ) = x holds for all μ ∈ U . If T S = ST then the function S ◦ f : U →
X is also analytic and satisfies the equation

(μI − T )(S ◦ f )(μ) = S((μI − T )f (μ)) = Sx for all μ ∈ U .

Therefore ρT (x) ⊆ ρT (Sx) and hence σT (Sx) ⊆ σT (x). �
It is well known that given two operators R, S ∈ L(X), the spectra σ(RS) and

σ(SR) may differ only by the inclusion of 0, see also the next Corollary 2.150. The
following theorem shows a local spectral version of this result.

Theorem 2.4 Let X and Y be Banach spaces and consider two operators S ∈
L(X, Y ) and R ∈ L(Y,X). Then we have:
(i) For every x ∈ X the following inclusions hold:

σSR(Sx) ⊆ σRS(x) ⊆ σSR(Sx) ∪ {0}.

If S is injective then σRS(x) = σSR(Sx) for all x ∈ X.
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(ii) For every y ∈ Y the following inclusions hold:

σRS(Ry) ⊆ σSR(y) ⊆ σRS(Ry) ∪ {0}.

If R is injective then σRS(Ry) = σSR(y) for all y ∈ Y .
Proof

(i) Let λ /∈ σRS(x) and f : U → X be an analytic function defined in a
neighborhood U of λ such that (μI − RS)f (μ) = x for all μ ∈ U . Then

S(μI − RS)f (μ) = (μI − SR)Sf (μ) = Sx,

hence λ /∈ σSR(Sx) since Sf (μ) is analytic on U , so the first inclusion in (i)
is proved. To show the second inclusion, let λ /∈ σSR(Sx) ∪ {0} and denote by
g(μ) a Y -valued analytic function defined on a neighborhood U of λ such that
(μI − SR)g(μ) = Sx for all μ ∈ U . If we set

h(μ) := 1

μ
(x − Rg(μ)),

it is easy to check that (μI − RS)h(μ) = x, so λ /∈ σRS(x).
To show the second statement, assume that λ /∈ σSR(Sx). There is no harm

in assuming λ = 0. Thus, assume 0 /∈ σSR(Sx), and let g(μ) be a Y -valued
analytic function defined in a neighborhoodU of 0 such that (μI −SR)g(μ) =
Sx. For μ = 0 we have −SRg(0) = Sx and from the injectivity of S it follows
that x = Rg(0). Moreover,

μg(μ) = Sx + SRg(μ) = S(x + Rg(μ))

so

g(μ) = S
[

1

μ
(x + Rg(μ)

]
.

Note that

SRg′(0) = lim
μ→0

SRg(μ) − SRg(0)
μ

= lim
μ→0

SRg(μ)+ Sx
μ

= lim
μ→0

g(μ) = g(0).

Set

h(μ) :=
⎧⎨
⎩

1

μ
(x − Rg(μ)) if μ �= 0,

Rg′(0) if μ = 0.
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We have

S[(μI − RS)h(μ) − x] = 0 for all μ ∈ U.
Indeed, we have seen in the first part of the proof that for μ �= 0 we have

(μI − RS)h(μ)− x = 0,

while for μ = 0 we have

S[−RSRg′(0)− x] = −SR(SRg′(0)− Sx = −SRg(0)− Sx
= Sx − Sx = 0.

Since S is injective we have (μI − RS)h(μ) = x for all μ ∈ U , hence 0 /∈
σRS(x).

(ii) The proof is analogous. �
For an injective operator T ∈ L(X) the local spectra of T x and x coincide:

Corollary 2.5 Let T ∈ L(X) and x ∈ X. Then we have
(i) σT (T x) ⊆ σT (x) ⊆ σT (T x) ∪ {0}.

(ii) If T is injective then σT (T x) = σT (x).
Proof Take S = T and R = I in Theorem 2.4. �

The following example shows that if S is not injective we may have σRS(x) �=
σSR(Sx).

Example 2.6 Let S denote the shift operator defined in the usual Hardy space
H 2(D) of all analytic functions f : D → C, on the open unit disc D, for which

sup

{∫ π

−π
|f (reiθ |2dθ : 0 ≤ r < 1

}
<∞,

and letR := S∗ be the adjoint of S. Then,RS is the identity operator, while SR is the
projection ofX onto the range S(H). In particular, σRS(x) = {1} for all 0 �= x ∈ H ,
σSR(x) = {1} if x ∈ S(H), σSR(x) = {0} if x ∈ ker R and σSR(x) = {0, 1}
otherwise. In this case, σRS(Sx) is strictly contained in σSR(x).

Now we consider the case when S,R ∈ L(X) satisfy the operator equation
RSR = R2. Evidently, the operator equation RSR = R2 implies that (SR)2 =
SR2. Examples of operators which satisfy this equation are given by R = PQ,
where P andQ are idempotents, see Vidav [293].

Lemma 2.7 Suppose that R, S ∈ L(X) satisfy RSR = R2. Then we have

σR(Rx) ⊆ σSR(x) and σSR(SRx) ⊆ σR(x), (2.3)

for all x ∈ X.
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Proof To show the first inclusion, suppose that λ0 /∈ σSR(x), i.e. λ0 ∈ ρSR(x). Then
there exists an open neighborhood U0 of λ0 and an analytic function f : U0 → X

such that

(λI − SR)f (λ) = x for all λ ∈ U0.

From this it then follows that

Rx = R(λI − SR)f (λ) = (λR − RSR)f (λ)
= (λR − R2)f (λ) = (λI − R)(Rf )(λ),

for all λ ∈ U0. Obviously, Rf : U0 → X is analytic, so λ0 ∈ ρR(Rx) and hence
λ0 /∈ σR(Rx). This shows the first inclusion.

To show the second inclusion, let λ0 /∈ σR(x). Then λ0 ∈ ρR(x) and hence there
exists an open neighborhood U0 of λ0 and an analytic function f : U0 → X such
that

(λI − R)f (λ) = x for all λ ∈ U0.

Consequently,

SRx = SR(λI − R)f (λ) = (λSR − SR2)f (λ)

= (λSR − (SR)2)f (λ) = (λI − SR)(SRf )(λ),

for all λ ∈ U0, and since (SR)f is analytic we then obtain λ0 ∈ ρSR(SRx), i.e.
λ0 /∈ σSR(SRx). Hence the second inclusion is also proved. �
Example 2.8 A very important example of a local spectrum is given in the case of
multiplication operators on the Banach algebra C(�) of all continuous complex-
valued functions on a compact Hausdorff space �, endowed with point-wise
operations and supremum norm. Let Tϕ ∈ L(C(�)) denote the operator of
multiplication by an arbitrary function ϕ ∈ C(�). We show that

σTϕ (f ) = ϕ(supp f ) for all f ∈ C(�),

where the support of f is defined by

supp f := {λ ∈ � : f (λ) �= 0}.

Indeed, we easily have that f (μ) = 0 for all μ ∈ � with ϕ(μ) ∈ ρT (f ), so that

ϕ({μ ∈ � : f (μ) �= 0}) ⊆ σTϕ (f ),
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and hence, since ϕ is continuous, ϕ(supp f ) ⊆ σTϕ (f ). To prove the opposite
inclusion, let λ /∈ ϕ(suppf ) and let D(λ, δ) be a closed disc centered at λ with
radius δ such that

D(λ, δ) ∩ ϕ(supp f ) = ∅.

If μ ∈ D(, λ, δ), where D(λ, δ) denotes the open disc centered at λ with radius δ,
and ω ∈ �, define

gμ(ω) :=
⎧⎨
⎩

f (ω)

(ϕ(ω)− μ) if ϕ(ω) /∈ D(λ, δ),

0 if ϕ(ω) /∈ ϕ(supp f ).

Clearly, for fixed μ ∈ D(λ, δ) we have gμ ∈ C(�) and, evidently, the equation
(Tϕ − μ)gμ = f holds. Since gμ is analytic on D(λ, δ) it then follows that λ ∈
ρTϕ (f ) := C \ σTϕ (f ).

The next theorem shows that the local resolvent functions preserve the local
spectrum.

Theorem 2.9 Let T ∈ L(X), x ∈ X and U be an open subset of C. Suppose that
f : U → X is an analytic function for which (μI − T )f (μ) = x for all μ ∈ U .
Then U ⊆ ρT (f (λ)) for all λ ∈ U . Moreover,

σT (x) = σT (f (λ)) for all λ ∈ U . (2.4)

Proof Let λ be arbitrarily chosen in U . Define

h(μ) :=
⎧⎨
⎩
f (λ)− f (μ)
μ− λ if μ �= λ,

−f ′(λ) if μ = λ,

for all μ ∈ U . Clearly, the function h is analytic, and it is easily seen that (μI −
T )h(μ) = f (λ) for all μ ∈ U \ {λ}. By continuity the last equality is also true for
μ = λ, so

(λI − T )h(λ) = f (λ) for all μ ∈ U .

This shows that λ ∈ ρT (f (λ)). Since λ is arbitrary in U , U ⊆ ρT (f (λ)) for all
λ ∈ U .

To show the identity (2.4), we first prove the inclusion σT (f (λ)) ⊆ σT (x), or
equivalently, ρT (x) ⊆ ρT (f (λ)) for all λ ∈ U . If ω ∈ U then ω ∈ ρT (f (λ)) for all
λ ∈ U , by the first part of the proof. Suppose that ω ∈ ρT (x) \U . Since w ∈ ρT (x),
there exist an open neighborhood W of w such that λ /∈ W and an analytic function
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g : W → X such that (μI − T )g(μ) = x for all μ ∈ W . Define

k(μ) := f (λ)− g(μ)
μ− λ for all μ ∈ W,

then, as is easy to verify, (μI − T )k(μ) = f (λ) holds for all μ ∈ W . This shows
that ω ∈ ρT (x), and hence σT (x) ⊆ σT (f (λ)).

It remains to prove the opposite inclusion σT (f (λ)) ⊆ σT (x).
Let η /∈ σT (f (λ)) and hence η ∈ ρT (f (λ)). Let h : V → X be an analytic

function defined on the open neighborhood V of η for which the identity (μI −
T )h(μ) = f (λ) is satisfied for all μ ∈ V . Then

(μI − T )(λI − T )h(μ) = (λI − T )(μI − T )h(μ) = (λI − T )f (λ) = x,

for all μ ∈ V , so that η ∈ ρT (x) and hence η /∈ σT (x). �
We have seen that the uniqueness of the analytic solution of Eq. (2.2) is a non-

trivial issue. With this in mind we make the following definition:

Definition 2.10 Let X be a complex Banach space and T ∈ L(X). The operator T
is said to have the single-valued extension property (SVEP) at λ0 ∈ C if for every
neighborhood U of λ0 the only analytic function f : U → X which satisfies the
equation

(λI − T )f (λ) = 0

is the constant function f ≡ 0.
The operator T is said to have the SVEP if T has the SVEP at every λ ∈ C.

Remark 2.11 In the sequel we collect some basic properties of the single-valued
extension property.

(a) The SVEP ensures the consistency of the local solutions of Eq. (4.13), in the
sense that if x ∈ X and T has the SVEP at λ0 ∈ ρT (x) then there exists a
neighborhoodU of λ0 and a unique analytic function f : U → X satisfying the
equation (λI − T )f (λ) = x for all λ ∈ U .

The SVEP also ensures the existence of a maximal analytic extension f̃ of
R(λ, T )x := (λI − T )−1x to the set ρT (x) for every x ∈ X. This function
identically satisfies the equation

(μI − T )f̃ (μ) = x for every μ ∈ ρT (x)

and, obviously,

f̃ (μ) = (μI − T )−1x for every μ ∈ ρ(T ).
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(b) It is immediate to verify that the SVEP is inherited by the restrictions on
invariant subspaces, i.e., if T ∈ L(X) has the SVEP at λ0 and M is a closed
T -invariant subspace, then T |M has the SVEP at λ0. Moreover,

σT (x) ⊆ σT |M(x) for every x ∈ M.

(c) Obviously, an operator T ∈ L(X) has the SVEP at every point of the resolvent
ρ(T ) := C \ σ(T ). From the identity theorem for analytic functions it easily
follows that an operator always has the SVEP at every point of the boundary
∂σ(T ) of the spectrum σ(T ). In particular, T has the SVEP at every isolated
point of the spectrum σ(T ).

(d) Let σp(T ) denote the point spectrum of T ∈ L(X), i.e.,

σp(T ) := {λ ∈ C : λ is an eigenvalue of T }.

It is easy to see that if σp(T ) has empty interior then T has the SVEP, in
particular every operator with real spectrum has the SVEP. A rather immediate
argument shows the following implication:

σp(T ) does not cluster at λ0 ⇒ T has the SVEP at λ0.

Indeed, suppose that σp(T ) does not cluster at λ0. Then there is an open
neighborhood U of λ0 such that λI − T is injective for every λ ∈ U , λ �= λ0.
Let f : V → X be an analytic function defined on another neighborhood V of
λ0 such that the equation (λI − T )f (λ) = 0 holds for every λ ∈ V . We may
assume that V ⊆ U . Then f (λ) ∈ ker (λI − T ) = {0} for every λ ∈ V , λ �= λ0,
so f (λ) = 0 for every λ ∈ V , λ �= λ0. Since f is continuous at λ0 we then
conclude that f (λ0) = 0. Hence f ≡ 0 in V and therefore T has the SVEP at
λ0.

It should be noted that T may have the SVEP, although σp(T ) �= ∅. For
instance, if X is the Banach algebra B(�) of all bounded complex-valued
functions on a compact Hausdorff space�, endowed with point-wise operations
and supremum norm, the operator T ∈ L(X), defined by the assignment

(Tf )(λ) := λf (λ) for all λ ∈ �,

has σp(T ) �= ∅, while T has the SVEP since the ascent p(μI − T ) ≤ 1 for all
μ ∈ C, and this, as we shall see later, entails the SVEP of T at μ.

(e) A similar argument to that of part (d) shows that

σap(T ) does not cluster at λ0 ⇒ T has the SVEP at λ0

and dually,

σs(T ) does not cluster at λ0 ⇒ T ∗ has the SVEP at λ0.
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(f) Evidently, T has the SVEP if σap(T ) is contained in the boundary of the
spectrum ∂σ(T ), while T ∗ has the SVEP if σs(T ) is contained in ∂σ(T ).

(g) The SVEP is transmitted under translations, i.e. T ∈ L(X) has the SVEP if and
only if λI − T has the SVEP.

Now we introduce an important class of subspaces which play an important role
in local theory.

Definition 2.12 For every subset F of C the local spectral subspace of an operator
T ∈ L(X) associated with F is the set

XT (F) := {x ∈ X : σT (x) ⊆ F }.

Obviously, if F1 ⊆ F2 ⊆ C then XT (F1) ⊆ XT (F2) and

XT (F) = XT (F ∩ σ(T ).

Indeed, XT (F) ∩ σ(T )) ⊆ XT (F). Conversely, if x ∈ XT (F) then σT (x) ⊆ F ∩
σ(T ), and hence x ∈ XT (F∩σ(T )). Moreover, from the basic properties of the local
spectrum it is easily seen that XλI+T (F ) = XT (F \ {λ}). Further basic properties
of local spectral subspaces are collected in the sequel.

Theorem 2.13 Let T ∈ L(X) and F a subset of C. Then the following properties
hold:

(i) XT (F) is a linear T -hyper-invariant subspace of X, i.e., for every bounded
operator S such that T S = ST we have S(XT (F )) ⊆ XT (F).

(ii) If λ /∈ F , then (λI − T )(XT (F )) = XT (F).
(iii) Suppose that λ ∈ F and (λI − T )x ∈ XT (F) for some x ∈ X. Then x ∈

XT (F).
(iv) For every family (Fj )j∈J of subsets of C we have

XT (
⋂
j∈J
Fj ) =

⋂
j∈J
XT (Fj ).

(v) If Y is a T -invariant closed subspace of X for which σ(T |Y ) ⊆ F , then
Y ⊆ XT (F). In particular, Y ⊆ XT (σ(T |Y )) holds for every closed T -
invariant closed subspace of X.

(vi) ker (λI − T )n ⊆ XT ({λ} for all λ ∈ C and n ∈ N.

Proof

(i) Evidently the setXT (F) is a linear subspace ofX, since the inclusion σT (αx+
βy) ⊆ σT (x) ∪ σT (y) holds for all α, β ∈ C and x, y ∈ X.

Suppose now that x ∈ XT (F) and T S = ST . Then σT (Sx) ⊆ σT (x) ⊆ F ,
hence Sx ∈ XT (F).
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(ii) The operators λI − T and T commute, so from part (i) it follows that (λI −
T )(XT (F )) ⊆ XT (F) for all λ ∈ C. Let λ /∈ F and consider an element
x ∈ XT (F). Then σT (x) ⊆ F and hence λ ∈ ρT (F ). Therefore, there exist
an open neighborhood U of λ and an analytic function f : U → X for which
(μI − T )f (μ) = x for all μ ∈ U . In particular, (λI − T )f (λ) = x. By
Theorem 2.9 we obtain σT (f (λ)) = σT (x) ⊆ F , and hence f (λ) ∈ XT (F),
from which we conclude that

x = (λI − T )f (λ) ∈ (λI − T )(XT (F )).

(iii) Suppose that (λI−T )x ∈ XT (F), λ ∈ F . We need to show that σT (x) ⊆ F , or
equivalently, C \ F ⊆ ρT (x). Take μ /∈ F . By assumption C \ F ⊆ ρT ((λI −
T )x), so there is an analytic function f : Uμ → X defined on some open
neighborhood Uμ of μ such that λ /∈ U and (ωI − T )f (ω) = (λI − T )x for
all ω ∈ Uμ. Define g : Uμ → X by

g(ω) := x − f (ω)
ω − λ for all ω ∈ Uμ.

Clearly the analytic function g satisfies the equality (ωI − T )g(ω) = x for all
ω ∈ Uμ, so μ ∈ ρT (x). Therefore C \ F ⊆ ρT (x).

(iv) This easily follows from the definition.
(v) From σ(T | Y ) ⊆ F we obtain C \ F ⊆ ρ(T | Y ), hence for any y ∈ Y we

have

(λI − T )(λI − T |Y )−1y = y for all λ ∈ C \ F.

Clearly, f (λ) := (λI − T |Y )−1y is analytic for all λ ∈ C \F , hence C \F ⊆
ρT (y), and consequently σT (y) ⊆ F .

(vi) This is obvious from part (iii). �
We have already observed that 0 has an empty local spectrum. The next result

shows that if T has the SVEP then 0 is the unique element of X having empty local
spectrum. In other words, this property characterizes the SVEP.

Theorem 2.14 If T ∈ L(X) the following statements are equivalent:
(i) T has the SVEP;

(ii) XT (∅) = {0}, i.e. σT (x) = ∅ if and only if x = 0;
(iii) XT (∅) is closed.
Proof (i) ⇔ (ii) Suppose that T has the SVEP and σT (x) = ∅. Then ρT (x) = C,
so there exists an analytic function f : C → X such that (λI − T )f (λ) = x

for every λ ∈ C. If λ ∈ ρ(T ) we have f (λ) = (λI − T )−1x, and hence, since
‖(λI −T )−1‖ → 0 as |λ| → +∞, f (λ) is a bounded function on C. By Liouville’s
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theorem f (λ) is then constant, and therefore, since (λI−T )−1x → 0 as |λ| → +∞,
f is identically 0 on C. This proves that x = 0. Since 0 ∈ XT (∅) we then conclude
that XT (∅) = {0}.

Conversely, let λ0 ∈ C be arbitrary and suppose that for every 0 �= x ∈ X

we have σT (x) �= ∅. Consider any analytic function f : U → X defined on a
neighborhood U of λ0 such that the equation (λI − T )f (λ) = 0 holds for every
λ ∈ U . From the equality

σT (f (λ)) = σT (0) = ∅,

see Theorem 2.9, we deduce that f ≡ 0 on U and therefore T has the SVEP at λ0.
Since λ0 is arbitrary, T has the SVEP.

(ii) ⇒ (iii) Trivial.
(iii) ⇒ (ii) Suppose that XT (∅) is closed. From part (iii) of Theorem 2.13 we

deduce that

(λI − T )(XT (∅)) = XT (∅) for every λ ∈ C.

Now, let S denote the restriction T |XT (∅). The operator λI − S is surjective and
therefore λI − S∗ is bounded below for all λ ∈ C, i.e. σap(S

∗) = ∅. This implies,
by Theorem 1.12, that the dual of XT (∅) is trivial. A standard consequence of the
Hahn–Banach theorem then implies that XT (∅) = {0}. �

Theorem 2.14 implies that a left shift L does not have the SVEP. Indeed, in
Example 2.2 we have shown that there is 0 �= x ∈ �2(N) such that σL(x) = ∅.

Note that XT (�) need not be closed for a closed subset � ⊆ C. Indeed,
Theorem 2.14 shows that XT (∅) is not closed if T does not have the SVEP.

Later, Example 2.33 will show that for a closed subset � ⊆ C the local spectral
subspaces XT (�) need not be closed even in the case when T has the SVEP.

Theorem 2.15 Suppose that Ti ∈ L(Xi), i = 1, 2, where Xi are Banach spaces.
Then T1 ⊕ T2 has the SVEP at λ0 if and only if both T1, T2 have the SVEP at λ0. If
T1, T2 have the SVEP then

σT1⊕T2(x1 ⊕ x2) = σT1(x1) ∪ σT2(x2). (2.5)

Proof First, suppose that T1 and T2 have the SVEP at λ0 and let f = f1 ⊕f2 : U →
X1 ⊕X2 be analytic on a neighborhood U of λ0, where fi : U → Xi , i = 1, 2, are
also analytic on U . Obviously, for every λ ∈ U the condition (λI−T1⊕T2)f (λ) = 0
implies that (λI − Ti)fi(λ) = 0, i = 1, 2. The SVEP of T1 and T2 then entails that
f1 ≡ 0 and f2 ≡ 0 on U . Thus f ≡ 0 on U .

Conversely, assume that T1 ⊕ T2 satisfies the SVEP at λ0 and let fi : U → Xi
be two analytic functions, defined on a neighborhood U of λ0, which satisfy for
i = 1, 2, the equations (λI − Ti)fi(λ) = 0 for all λ ∈ U . For all λ ∈ U we then
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have

0 = (λI − T1)f1(λ)⊕ (λI − T2)f2(λ) = (λ− T1 ⊕ T2)[f1(λ)⊕ (f2(λ)].

The SVEP of T1 ⊕T2 at λ0 then implies f1(λ)⊕ (f2(λ) ≡ 0 on U , and hence fi ≡ 0
on U for i = 1, 2.

To show equality (2.5), suppose that T1 ⊕ T2 has the SVEP. Assume that λ ∈
ρT1⊕T2(x1 ⊕ x2). Then there exists an open neighborhood U of λ and an analytic
function f := f1 ⊕ f2 : U → X1 ⊕X2, with f1 and f2 analytic, such that

(λI − T1)f1(λ)⊕ (λI − T2)f2(λ) = (λI − T1 ⊕ T2)f (λ) = x1 ⊕ x2.

Therefore, (λI − Ti)fi(λ) = xi , i = 1, 2, so λ ∈ ρT1(x1) ∩ ρT2(x2). This shows the
inclusion σT1(x1)∪σT2(x2) ⊆ σT1⊕T2(x1 ⊕x2). The opposite inclusion has a similar
proof. �

As an immediate consequence of Theorem 2.15 we have:

Corollary 2.16 Suppose that T ∈ L(X) has the SVEP and X =M ⊕N , whereM
and N are two closed and invariant subspaces. If T1 := T | M and T2 := T | N ,
then we have XT (�) = MT1(F )⊕NT2(F ) for all closed F ⊆ C. �
Theorem 2.17 Suppose that T ∈ L(X) admits, with respect to a decomposition

X = M ⊕N , the representation T =
(
T1 T2

0 T3

)
, where T3 is nilpotent. Then T has

the SVEP if and only if T1 has the SVEP.

Proof Suppose that T1 has the SVEP. Fix arbitrarily λ0 ∈ C and let f : U → X

be an analytic function defined on an open disc U centered at λ0 such that (λI −
T )f (λ) = 0 for all λ ∈ U . Set f (λ) := f1(λ) ⊕ f2(λ) on X = M ⊕ N . Then we
can write

0 = (λI − T )f (λ) =
(
λI − T1 −T2

0 −λI − T3

)(
f1(λ)

f2(λ)

)

=
(
(λI − T1)f1(λ)− T2f2(λ)

(λI − T3)f2(λ)

)
.

Then (λI − T3)f2(λ) = 0 and

(λI − T1)f1(λ)− T2f2(λ) = 0.

Since a nilpotent operator has the SVEP, f2(λ) = 0, and consequently
(λI − T1)f1(λ) = 0. But T1 has the SVEP at λ0, so f1(λ) = 0 and hence f (λ) = 0
on U . Thus, T has the SVEP at λ0. Since λ0 is arbitrary then T has the SVEP.
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Conversely, suppose that T has the SVEP. Since T1 is the restriction of T to M
and the SVEP from T is inherited by the restriction to closed invariant subspaces,
then T1 has the SVEP. �

In the sequel we shall need the following lemma.

Lemma 2.18 Let T ∈ L(X) and K ⊂ C be a compact set and let � be a contour
in the complement C \ K that surrounds K . Suppose that f : C \ K → X is an
analytic function which satisfies (λI − T )f (λ) = x for all λ ∈ C \K . Then

x = 1

2πi

∫
�

f (λ) dλ.

Proof Let U := C \K . Observe first that we may suppose that � is contained in the
unbounded connected component of the open set U . Indeed, f is analytic on U and
by Cauchy’s theorem only the part of � which lies in the unbounded component of
U contributes to the integral

∫
� f (λ) dλ.

Let � be the boundary, positively oriented, of a disc centered at 0 and having
radius large enough to include in its interior both the sets � and σ(T ). From
Cauchy’s theorem we have

∫
�

f (λ)dλ =
∫
�

f (λ)dλ.

Now, if λ ∈ � we have λ ∈ ρ(T ) and

f (λ) = (λI − T )−1x =
∞∑
n=0

λ−n−1T nx.

A simple calculation then gives that
∫
� f (λ)dλ = 2πix. �

Next we want to establish a local decomposition property that will be needed
later.

Theorem 2.19 Suppose that T ∈ L(X) has the SVEP. If F1 and F2 are two closed
and disjoint subsets of C then

XT (F1 ∪ F2) = XT (F1)⊕XT (F2),

where the direct sum is in the algebraic sense.

Proof The inclusion XT (F1)⊕XT (F2) ⊆ XT (F1 ∪ F2) is obvious.
To show the opposite inclusion, observe first that we may assume that F1 and F2

are both compact, since, by part (ii) of Theorem 2.13, we have XT (F) = XT (F ∩
σ(T )) for all subsets F of C. Now, if x ∈ XT (F1 ∪F2), the SVEP for T entails that
there is an analytic function f : C \ (F1 ∪ F2)→ X such that

(λI − T )f (λ) = x for all λ ∈ C \ (F1 ∪ F2).
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Let �1,�2 be two compact disjoint sets such that �i , for i = 1, 2, is a
neighborhood of Fi and the boundary �i of �i is a contour surrounding Fi . From
Lemma 2.18 we have x = x1 + x2, where

xi := 1

2πi

∫
�i

f (λ) dλ for i = 1, 2.

We show now that xi ∈ XT (�i). Set

gi(μ) := 1

2πi

∫
�i

f (λ)

μ− λ dλ for all μ ∈ C \�i.

Clearly, the functions gi(λ) : C \ �i → X are analytic. Furthermore, for every
μ ∈ C \�i we have

(μI − T )gi(μ) = 1

2πi

∫
�i

(μ− λ+ λ− T ) f (λ)
μ− λ dλ

= 1

2πi

∫
�i

(λ− T ) f (λ)
μ− λ dλ+ 1

2πi

∫
�i

f (λ) dλ

= 1

2πi

∫
�i

x

μ− λ dλ+ xi.

But, from Cauchy’s theorem, we have that

1

2πi

∫
�i

x

μ− λ dλ = 0 for all μ ∈ C \�i,

thus (μI − T )gi(μ) = xi for i = 1, 2 and this implies xi ∈ XT (�i).
To conclude the proof observe that, again by Cauchy’s theorem, the definition of

x1 and x2 does not depend on the particular choice of�1 and�2, with the properties
required above. This implies that xi ∈ XT (�i) for every compact neighborhood�i
of Fi , hence xi ∈ XT (Fi) for i = 1, 2. Therefore, x = x1 +x2, where xi ∈ XT (Fi).
To see that the sum is direct, observe that since F1 ∩ F2 = ∅, from part (v) of
Theorem 2.13, we have

XT (F1) ∩XT (F2) = XT (∅) = {0},

because, by assumption, T has the SVEP. �
We now turn to an important local spectral characterization of the analytic core

K(T ).

Theorem 2.20 For every T ∈ L(X) we have

K(T ) = XT (C \ {0}) = {x ∈ X : 0 /∈ σT (x)}.
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Proof Let x ∈ K(T ). We can suppose that x �= 0. According to the definition of
K(T ), let δ > 0 and (un) ⊂ X be a sequence for which

x = u0, T un+1 = un, ‖un‖ ≤ δn‖x‖ for every n = 0, 1, . . . .

Then the function f : D(0, 1/δ)→ X, where D(0, 1/δ) is the open disc centered at
0 with radius 1/δ, defined by

f (λ) := −
∞∑
n=1

λn−1un for all λ ∈ D(0, 1/δ),

is analytic and satisfies the equation (λI − T )f (λ) = x for every λ ∈ D(0, 1/δ).
Consequently 0 ∈ ρT (x).

Conversely, if 0 ∈ ρT (x) then there exists an open disc D(0, ε) and an analytic
function f : D(0, ε)→ X such that

(λI − T )f (λ) = x for every λ ∈ D(0, ε). (2.6)

Since f is analytic on D(0, ε) there exists a sequence (un) ⊂ X such that

f (λ) = −
∞∑
n=1

λn−1un for every λ ∈ D(0, ε). (2.7)

Clearly f (0) = −u1, and taking λ = 0 in (2.6) we obtain

T u1 = −T (f (0)) = x.

On the other hand

x = (λI − T )f (λ) = T u1 + λ(T u2 − u1)+ λ2(T u3 − u2)+ · · ·

for all λ ∈ D(0, ε). Since x = T u1 we conclude that

T un+1 = un for all n = 1, 2, · · · .

Hence letting u0 = x the sequence (un) satisfies for all n = 0, 1, . . . the first of the
conditions which define K(T ).

It remains to prove the condition ‖un‖ ≤ δn‖x‖ for a suitable δ > 0 and
for all n = 0, 1, . . . . Take μ > 1/ε. Since the series (2.7) converges we have
|λ|n−1‖un‖ → 0 as n → ∞ for all ‖λ‖ < ε and, in particular, 1/μn−1‖un‖ → 0,
so there exists a c > 0 such that

‖un‖ ≤ c μn−1 for every n ∈ N. (2.8)
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From the estimates (2.8) we easily obtain

‖un‖ ≤
(
μ+ c

‖x‖
)n

‖x‖

and therefore x ∈ K(T ). �
The following theorem shows that the surjectivity spectrum σs(T ) of an operator

is closely related to the local spectra.

Theorem 2.21 For every operator T ∈ L(X) we have

σs(T ) =
⋃
x∈X

σT (x).

The set {x ∈ X : σT (x) = σs(T )} is of the second category in X.
Proof If λ /∈ ⋃

x∈X σT (x) then λ ∈ ρT (x) for every x ∈ X and
hence, directly from the definition of ρT (x), we conclude that the equation
(λI − T )y = x always admits a solution for every x ∈ X, hence λI − T is
surjective and λ /∈ σs(T ).

Conversely, suppose λ /∈ σs(T ). Then λI − T is surjective and therefore X =
K(λI − T ). From Theorem 2.20 it follows that 0 /∈ σλI−T (x) for every x ∈ X, and
consequently λ /∈ σT (x) for every x ∈ X.

To show the second assertion, let � denote a countable subset of σs(T ). Then
(λI − T )(X) �= X for all λ ∈ �, and the range (λI − T )(X) is of the first category
in X (see Appendix A). Consequently, the subspace

M :=
⋂
λ∈�
(λI − T )(X)

is of the first category in X. Since X is of the second category, the complement
X \M is also of the second category in X. Now, if x ∈ X \M then� ⊆ σT (x), and
hence

σs(T ) ⊆ � ⊆ σT (x),

so the second assertion follows. �

2.2 Glocal Spectral Subspaces

We now introduce a variant of the concept of an analytic subspace XT (�). These
subspaces are more appropriate, for certain general questions of local spectral
theory, than the analytic subspace XT (F), and in particular these subspaces are
more useful in the case when T does not have the SVEP.
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Definition 2.22 Let F ⊆ C be a closed subset. If T ∈ L(X) the glocal spectral
subspace XT (F ) is defined as the set of all x ∈ X such that there is an analytic
function f : C \ F → X such that

(λI − T )f (λ) = x for all λ ∈ C \ F.

It is easy to verify that XT (F ) is a linear subspace of X. Clearly

XT (F ) ⊆ XT (F) for every closed subset F ⊆ C . (2.9)

In the following theorem we give a few basic properties of the glocal subspaces.
Some of these properties are rather similar to those of local spectral subspaces. The
interested reader may find further results on glocal spectral subspaces in Laursen
and Neumann [216].

Theorem 2.23 For an operator T ∈ L(X), the following statements hold:
(i) XT (∅) = {0} and XT (σ (T )) = X;

(ii) XT (F ) = XT (F ∩ σ(T )) and (λI − T )XT (F ) = XT (F ) for every closed set
F ⊆ C and all λ ∈ C \ F ;

(iii) If (λI − T )x ∈ XT (F ) for some λ ∈ F , then x ∈ XT (F );
(iv) XT (F1 ∪F2) = XT (F1)+XT (F2) for all disjoint closed subsets F1 and F2 of

C;
(v) T has the SVEP if and only ifXT (F ) = XT (F), for every closed subsetF ⊆ C,

and this happens if and only if XT (F ) ∩ XT (G) = {0} for all disjoint closed
subsets F and G of C.

Proof (i) Suppose that x ∈ XT (∅) and let f : C → X be an analytic function
such that (λI − T )f (λ) = x for all λ ∈ C. Then f (λ) coalesces with the resolvent
function R(λ, T ) := (λI − T )−1 on ρ(T ), so f (λ) → 0 as |λ| → ∞. By the
vector-valued version of Liouville’s theorem f ≡ 0, and therefore x = 0. The
second equality of part (i) is straightforward.

The proof of (ii) easily follows from Theorem 2.9. To show the assertion (iii) let
f : C\F → X be an analytic function which satisfies (μI −T )f (μ) = (λI −T )x
for all μ ∈ C \ F). Define

g(μ) := f (μ)− x
μ− λ for all μ ∈ C \ F.

Clearly, g is analytic and satisfies (μI − T )g(μ) = x for all μ ∈ C \ F , so x ∈
XT (F ).

The proof of the decomposition (iv) is similar to the proof of that given for
spectral local subspaces.

(v) Evidently, if T has the SVEP and F ⊆ C is closed then XT (F ) = XT (F).
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Conversely, if XT (F) = XT (F ) for all closed sets F ⊆ C then

XT (∅) = XT (∅) = {0},

so, by Theorem 2.14, T has the SVEP. To show the second equivalence, assume
that T has the SVEP. Since F ∩ G = ∅ we then have {0} = XT (∅) = XT (F) ∩
XT (G) = XT (F )∩XT (G). Conversely, suppose that XT (F )∩XT (G) = {0} for all
disjoint closed subsets F and G and assume that T does not have the SVEP. Then
there exists a non-trivial analytic function f : O → X on an open set O such that
(λI − T )f (λ) = 0 for all λ ∈ O. Let λ0 ∈ O be such that f (λ0) �= 0, and set
F := {λ0} andG := C \O. The subsets F andG are closed and disjoint, moreover
f (λ0) ∈ ker(λ0I − T ), and hence f (λ0) ∈ XT (F), by part (iii) of Theorem 2.23.
Define g : O → X as follows

g(λ) :=
⎧⎨
⎩
f (λ)− f (λ0)

λ− λ0
for all λ �= λ0

f ′(λ0) for λ = λ0.

Then we have (λI − T )g(λ) = f (λ0) for all λ ∈ O and hence f (λ0) ∈ XT (G).
Therefore, 0 �= f (λ0) ∈ XT (F ) ∩ XT (G), a contradiction. Hence T has the
SVEP. �

If T ∈ L(X) is onto then, by Theorem 2.20,X = K(T ) = XT (C\{0}). Actually,
if T is onto,X is the local spectral subspace associated with a smaller set than C\{0}.
Theorem 2.24 If T ∈ L(X) is onto then there exists a δ > 0 such that X =
XT (C \ D(0, δ)) = XT (C \ D(0, δ)).
Proof From the open mapping theorem we know that there exists a δ > 0 such that,
for every u ∈ X, there is a v ∈ X for which T v = u and δ‖v‖ ≤ ‖u‖. For an
arbitrary x ∈ X, set x0 := x and define a sequence (xn) such that T xn := xn−1 and
δ‖xn‖ ≤ ‖xn−1‖ for all n ∈ N. Since ‖xn‖ ≤ 1

δn
‖x‖, the series defined as

f (μ) :=
∞∑
n=0

μnxn+1

converges locally uniformly on the open disc D(0, δ), and hence defines an analytic
function f : D(0, δ)→ X for which

(μI − T )f (μ) =
∞∑
n=0

μnxn −
∞∑
n=0

μn+1xn+1 = x

for all μ ∈ D(0, δ). Therefore, x ∈ XT (C \ D(0, δ). This shows that X = XT (C \
D(0, δ)). Obviously, X = XT (C \ D(0, δ)), since XT (C \ D(0, δ)) ⊆ XT (C \
D(0, δ)). �
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Theorem 2.25 If T ∈ L(X) is of Kato-type, then there exists a δ > 0 for which

K(T ) = XT (C \ D(0, δ)) = XT (C \ D(0, δ)). (2.10)

Proof By Theorem 1.63 K(T ) is closed, and, by Theorem 1.64, we have K(T ) =
T∞(X). From T (K(T )) = K(T ) we see that T |T∞(X) is onto. Furthermore, by
Theorem 2.24, we have T∞(X) ⊆ XT (C \ D(0, δ)) for δ small enough. From
Theorem 2.20 we also deduce that

XT (C \ D(0, δ)) ⊆ XT (C \ D(0, δ)) ⊆ XT (C \ {0} = K(T ),

so,

K(T ) = XT (C \ D(0, δ)) ⊆ XT (C \ D(0, δ))

for some sufficiently small δ > 0, so equality (2.10) is proved. �
Part (iv) of Theorem 2.23 also shows that for an operator without the SVEP the

direct sum proved in Theorem 2.19 may fail.
The next result shows that if T ∈ L(X) has a disconnected spectrum thenX may

be decomposed as the topological direct sum of closed glocal spectral subspaces.

Theorem 2.26 Suppose that for T ∈ L(X) we have σ(T ) = F1 ⊕ F2, where F1
and F2 are disjoint closed subsets of C. Then the subspaces XT (Fi), i = 1, 2, are
closed and X = XT (F1)⊕ XT (F2).

Proof From the Riesz functional calculus we know that there is a decomposition
X = X1 ⊕ X2, with X1 and X2 closed and T -invariant subspaces. Moreover,
σ(T |Xi) = Fi for i = 1, 2, and it is immediate that Xi ⊆ XT (Fi), so X =
XT (F1)+ XT (F2).

To show that this sum is direct, let x ∈ XT (F1)∩XT (F2). Then, for each i = 1, 2,
there exists an analytic function fi : C \ Fi → X such that (λI − T )fi(λ) = x for
all λ ∈ C \ Fi . For every

λ ∈ (C \ F1) ∩ (C \ F2) = C \ σ(T ) = ρ(T ),

we have

f1(λ) = (λI − T )−1x = f2(λ).

Therefore, f1 and f2 must coincide whenever they are both defined. Because (C \
F1) ∪ (C \ F2) = C, there exists an analytic function f defined on C for which
(λI − T )f (λ) = x holds for all λ ∈ C. From part (i) of Theorem 2.23 we then
conclude that x = 0. Hence,X = XT (F1)⊕XT (F2) and XT (Fi) = Xi , in particular
both XT (Fi), i = 1, 2, are closed. �
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Evidently, XT (F ) = X for a closed subset F of C implies that σs(T ) ⊆ F . The
next result shows that the reverse implication holds. This result is based on a deep
result of Leiterer [226] and we refer to [216, Theorem 3.3.12] for a proof.

Theorem 2.27 If T ∈ L(X) and F ⊆ C is closed then the following assertions
hold:

(i) XT (F ) = X if and only if σs(T ) ⊆ F .
(ii) XT (F ) = {0} if and only if σap(T ) ∩ F = ∅.
Remark 2.28 Let U denote an open neighborhood of σ(T ) and f : U → C be an
analytic function. Define g : U × U → C as follows

g(μ, λ) :=
⎧⎨
⎩
f (μ)− f (λ)
μ− λ for all λ,μ ∈ U, λ �= μ,
f ′(λ) for μ = λ.

Clearly, g is analytic in each of the two variables μ and λ, and satisfies f (μ) −
f (λ) = (μ − λ)g(μ, λ) for all μ, λ ∈ U . From the Riesz functional calculus we
have f (T ) − f (λ) = (T − λI)g(T , λ) for all λ ∈ U. Furthermore, it is easily
seen, from the integral formula for the Riesz functional calculus, that the function
λ→ g(T , λ) is an analytic operator function from U into L(X).

The next theorem shows that the glocal spectral subspaces behave canonically
under the functional calculus.

Theorem 2.29 If T ∈ L(X), and f : U → X is analytic on an open neighborhood
of the spectrum σ(T ), then

Xf (T )(F ) = XT (f−1(F )) for all closed subsets F ⊆ C.

Proof Let F be a closed subset of C, and x ∈ Xf (T )(F ). Choose an analytic
function h : C \ F → X such that (μI − f (T ))h(μ) = x for all μ ∈ C \ F .
Then, for every λ ∈ U \f−1(F ) = f−1(C\F), we have (λI −f (T ))h(f (λ)) = x.
From Remark 2.28 we have that

(λI − T )g(T , λ)h(f (λ)) = x

holds for all λ ∈ U \f−1(F ). From Remark 2.28 we also have that the function λ→
g(T , λ)h(f (λ)) is analytic on the set U\f −1(F ), hence x ∈ XT (f−1(F ))∪(C\U)).
But σ(T ) ⊆ U , so, by part (ii) of Theorem 2.23, we conclude that x ∈ XT (f−1(F )).
Therefore, Xf (T )(F ) ⊆ XT (f−1(F )).

To show the reverse inclusion, observe that if K := f−1(F ) ∩ σ(T ) then, by
part (ii) of Theorem 2.23, it suffices to prove that XT (K) ⊆ XT (F ). Since K is
a compact subset of the open set U , there exists a closed disc D(0, ε0) such that
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K + D(0, ε0) ⊆ U . The compactness of K and the continuity of f entails that
⋂

0<ε<ε0

f (K + D(0, ε0)) ⊆ f (K) ⊆ F,

and hence

C \ F ⊆
⋃

0<ε<ε0

(C \ f (K + D(0, ε0)).

Now, let x ∈ XT (K) and let h : C \ K → X be an analytic function for which
(λI − T )h(λ) = x holds for all λ ∈ C \ K . For 0 < ε < ε0, consider the open
disc D(0, ε) and denote by �ε a contour in K + D(0, ε) which surrounds K . Set
Vε := C \ f (K + D(0, ε)). Clearly, f (λ) �= Vε for all λ ∈ �ε . Define

gε(μ) := 1

2πi

∫
�ε

h(λ)

μ− f (λ)dλ for all μ ∈ Vε.

Clearly, gε : Vε → X is analytic, and, by our Remark 2.28 and by Lemma 2.18, for
every μ ∈ Vε, we have

(μI − f (T ))gε(μ) = 1

2πi

∫
�ε

(μI − f (T )) h(λ)

μ− f (λ)dλ

= 1

2πi

∫
�ε

(f (λ)I − f (T )) h(λ)

μ− f (λ)dλ− 1

2πi

∫
�ε

h(λ)dλ

= 1

2πi

∫
�ε

g(T , λ)
x

μ− f (λ)dλ+ x.

By Cauchy’s integral theorem the last integral is 0, since for arbitrary μ ∈ Vε the
function λ → (μ− f (λ))−1g(T , λ)x is analytic onK + D(0, ε). Hence,

(μI − f (T ))gε(μ) = x for all μ ∈ Vε.
Another application of Cauchy’s theorem gives that gε is the restriction of every
gδ to Vε for all 0 < δ < ε < ε0. Since C \ F ⊆ ⋂

0<ε<ε0
Vε, the family of

functions {gε} leads to a well defined analytic function g : C \ F → X which
satisfies (μI − f (T ))g(μ) = x for all μ ∈ C \ F , so x ∈ Xf (T )(F ), and hence
XT (f−1(F )) ⊆ Xf (T )(F ). �

The glocal spectral subspace XT (D(0, ε)) associated with the closed disc D(0, ε)
may be characterized as follows:

Theorem 2.30 If T ∈ L(X) then

XT (D(0, ε)) =
{
x ∈ X : lim sup

n→∞
‖T nx‖1/n ≤ ε

}
. (2.11)
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Proof For every x ∈ X suppose that ηT (x) := lim supn→∞ ‖T nx‖1/n ≤ ε. Clearly,
the series

f (λ) :=
∞∑
n=1

λ−nT n−1x, λ ∈ C \ D(0.ε)

converges locally uniformly, so it defines anX-valued function on the set C\D(0, ε).
Clearly,

(λI − T )f (λ) = x for all λ ∈ XT (D(0, ε)),

so x ∈ XT (D(0, ε).
Conversely, assume that x ∈ XT (D(0, ε)) and consider an analytic function f :

C \ D(0, ε) → X such that (λI − T )f (λ) = x holds for all λ ∈ C \ D(0, ε). If
|λ| > max {ε, ‖T ‖} we have

f (λ) = (λI − T )−1x =
∞∑
n

λ−nT n−1x,

and consequently f (λ) → 0 as |λ| → ∞. Consider now the open disc D(0, 1/ε)
of C centered at 0 with radius 1/ε. The analytic function g : D(0, 1/ε) → X

defined by

g(μ) :=
⎧⎨
⎩
f

(
1

λ

)
if 0 �= μ ∈ D(0, 1/ε),

0 if μ = 0,

satisfies the equality

g(μ) =
∞∑
n=1

μnT n−1x for all |μ| < 1

max{ε, ‖T ‖} . (2.12)

Since g is analytic on D(0, 1/ε), from Cauchy’s integral formula (proceeding
exactly as in the scalar setting) we conclude that equality (2.12) holds even for
all μ ∈ D(0, 1/ε). This shows that the radius of convergence of the power series
representing g(μ) is greater then 1/ε. The standard formula for the radius of
convergence of a vector-valued power series then implies that ηT (x) < ε and hence
equality (2.11) holds. �

2.3 The Quasi-Nilpotent Part of an Operator

We now introduce an important subspace in Fredholm theory and local spectral
theory.
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Definition 2.31 The quasi-nilpotent part H0(T ) of an operator T ∈ L(X) is
defined as H0(T ) = XT ({0}).

The quasi-nilpotent part of an operator may be characterized as follows:

Theorem 2.32 For every T ∈ L(X) we have

H0(T ) = {x ∈ X : lim sup
n→∞

‖T nx‖1/n = 0}. (2.13)

Moreover, if T has the SVEP then H0(T ) = XT ({0}).
Proof Clearly, the equality (2.13) is obtained by taking ε = 0 in Theorem 2.30. If
T has the SVEP then XT ({0}) = XT ({0}), by part (iv) of Theorem 2.23. �

It should be noted that in general the limit limn→∞ ‖T nx‖1/n does not exist. In
fact it has been observed, by Daneš in [107], that the set of all accumulation points
of the sequence (‖T nx‖1/n) is the whole interval (a, b) where

a := lim inf
n→∞ ‖T nx‖1/n and b := lim sup

n→∞
‖T nx‖1/n.

The quantity

rx(T ) := lim sup
n→∞

‖T nx‖1/n

is called the local spectral radius of T at x. It should be noted that in general,

rx(T ) ≤ max{|λ| : λ ∈ σT (x)}.

If T has the SVEP then

rx(T ) = max{|λ| : λ ∈ σT (x)}.

For a proof, see Laursen and Neumann [216, Proposition 3.3.13].
The following example shows that the quasi-nilpotent part H0(T ) need not be

closed even if T has the SVEP.

Example 2.33 Let X := �2 ⊕ �2 · · · be provided with the norm

‖x‖ :=
( ∞∑
n=1

‖xn‖2

)1/2

for all x := (xn) ∈ X,

and define

Tnei :=
{
ei+1 if i = 1, · · · , n ,
ei+1

i − n if i > n.
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It is easily seen that

‖T n+kn ‖ = 1

k! and

(
1

k!
) 1
n+k → 0 as k → ∞,

from which we obtain that σ(Tn) = {0}. Moreover, every Tn is injective and the
point spectrum σp(Tn) = ∅, thus Tn has the SVEP.

Let us define T := T1 ⊕ · · · ⊕ Tn ⊕ · · · . From the estimate ‖Tn‖ = 1 for every
n ∈ N, we easily obtain ‖T ‖ = 1. Moreover, since σp(Tn) = ∅ for every n ∈ N, it
also follows that σp(T ) = ∅, hence T has the SVEP.

Now, let us consider the sequence x = (xn) ⊂ X defined by xn := e1
n

for every
n ∈ N. We have

‖x‖ =
( ∞∑
n=1

1

n2

) 1
2

<∞ ,

which implies that x ∈ X. Moreover,

‖T nx‖1/n ≥ ‖T nn
e1

n
‖1/n =

(
1

n

) 1
n

and the last term does not converge to 0. From this it follows that σT (x) properly
contains {0} and therefore, x /∈ XT ({0}) = H0(T ).

Finally,

�2 ⊕ �2 · · · ⊕ �2 ⊕ {0} · · · ⊂ H0(T ),

where the non-zero terms are n. This holds for every n ∈ N, so H0(T ) is dense in
X. Since H0(T ) �= X it then follows that H0(T ) is not closed.

In the following we collect some basic properties of H0(T ).

Lemma 2.34 For every T ∈ L(X), X a Banach space, we have:

(i) ker (T m) ⊆ N∞(T ) ⊆ H0(T ) for every m ∈ N;
(ii) x ∈ H0(T )⇔ T x ∈ H0(T );

(iii) ker (λI − T ) ∩H0(T ) = {0} for every λ �= 0;
(iv) H0(T ) ⊆ (λI − T )(X) for all λ �= 0;
(v) If T S = ST then H0(T ) ⊆ H0(T S).

Proof

(i) If T mx = 0 then T nx = 0 for every n ≥ m.
(ii) If x0 ∈ H0(T ) then from the inequality ‖T nT x‖ ≤ ‖T ‖‖T nx‖ it easily follows

that T x ∈ H0(T ). Conversely, if T x ∈ H0(T ), from

‖T n−1T x‖1/n−1 = (‖T nx‖1/n)n/n−1

we conclude that x ∈ H0(T ).
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(iii) If x �= 0 is an element of ker (λI − T ) then T nx = λnx, so

lim
n→∞ ‖T nx‖1/n = lim

n→∞ |λ|‖x‖1/n = |λ|

and therefore x /∈ H0(T ).
(iv) If λ �= 0 then {0} ⊆ C \ {λ}, and from Theorem 2.20 we obtain

H0(T ) = XT ({0}) ⊆ XT ({0}) ⊆ XT (C \ {λ}) = K(λI − T ).

The inclusion (iv) then follows fromK(λI − T ) ⊆ (λI − T )(X).
(v) This follows easily from definition. �
Theorem 2.35 T ∈ L(X) is quasi-nilpotent if and only if H0(T ) = X.
Proof If T is quasi-nilpotent then limn→∞ ‖T n‖1/n = 0, so that from ‖T nx‖ ≤
‖T n‖‖x‖ we obtain that limn→∞ ‖T nx‖1/n = 0 for every x ∈ X.

Conversely, assume that H0(T ) = XT ({0} = X. If x ∈ XT ({0} = X then there
is an analytic function f : C \ {0} → X such that

(λI − T )f (λ) = x for all λ �= 0,

thus (λI − T ) is surjective for all λ �= 0. On the other hand, for every λ �= 0 we
have that

{0} = ker (λI − T ) ∩H0(T ) = ker (λI − T ) ∩X = ker (λI − T ),

which shows that λI − T is invertible and therefore σ(T ) = {0}. �
We now describe the quasi-nilpotent part of an operator T which admits a

generalized Kato decomposition. We start with an elementary lemma.

Lemma 2.36 Assume that T ∈ L(X) admits a GKD (M,N). Then

H0(T ) = H0(T |M)⊕H0(T |N) = H0(T |M)⊕N.

Proof From Theorem 2.35 we know that N = H0(T |N). The inclusion H0(T ) ⊇
H0(T |M)+H0(T |N) is clear. In order to show the opposite inclusion, let us consider
an arbitrary element x ∈ H0(T ) and set x := u + v, with u ∈ M and v ∈ N .
Evidently, N = H0(T |N) ⊆ H0(T ), thus u = x − v ∈ H0(T ) ∩M = H0(T |M)
and henceH0(T ) ⊆ H0(T |M)+H0(T |N). Clearly the sumH0(T |M)+N is direct
sinceM ∩N = {0}. �

The next result shows that for a semi-regular operator T , or if T is a semi-
Fredholm operator, the quasi-nilpotent part and the hyper-kernel of T have the same
closure.
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Theorem 2.37 For every bounded operator T ∈ L(X) we have:
(i) H0(T ) ⊆ ⊥K(T �) and K(T ) ⊆ ⊥H0(T

�).
(ii) If T is semi-regular or semi-Fredholm, then

H0(T ) = N∞(T ) = ⊥K(T �) andK(T ) = ⊥H0(T
�). (2.14)

(iii) If T is semi-regular then H0(T ) ⊆ K(T ).
Proof

(i) Let u ∈ H0(T ) and f ∈ K(T �). From the definition of K(T �) we know that
there exists a δ > 0 and a sequence (gn), n ∈ Z+, of X� such that

g0 = f, T �gn+1 = gn and ‖gn‖ ≤ δn‖f ‖

for every n ∈ Z+. These equalities imply that f = (T �)ngn for every n ∈ Z+,
and hence

f (u) = (T �)ngn(u) = gn(T nu) for every n ∈ Z+.

From this it then follows that |f (u)| ≤ ‖T nu‖‖gn‖ for every n ∈ Z+, and
consequently

|f (u)| ≤ δn‖f ‖‖T nu‖ for every n ∈ Z+. (2.15)

Since u ∈ H0(T ) we then obtain that limn→∞ ‖T nu‖1/n = 0 and hence, by
taking the n-th root in (2.15), we conclude that f (u) = 0. ThereforeH0(T ) ⊆
⊥K(T �).

The inclusion K(T ) ⊆ ⊥H0(T
�) may be proved in a similar way.

(ii) Assume that T is semi-regular. Then, by Theorem 1.43, T � is semi-regular and
hence, by Theorem 1.44, (T �)n is semi-regular, so T �n(X�) is closed for all
n ∈ N. From the first part we also know that

N∞(T ) ⊆ H0(T ) ⊆ ⊥K(T �) = ⊥K(T �),

since ⊥K(T �) is closed.
To show the first two equalities of (2.14) we need only to show the inclusion

⊥K(T �) ⊆ N∞(T ). For every T ∈ L(X) and every n ∈ N we have ker T n ⊆
N∞(T ), and hence

N∞(T )⊥ ⊆ ker T n⊥ = T �n(X�)

because the last subspaces are closed for all n ∈ N.
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From this we easily obtain that

N∞(T )⊥ ⊆ T �∞(X�) = K(T �),

where the last equality holds by Theorem 1.64. Consequently ⊥K(T �) ⊆
N∞(T ), and hence the equalities (2.14) are proved. The equality K(T ) =
⊥H0(T

�) is proved in a similar way.
The proof in the case where T is semi-Fredholm is analogous.

(iii) The semi-regularity of T entails that N∞(T ) ⊆ T∞(X) = K(T ), where the
last equality follows from Theorem 1.64. Consequently from part (ii) it follows
that

H0(T ) = N∞(T ) ⊆ K(T ) = K(T ),

since K(T ) is closed, by Theorem 1.64. �
Corollary 2.38 Let T ∈ L(X) be semi-regular. Then T (H0(T )) = H0(T ).

Proof Clearly by (ii) of Lemma 2.34 it suffices to show the inclusion H0(T ) ⊆
T (H0(T )). Let x ∈ H0(T ). From part (iii) of Theorem 2.37 we have x ∈ K(T ) =
T (K(T )), so x = Ty for some y ∈ X and from part (ii) of Lemma 2.34 we conclude
that y ∈ H0(T ). Hence H0(T ) ⊆ T (H0(T )). �
Theorem 2.39 Suppose H0(T ) closed or H0(T ) ∩K(T ) is closed. Then H0(T ) ∩
K(T ) = {0}.
Proof Assume first that H0(T ) is closed. Let T̃ denote the restriction of T to the
T -invariant subspace H0(T ). Clearly, H0(T ) = H0(T̃ ), thus T̃ is quasi-nilpotent.
Therefore K(T̃ ) = {0}. On the other hand it is easily seen that H0(T ) ∩ K(T ) =
K(T̃ ) = {0}.

Assume that Y := H0(T ) ∩ K(T ) is closed. Clearly, Y is invariant under T , so
we can consider the restriction T̂ := T |Y . If y ∈ Y then

‖T̂ ny‖ 1
n = ‖T ny‖ 1

n → as n → ∞,

hence y ∈ H0(T̂ ) and consequently, H0(T̂ ) = Y . This shows that T̂ is quasi-
nilpotent and hence K(T̂ ) = {0}. We claim that Y = K(T̂ ).

Choose y ∈ Y = H0(T ) ∩ K(T ). From the definition of K(T ) there exists a
sequence (yn)n=0,1,... in X and a δ > 0 such that

y0 = y, Tyn = yn−1 and ‖yn‖ ≤ δn‖y‖ for all n = 0, 1, . . . .

Since y ∈ Y ⊆ H0(T ), according to Corollary 2.38, we have yn ∈ H0(T ) for all
n ∈ N. Furthermore, since y ∈ K(T ) = XT (C\{0}), from part (ii) of Theorem 2.13
we also have yn ∈ K(T ) for all n, so yn ∈ Y and hence y ∈ K(T̂ ). Therefore,
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Y ⊆ K(T̂ ). The opposite inclusion is clear, since K(T̂ ) = K(T ) ∩ Y ⊆ Y . Thus,

Y = H0(T ) ∩K(T ) = K(T̂ ) = {0}.
�

Corollary 2.40 If T is semi-regular and eitherH0(T ) orH0(T )∩K(T ) are closed
then H0(T ) = {0}.
Proof If T is semi-regular then T (H0(T ) = H0(T ), by Corollary 2.38. Suppose
first that H0(T ) is closed. Then H0(T ) ⊆ K(T ) and hence, by Theorem 2.39, we
have that H0(T ) = H0(T ) ∩K(T ) = {0}.

Suppose that H0(T ) ∩K(T ) is closed. Since T is semi-regular, ker T ⊆ T n(X)
for every n ∈ N and this is equivalent to saying that N∞(T ) ⊆ T∞(X), by
Corollary 1.17. Moreover, by Theorem 1.44, K(T ) = T∞(X) is closed. The semi-
regularity of T also implies, from part (ii) of Theorem 2.37, that

H0(T ) ⊆ H0(T ) = N∞(T ) ⊆ T∞(X) = K(T ) = K(T ),

and henceH0(T )∩K(T ) = H0(T ) is closed. From the first part of the proof it then
follows that H0(T ) ∩K(T ) = {0}. �

We now give a characterization of the isolated points of σs(T ).

Theorem 2.41 If T ∈ L(X) thenX = H0(λI−T )+K(λI−T ) if and only if σs(T )

does not cluster at λ. In particular, if λ ∈ σs(T ) thenX = H0(λI −T )+K(λI−T )
if and only if λ ∈ iso σs(T ).

Proof We can take λ = 0. The equivalence is obvious if 0 /∈ σs(T ), since K(λI −
T ) = X in this case. Suppose that 0 ∈ σs(T ). By Theorems 2.27 and 2.23 we have

X = XT (σs(T )) = XT ({0})+ XT (σs(T ) \ {0}).

But by Theorem 2.20 we have

XT (σs(T ) \ {0}) ⊆ XT (C \ {0} = K(T )),

from which we obtain H0(T )+K(T ) = X.
Conversely, suppose that 0 ∈ σs(T ) andH0(T )+K(T ) = X. Then every x ∈ X

may be written as x = x1+x2, where x1 ∈ H0(T ) and x2 ∈ K(T ). Clearly, from the
definition of H0(T ), we have σT (x1) ⊆ {0}, while 0 /∈ σT (x2), by Theorem 2.23.
Therefore,

σT (x) ⊆ σT (x1) ∪ σT (x2) ⊆ {0} ∩ σT (x2),

and this implies, since σT (x2) is closed, that 0 is isolated in σT (x). By Theorem 2.21
there exists an x0 ∈ X for which σT (x0) = σs(T ), so we can conclude that 0 is
isolated in σs(T ). �
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The next corollary is an obvious consequence of Theorem 2.41, once we observe
the equality σap(T ) = σs(T

∗).

Corollary 2.42 If T ∈ L(X) then X∗ = H0(λI − T ∗)+K(λI − T ∗) if and only if
σap(T ) does not cluster at λ.

Theorem 2.41 has some other interesting consequences:

Corollary 2.43 If T ∈ L(X) the following assertions hold:
(i) X = H0(λI − T ) + K(λI − T ) if and only if σT (x) does not cluster at λ for

every x ∈ X.
(ii) X = H0(λI − T )+K(λI − T ) for all λ ∈ C if and only if σ(T ) is finite.

Proof

(i) The direct implication is clear from the proof of Theorem 2.41. For the
converse, note that if λ /∈ σs(T ) then K(λI − T ) = X. Moreover, σT (x) ⊆
σs(T ) for all x ∈ X, by Theorem 2.21. The converse implication is then a direct
consequence of Theorem 2.41.

(ii) Since a compact set consisting of isolated points is a finite set, Theorem 2.41
entails that σs(T ) is finite, and hence σ(T ) is also finite. �

Remark 2.44 Since the conditionX = H0(λI −T )+K(λI−T )may be thought of
as being dual to the conditionH0(λI − T ) ∩K(λI − T ) = {0}, see Theorem 2.37,
one is tempted to conjecture that λ is isolated in σap(T ) if and only ifH0(λI −T )∩
K(λI − T ) = {0} and H0(λI − T )+K(λI − T ) is closed. The following example
shows that this is not true. Set

i(T ) := lim
n→∞ j (T

n)1/n,

where j (T ) is the injectivity modulus of T ∈ L(X), defined in Chap. 1. Let
us consider the weighted right shift S ∈ L(X), where X = �2(N), defined by
Sen := snen+1, where (en) is the canonical basis of �2(N), and (sn) is a given
weight sequence, with 0 < sn ≤ 1. We may choose the sequence (sn) such that
i(S) = 0 and r(S) > 0, r(S) the spectral radius of S, see [216, Chap. 1, §1.6]. By
[216, Prop. 1.6.15] we have

σap(S) = {λ ∈ C : i(S) ≤ |λ| ≤ r(S)},

so 0 is not isolated in σap(S). Moreover, by [216, Prop. 1.6.16], the subspaces XS(F )
are closed for all closed F ⊆ C, in particularH0(S) = XS({0}) is closed, and

K(S) =
∞⋂
n=0

Sn(X) = {0}.
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Hence, H0(S) ∩K(S) = {0} and H0(S)+K(S) = H0(S) is closed, but 0 is not an
isolated point of σap(S).

For an isolated point λ0 of σ(T ) the quasi-nilpotent part H0(λ0I − T ) and the
analytic core K(λ0I − T ) may be precisely described as a range or a kernel of the
spectral projection P0 associated with the spectral subset {λ0}.
Theorem 2.45 Let T ∈ L(X) and suppose that λ0 is an isolated point of σ(T ). If
P0 is the spectral projection associated with {λ0}, then:
(i) P0(X) = H0(λ0I − T ).

(ii) ker P0 = K(λ0I − T ).
Therefore, X = H0(λ0I − T )⊕K(λ0I − T ).

Proof

(i) Since λ0 is an isolated point of σ(T ) there exists a positively oriented circle
� := {λ ∈ C : |λ− λ0| = δ} which separates λ0 from the remaining part of the
spectrum. We have

(λ0I − T )nP0x = 1

2πi

∫
�

(λ0 − λ)n(λI − T )−1x dλ for all n = 0, 1, · · · .

Now, assume that x ∈ P0(X). We have P0x = x and it is easy to verify the
following estimate:

‖(λ0I − T )nx‖ ≤ 1

2π
2πδn+1 max

λ∈� ‖(λI − T )−1‖‖x‖.

Obviously this estimate also holds for some δ0 < δ (since � lies in ρ(T )), and
consequently

lim sup ‖(λ0I − T )nx‖1/n < δ. (2.16)

This proves the inclusion P0(X) ⊆ H0(λ0I − T ).
Conversely, assume that x ∈ H0(λ0I − T ) and hence that the inequal-

ity (2.16) holds. Let S ∈ L(X) denote the operator

S := λ0I − T
λ0 − λ .

Evidently the Neumann series

∞∑
n=0

Snx =
∞∑
n=0

(
λ0I − T
λ0 − λ

)n
x
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converges for all λ ∈ �. If yλ denotes its sum for every λ ∈ �, from a
standard argument of functional analysis we obtain that (I − S)yλ = x. A
simple calculation also shows that yλ = (λ− λ0)Rλx and therefore

Rλx = −
∞∑
n=0

λ0I − T )nx
(λ0 − λ)n+1 for all λ ∈ �.

A term by term integration then yields

P0x = 1

2πi

∫
�

Rλx dλ = − 1

2πi

∫
�

1

(λ0 − λ)x dλ = x,

so x ∈ P0(X) and this proves the inclusionH0(λ0I −T ) ⊆ P0(X), so the proof
of (i) is complete.

(ii) There is no harm in assuming that λ0 = 0. We have σ(T |P0(X)) = {0}, and
0 ∈ ρ(T |kerP0). From the equality T (kerP0) = kerP0 we obtain kerP0 ⊆
K(T ), see Theorem 1.39.

It remains to prove the reverse inclusion K(T ) ⊆ ker P0. To see this we
first show that H0(T ) ∩ K(T ) = {0}. This is clear because H0(T ) ∩ K(T ) =
K(T |H0(T )), and the last subspace is {0} since the restriction of T on the
Banach space H0(T ) is a quasi-nilpotent operator (this will be proved in the
next Corollary 2.71). Hence H0(T ) ∩ K(T ) = {0}. From this it then follows
that

K(T ) ⊆ K(T ) ∩X = K(T ) ∩ [kerP0 ⊕ P0(X)]
= kerP0 +K(T ) ∩H0(T ) = kerP0,

so the desired inclusion is proved. �
We now consider the case where 0 ∈ iso σ(T ).

Theorem 2.46 If T ∈ L(X) the following statements are equivalent:
(i) 0 ∈ iso σ(T ).

(ii) Both H0(T ) and K(T ) are closed and X = H0(T ) ⊕ K(T ), T |K(T ) is
invertible, T |H0(T ) quasi-nilpotent.

(iii) There exist two closed T -invariant subspacesM andN such thatX = M⊕N ,
T |M is invertible, T |N is quasi-nilpotent.

(iv) There exists a projection 0 �= P ∈ L(X) such that PT = T P , T + P is
invertible, T P is quasi-nilpotent.

Proof The case where 0 /∈ σ(T ) is trivial, so we can consider only the case 0 ∈
iso σ(T ).

(i) ⇒ (ii) Since 0 ∈ iso σ(T ), H0(T ) and K(T ) are both closed and X =
H0(T )⊕K(T ), by Theorem 2.45. Furthermore, if P0 denotes the spectral projection
associated with {0}, then H0(T ) = ker P0 and K(T ) = P0(X), so, by the
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spectral decomposition Theorem (see Appendix A) we have 0 /∈ σ(T |K(T ) and
{0} = σ(T |H0(T ).

(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i) We have σ(T ) = σ(T |M) ∪ σ(T |N) = σ(T |M) ∪ {0}. Since 0 /∈

σ(T |M) it then follows that 0 is an isolated point of σ(T ).
(ii) ⇒ (iv) Let P be a projection of X onto H0(T ) along K(T ). Then P(X) =

H0(T ) and ker P = K(T ). Since the pair of subspaces (H0(T ),K(T )) reduces T ,
we have PT = T P . Let x := x1 + x2 be arbitrary in X, with x2 ∈ H0(T ) and
x1 ∈ K(t). Then

‖(T P )nx‖ 1
n = ‖T nPnx‖ 1

n = ‖T nPx‖ 1
n = ‖T nx2‖ 1

n → 0,

as n→ ∞. ThenH0(T P ) = X and hence T P is quasi-nilpotent, by Theorem 2.35.
Clearly, the restriction (T + P)|K(T ) = T |K(T ) is invertible, and also (T +
P)|H0(T ) is invertible, since T |H0(T ) is quasi nilpotent and

(T + P)|H0(T ) = T |H0(T )+ IH0(T ),

where IH0(T ) denotes the identity onH0(T ). Thus, T +P = (T +P)|H0(T )⊕(T +
P)|K(T ) is invertible.

(iv) ⇒ (iii) Since X = ker P ⊕ P(X) and T P = PT , ker P and P(X) are
T -invariant. The restriction T | ker P = (T + P)| ker P is invertible, since T + P
is invertible by assumption. Suppose now that x ∈ P(X). Then

‖(T n|P(X))x‖ 1
n = ‖T nPnx‖ 1

n = ‖(T P )nx‖ 1
n → 0,

as n → ∞. This means that H0(T |P(X)) = P(X) and hence T |P(X) is quasi-
nilpotent, by Theorem 2.35.

The last assertion is clear. �
If λ0 is a pole of the resolvent we can say much more:

Corollary 2.47 Let T ∈ L(X) and suppose that λ0 is a pole of the resolvent of T ,
or, equivalently, p := p(λI − T ) = q(λI − T ) <∞. Then

H0(λ0I − T ) = ker(λ0I − T )p,

and

K(λ0I − T ) = (λ0I − T )p(X).

Proof Combine Theorem 1.36 of Appendix A with Theorem 2.45. �
In the next result we consider isolated points of the spectrum.
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Theorem 2.48 Let T ∈ L(X) and suppose that λ0 is an isolated point of σ(T ). If
λ �= λ0 then

{0} �= H0(λ0I − T ) ⊆ K(λI − T ).

Proof If P0 denotes the spectral projection associated with {λ0} then every λ �=
λ0 does not belong to the spectrum of T |P0(X), so λI − T |P0(X) is invertible,
and hence (λI − T )(P0(X) = P0(X). Since P0(X) is closed it then follows, by
Theorem 1.39, that P0(X) ⊆ K(λI − T ), while, by Theorem 2.45, we have {0} �=
P0(X) = H0(λ0I − T ). �
Corollary 2.49 If T ∈ L(X) and λ0 �= 0 is an isolated point of σ(T ) then
T (H0(λ0I − T )) = H0(λ0I − T ).
Corollary 2.50 If T ∈ L(X) and λ0 ∈ σ(T ) satisfies K(λ0I − T ) = {0} then λ0 is
the only possible isolated point of σ(T ).

Proof Suppose that σ(T ) has an isolated point λ �= λ0. By Theorem 2.48 we have
{0} �= H0(λI − T ) ⊆ K(λ0I − T ), a contradiction. �

Recall that an operator R ∈ L(X) is said to be a Riesz operator if λI − R

is a Fredholm operator for every λ ∈ C \ {0}. Denote by R(X) the class of all
Riesz operators. The spectrum σ(R) of a Riesz operator is at most countable and
has no nonzero cluster point. Furthermore, each nonzero element of the spectrum
is an eigenvalue and the spectral projection associated with every λ �= 0 is
finite-dimensional (see the next Chap. 3 for more information on Riesz operators).
Examples of Riesz operators are quasi-nilpotent operators and compact operators,
see Heuser [179]. An example of a quasi-nilpotent operator which is neither
nilpotent nor compact is the operator T := T1 ⊕ T2, defined in �2(N) ⊕ �2(N),
where

T1(x1, x2, . . . ) := (0, x1, 0, , x3 . . . ) for all x = (xn) ∈ �2(N),

and

T2(x1, x2, . . . ) :=
(

0, x1,
x2

2
,
x3

3
, . . .

)
for all x = (xn) ∈ �2(N).

In Chap. 3 we shall see that the restriction of a Riesz operator to a closed invariant
subspace is still a Riesz operator. The class of Riesz operators is very large, for
instance it contains, properly, the two-sided ideal of all strictly singular operators
S(X), introduced by Kato [195] and defined as the operators T ∈ L(X) such
that no restriction TM to an infinite-dimensional closed subspace M of X is an
isomorphism. The class R(X) also contains the two-sided ideal C(X) of all strictly
cosingular operators introduced by Pełczyński [256] as the class of all operators for
which there is no infinite-codimensional closed subspace N of X such that QN T
is surjective, where QN denotes the canonical quotient homomorphism of X onto
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X|N . More generally, if we consider the two-sided ideals of �+(X)-perturbations
and�−(X)-perturbations, defined by

P�+ (X) := {T ∈ L(X) : T +�+(X) ⊆ �+(X)},

and

P�−(X) := {T ∈ L(X) : T +�−(X) ⊆ �−(X)}

respectively, see [155], these ideals are contained in the two-sided ideal

I(X) := {I − T S ∈ �(X) for all S ∈ L(X)}

known in the literature as the ideal of inessential operators, introduced by Klenecke.
We have I(X) ⊆ R(X), more precisely, I(X) is the uniquely determined largest
ideal consisting of Riesz operators (for details, see Chapter 7 of [1]).

In the next results we characterize the case where 0 is an isolated point of σ(R)
with the help of the analytic core and the quasi-nilpotent part.

Theorem 2.51 Let R be a Riesz operator on an infinite-dimensional Banach space.
Then the following statements are equivalent.

(i) 0 is an isolated point of σ(R);
(ii) K(R) is closed;

(iii) K(R) has finite dimension;
(iv) K(R∗) is closed;
(v) K(R∗) has finite dimension.

Proof Since σ(R) = σ(R∗) and R∗ is also a Riesz operator (this will be proved in
Chap. 3) it suffices to prove only the equivalence of (i), (ii) and (iii). The implication
(i) ⇒ (ii) is clear by Theorem 2.45. To show the implication (ii) ⇒ (iii), assume
that K(R) is closed. Then the restriction R|K(R) is a Riesz operator and since
R(K(R)) = K(R) we also have that R|K(R) is onto, in particular lower semi-
Fredholm. Therefore, (λI − R)|K(R) is lower semi-Fredholm for all λ ∈ C. This
implies that K(R) is finite-dimensional. To prove (iii) ⇒ (i) observe first that if
K(R) is finite-dimensional then the surjective operator R|K(R) is invertible, so
there exists a δ > 0 such that (λI − R)|K(R) is invertible for all |λ| < δ. Since for
λ �= 0 we have ker (λI − R) ⊆ K(R), we have

ker (λI − R) = ker ((λI − R)|K(R)) = {0} for all 0 < |λ| < δ.

But since the index of (λI − R) is 0 for every 0 < |λ| < δ it then follows that
β(λI − R) = 0, i.e., (λI − R) is onto and hence invertible for all 0 < |λ| < δ.
Therefore, 0 is an isolated point of σ(R). �
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We have seen before that T ∈ L(X) is quasi-nilpotent if and only ifH0(T ) = X.
A quasi-nilpotent operator may also be characterized in terms of the analytic core:

Corollary 2.52 Let R ∈ L(X) be a Riesz operator. Then R is quasi-nilpotent if and
only if K(R) = {0}. The spectrum σ(R) is a finite set which contains 0 precisely
when K(R) is a closed set andK(R) �= 0.

Proof If R is quasi-nilpotent then, by Theorem 2.35, H0(R) = X and since 0 is an
isolated point of σ(T ) we have, by Theorem 2.45, {0} = H0(R) ∩K(R) = K(R).
On the other hand, if K(R) = {0} then, by Corollary 2.50, 0 is the only isolated
point of σ(R), hence σ(R) = {0}, since R is Riesz. The second assertion easily
follows from Theorem 2.51. �
Theorem 2.53 Suppose that R ∈ L(X) is a Riesz operator on an infinite-
dimensional Banach space X. If for some λ0 �= 0 we have
H0(λ0I − R)+H0(R) = X then 0 is an isolated point of σ(R).

Proof If λ0 /∈ σ(R) thenH0(λ0I−R) = {0}, soH0(R) = X and hence σ(R) = {0},
by Theorem 2.35. Suppose that λ0 ∈ σ(R). Then λ0 is a pole of the resolvent, so,
by Corollary 2.47, we have K(λ0I − R) = (λ0I − R)p(X) and H0(λ0I − R) =
ker(λ0I −R)p for some p ∈ N. Since α(λ0I −R) <∞,H0(λ0I −R) = ker(λ0I −
R)p is finite-dimensional. Observe that 0 ∈ σ(R), otherwise H0(R) = {0} and
from the assumption we would haveX = H0(λ0I −R) finite-dimensional. Now, by
Corollary 2.49, we have R(H0(λ0I − R)) = H0(λ0I − R), so the restriction of R
to H0(λ0I − R) is onto and hence invertible. This implies that there exists a δ > 0
such that

(λI − R)(H0(λ0I − R) = H0(λ0I − R) for all |λ| < δ.
Since for λ �= 0 we haveH0(R) ⊆ (λI − R), see Lemma 2.34, we then obtain

X = H0(λ0I − R)+H0(R) ⊆ (λI − R)(X) for all 0 < |λ| < δ.
Hence X = (λI − R)(X), i.e. λI − R is onto. Since R is a Riesz operator we then
conclude that λI − R is injective, for all 0 < |λ| < δ, i.e., 0 is isolated in σ(R). �
Corollary 2.54 Let R ∈ L(X) be a Riesz operator. If there exists a λ0 �= 0 for
which H0(R) = K(λ0I − R) then 0 is an isolated point of σ(R).

Proof Since λ0 �= 0, λ0I − R is either invertible (in this case K(λ0I − R) = X)
or a pole of the resolvent. In both cases X = H0(λI − R) ⊕ K(λ0I − T ). Hence
X = H0(λI −R)⊕H0(R), so, by Theorem 2.53, 0 is an isolated point of σ(R). �

We now consider the isolated points of σap(T ).

Theorem 2.55 Suppose that T ∈ L(X) and λ ∈ C is an isolated point of σap(T ).
Then

(i) Both H0(λI − T ) andK(λI − T ) are closed subspaces.
(ii) H0(λI − T ) ∩K(λI − T ) = {0}.
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(iii) The direct sum H0(λI − T ) ⊕K(λI − T ) is closed and there exists a λ0 �= 0
such that

H0(λI − T )⊕K(λI − T ) = K(λ0I − T ) =
∞⋃
n=0

T (λ0I − T )n(X).

Proof We may assume λ = 0. Since 0 is an isolated point of σap(T ), there exists a
δ > 0 such that λI − T is bounded below for all 0 < |λ| < δ. By Theorem 1.50,
the map λ → K(λI − T ) is constant on the punctured disc D(0, δ) \ {0}, and fixing
λ0 ∈ D(0, δ) \ {0} we have, by Theorem 1.44, thatK(λ0I − T ) = (λ0I − T )∞(X).
Set X0 := (λ0I − T )∞(X), and denote by T0 : X0 → X0 the operator induced by
T on X0. X0 is a Banach space, by Theorem 1.44. Clearly, λI − T0 is bijective for
all λ ∈ D(0, δ) \ {0}. Since T is not surjective, K(T ) �= X, hence H0(T ) �= 0 by
Theorem 2.41. From Theorem 2.23, part (ii), we know that

(λI − T )(H0(T )) = (λI − T )(XT ({0}) = XT ({0} = H0(T ) for all λ �= 0,

from which we deduce that

(λI − T )n(H0(T )) = H0(T ) ⊆ (λI − T )n(X) for all n ∈ N,

so that H0(T ) ⊆ X0, hence 0 ∈ σ(T0), and since λI − T0 is bijective for all λ ∈
D(0, δ) \ {0}, we then have that 0 is an isolated point of σ(T0). By Theorem 2.45
we then have X0 = H0(T0) ⊕ K(T0). Clearly, H0(T ) = H0(T0), hence, to finish
the proof it suffices to prove K(T ) = K(T0). Let x0 ∈ K(T ), T xn+1 = xn and
‖xn‖ ≤ cn‖x0‖ for all n. Then

φ(λ) :=
∞∑
n=0

xn+1λ
n

defines an analytic function on the open disc D(0, 1
c
) that satisfies the equality

(λI − T )(φ(λ) =
∞∑
n=0

xnλ
n −

∞∑
n=0

xn+1λ
n+1 for all λ ∈ D(0,

1

c
).

In particular, x0 ∈ (λI − T )(X) for all λ ∈ D(0, 1
c
). Therefore, by Theorem 1.52,

x0 ∈ K(λ0I − T ), and henceK(T ) ⊆ X0. Note that

φ(λ) = (λI − T0)
−1x0 ∈ X0 for all λ ∈ D(0,

1

c
).

By continuity, x1 = φ(0) ∈ X0. A similar argument shows that xn ∈ X0 for n ≥ 1,
thus x0 ∈ K(T0), from which we conclude that K(T ) = K(T0). �
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Corollary 2.56 Let T ∈ L(X) and suppose that dimK(T ) < ∞. Then T has the
SVEP. Moreover, ifM is a closed invariant subspace for which T (M) = M thenM
is finite-dimensional.

Proof By Theorem 1.38 we know that for each λ �= 0 we have ker (λI − T ) ⊆
K(T ), hence ker (λI − T ) is finite-dimensional. Moreover, a set of eigenvectors,
each of them corresponding to a different eigenvalue of T , is linearly independent,
so our assumption dimK(T ) < ∞ implies that the point spectrum σp(T ) is finite,
and consequently T has the SVEP. The second assertion is an obvious consequence
of the inclusionM ⊆ K(T ), established in Theorem 1.39. �

The condition dimK(T ) < ∞ is clearly satisfied if T∞(X) = {0}, since
K(T ) ⊆ T∞(X). The condition T∞(X) = {0} may be thought of as an abstract
shift condition since it is satisfied by every unilateral weighted right shift, see
Chap. 4.

We show now that the subspacesH0(λI − T ) are constant as λ ranges through a
connected component of the semi-regular resolvent.

Theorem 2.57 Let T ∈ L(X) and let � ⊂ C be a connected component of ρse(T ).
If λ0 ∈ � then

H0(λI − T ) = H0(λ0I − T ) for all λ ∈ �.

Proof By Theorem 1.43 we know that ρse(T ) = ρse(T
�). Further, Theorem 1.50

shows that K(λI� − T �) = K(λ0I
� − T �) for all λ ∈ �. From Theorem 2.37 we

then conclude that

H0(λI − T ) = ⊥K(λI� − T �) = ⊥K(λ0I
� − T �) = H0(λ0I − T ),

for all λ ∈ �. �
In the sequel by ∂K we denote the boundary of K ⊆ C.

Theorem 2.58 Let T ∈ L(X), X �= {0} a Banach space. Then the semi-
regular spectrum σse(T ) is a non-empty compact subset of C containing ∂σ(T ).
In particular, ∂σ(T ) is contained in σap(T ) ∩ σs(T ).

Proof Let λ0 ∈ ∂σ(T ) and suppose λ0 ∈ ρse(T ) := C \ σse(T ). The set ρse(T )

is open, by Theorem 1.44, so we can consider a connected component� of ρse(T )

containing λ0. The set � is open so there exists a neighborhood U of λ0 contained
in �, and since λ0 ∈ ∂σ(T ), U also contains points of ρ(T ). Hence� ∩ ρ(T ) �= ∅.

Now, consider a point λ1 ∈ � ∩ ρ(T ). Clearly, ker (λ1I − T )n = {0} for every
n ∈ N, thus N∞(λ1I−T ) = {0}. Combining Theorems 2.57 and 2.37 we then have

H0(λ0I − T ) = H0(λ1I − T ) = N∞(λ1I − T ) = {0}.
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Hence ker(λ0I − T ) = {0}, so λ0I − T is injective. On the other hand, λ1 ∈ ρ(T )
and hence from Theorem 1.50 we infer that

K(λ0I − T ) = K(λ1I − T ) = X,

so λ0I − T is surjective. Hence λ0 ∈ ρ(T ) and this is a contradiction, since λ0 ∈
σ(T ). Therefore λ0 ∈ σse(T ) and ∂σ(T ) ⊆ σse(T ), so the last set is a compact non-
empty subset of C. The last assertion is clear, since σse(T ) ⊆ σap(T ) ∩ σs(T ). �

By Theorem 2.37, if λI − T is semi-regular then N∞(λI − T ) = H0(λI − T ),
hence the statement of Theorem 2.57 is equivalent to saying that N∞(λI − T ) is
constant as λ ranges through a connected component of the semi-regular resolvent.

For an operator T ∈ L(X) we have N∞(T ) ⊆ H0(T ) and T∞(X) ⊇ K(T ). In
the special situation of operators of Kato-type, there is equality in the sum of these
subspaces:

Theorem 2.59 Suppose that T ∈ L(X) is of Kato-type. Then:
(i) N∞(T )+ T∞(X) = H0(T )+K(T );

(ii) N∞(T ) ∩ T∞(X) = H0(T ) ∩K(T ).
Proof

(i) Let (M,N) be a GKD for T such that (T |N)d = 0 for some integer d ∈ N.
We know, from part (i) of Theorem 1.63, that K(T ) = K(T |M) = K(T )∩M .
Moreover, by part (iii) of Theorem 2.37, the semi-regularity of T |M entails that
H0(T |M) ⊆ K(T |M) = K(T ). Consequently,

H0(T ) ∩K(T ) = H0(T ) ∩ (K(T ) ∩M) = (H0(T ) ∩M) ∩K(T )
= H0(T |M) ∩K(T ) = H0(T |M).

This shows that H0(T ) ∩K(T ) = H0(T |M).
We claim that

H0(T )+K(T ) = N ⊕K(T ).

From N ⊆ ker T d ⊆ H0(T ) we obtain that N ⊕ K(T ) ⊆ H0(T ) + K(T ).
Conversely, from Lemma 2.36 we have

H0(T ) = N ⊕H0(T |M) = N ⊕ (H0(T ) ∩K(T )) ⊆ N ⊕K(T ),

and hence

H0(T )+K(T ) ⊆ (N ⊕K(T ))+K(T ) ⊆ N ⊕K(T ),

so our claim is proved.
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From the inclusion N ⊆ ker T d ⊆ N∞(T ), and, since the equalityK(T ) =
T∞(X) holds for every operator of Kato-type, we then deduce that

H0(T )+K(T ) = N ⊕K(T ) ⊆ N∞(T )+ T∞(X) ⊆ H0(T )+K(T ).

Hence the equality N∞(T )+ T∞(X) = H0(T )+K(T ) is proved.
(ii) Let (M,N) be a GKD for T such that for some d ∈ N we have (T |N)d = 0.

Then ker T n = ker (T |M)n for every natural n ≥ d . Since ker T n ⊆ ker T n+1

for all n ∈ N we then have

N∞(T ) =
∞⋃
n≥d

ker T n =
∞⋃
n≥d

ker(T |M)n = N∞(T |M).

From part (ii) of Theorem 2.37 the semi-regularity of T |M entails that

N∞(T ) = N∞(T |M) = H0(T |M) = H0(T ) ∩M. (2.17)

We show now the equality H0(T ) ∩M = H0(T ) ∩ M . Clearly we have
H0(T ) ∩M ⊆ H0(T ) ∩ M . Conversely, suppose that x ∈ H0(T ) ∩ M .
Then there is a sequence (xn) ⊂ H0(T ) such that xn → x as n → ∞.
Let P denote the projection of X onto M along N . Then Pxn → Px = x

and Pxn ∈ H0(T ) ∩ P(H0(T )). From Lemma 2.36 we know that H0(T ) =
(H0(T ) ∩M)⊕N , so

P(H0(T )) = P(H0(T ) ∩M) = H0(T ) ∩M,

and hence Pxn ∈ H0(T ) ∩M , from which we deduce that x ∈ H0(T ) ∩M .
Consequently, H0(T ) ∩M = H0(T ) ∩ M . Finally, from equality (2.17) and
taking into account that, by Theorems 1.63 and 1.64, we have T∞(X) =
K(T ) ⊆ M , we conclude that

N∞(T ) ∩ T∞(X) = (H0(T ) ∩M) ∩K(T ) = (H0(T ) ∩M) ∩K(T )
= H0(T ) ∩ (M ∩K(T )) = H0(T ) ∩K(T ),

so the proof is complete. �

2.4 The Localized SVEP

We have seen in Theorem 2.14 that the SVEP for T holds precisely when for every
element 0 �= x ∈ X we have σT (x) = ∅. The next fundamental theorem, which
establishes a localized version of this result, will be useful in the sequel.
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Theorem 2.60 If T ∈ L(X) the following statements are equivalent:
(i) T has the SVEP at λ0;

(ii) ker (λ0I − T ) ∩XT (∅) = {0};
(iii) ker (λ0I − T ) ∩K(λ0I − T ) = {0};
(iv) For each 0 �= x ∈ ker (λ0I − T ) we have σT (x) = {λ0}.
Proof By replacing T with λ0I − T we may assume without loss of generality that
λ0 = 0.

(i) ⇔ (ii) Suppose that for x ∈ ker T we have σT (x) = ∅. Then 0 ∈ ρT (x), so
there is an open disc D(0, ε) and an analytic function f : D(0, ε) → X such that
(λI − T )f (λ) = x for every λ ∈ D(0, ε). Then

T ((λI − T )f (λ)) = (λI − T )T (f (λ)) = T x = 0

for every λ ∈ D(0, ε). Since T has the SVEP at 0, Tf (λ) = 0, and consequently

T (f (0)) = x = 0.

Conversely, suppose that for every 0 �= x ∈ ker T we have σT (x) �= ∅ and
consider an analytic function f : D (0, ε)→ X for which (λI − T )f (λ) = 0 holds
for every λ ∈ D (0, ε). We can represent the function f as

f (λ) =
∞∑
n=0

λnun,

for a suitable sequence (un) ⊂ X. Evidently, T u0 = T (f (0)) = 0, from which we
obtain u0 ∈ ker T . Furthermore, the equalities

σT (f (λ)) = σT (0) = ∅ for every λ ∈ D (0, ε)

imply that

σT (f (0)) = σT (u0) = ∅,

and hence, u0 = 0. For all 0 �= λ ∈ D (0, ε) we have

0 = (λI − T )f (λ) = (λI − T )
∞∑
n=1

λnun = λ(λI − T )
∞∑
n=1

λnun+1,

and hence

0 = (λI − T )(
∞∑
n=0

λnun+1) for every 0 �= λ ∈ D (0, ε).
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By continuity this is still true for every λ ∈ D (0, ε). At this point, by repeating the
same argument as in the first part of the proof, it is possible to show that u1 = 0,
and by iterating this procedure we can easily conclude that u2 = u3 = · · · = 0. This
shows that f ≡ 0 on D (0, ε), and therefore T has the SVEP at 0.

(ii) ⇔ (iii) It suffices to prove the equality

ker T ∩K(T ) = ker T ∩XT (∅).

By Theorem 2.30 we have kerT ⊆ H0(T ) ⊆ XT ({0}), and hence, from
Theorem 2.20, we obtain

ker T ∩K(T ) = ker T ∩XT (C \ {0}) ⊆ XT ({0}) ∩XT (C \ {0}) = XT (∅).

Since XT (∅) ⊆ XT (C \ {0}) = K(T ), we then conclude that

ker T ∩K(T ) = ker T ∩K(T ) ∩XT (∅) = ker T ∩XT (∅).

(ii) ⇒ (iv) Since ker T ⊆ H0(T ), from Theorem 2.30 it then follows that
σT (x) ⊆ {0} for every 0 �= x ∈ ker T . But, by assumption σT (x) �= ∅, so
σT (x) = {0}.

(iv) ⇒ (ii) Obvious. �
For an arbitrary operator T ∈ L(X) on a Banach space X let

�(T ) := {λ ∈ C : T fails to have the SVEP at λ}.

Clearly, �(T ) is contained in the interior of the spectrum σ(T ), and, from the
identity theorem for analytic functions it readily follows that �(T ) is open. This
implies that if T has the SVEP at all λ ∈ D(λ0, ε) \ {λ0}, where D(λ0, ε) is an
open disc centered at λ0, then T also has the SVEP at λ0. Clearly, �(T ) is empty
precisely when T has the SVEP.

Corollary 2.61 If T ∈ L(X) is surjective, then T has the SVEP at 0 if and only
if T is injective. Consequently, the equality σ(T ) = σs(T ) ∪ �(T ) holds for every
T ∈ L(X). Furthermore, σs(T ) contains ∂�(T ), the topological boundary of�(T ).

Proof If T is onto and has the SVEP at 0 then K(T ) = X. By Theorem 2.60 we
have ker T ∩ X = ker T = {0}, hence T is injective. The converse is clear. To
show the equality σ(T ) = σs(T ) ∩ �(T ) we have only to show the inclusion ⊆.
Suppose that λ /∈ σs(T ) ∩ �(T ). From the first part we obviously have λ /∈ σ(T )
from which we obtain σ(T ) = σs(T ) ∪ �(T ). The last claim is immediate: since
∂�(T ) ⊆ σ(T ) and �(T ) is open it then follows that ∂�(T ) ∩ �(T ) = ∅. This
obviously implies that ∂�(T ) ⊆ σs(T ). �

An immediate consequence of Corollary 2.61 is that every unilateral left shift on
the Hilbert space �2(N) fails to have the SVEP at 0.
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Remark 2.62 Evidently if Y is a closed subspace of the Banach space X such that
(λ0I − T )(Y ) = Y and the restriction (λ0I − T ) |Y does not have the SVEP at λ0
then T also does not have the same property at λ0.

This property, together with Corollary 2.61, suggests how to obtain operators
without the SVEP: if for an operator T ∈ L(X) there exists a closed subspace Y
such that

(λ0I − T )(Y ) = Y and ker (λ0I − T ) ∩ Y �= {0}

then T does not have the SVEP at λ0.

Theorem 2.63 Let X and Y be Banach spaces and consider two operators S ∈
L(X, Y ) and R ∈ L(Y,X). Suppose that either of the following cases hold:
(i) R and S are both injective.

(ii) R or S is injective with dense range.
Then σ(RS) = σ(SR).

Proof

(i) Assume that S and R are injective. By Theorems 2.21 and 2.4 we then have

σ(RS) =
⋃
x∈X

σRS(x) ∪�(RS) =
⋃
x∈X

σSR(Sx) ∪�(SR)

⊆
⋃
y∈Y
σSR(y) ∪�(SR) = σ(SR),

thus σ(RS) ⊆ σ(SR). By symmetry then σ(RS) = σ(SR).
(ii) The statement follows by duality. �
Remark 2.64 Let L denote the unilateral left shift on the Hilbert space �2(N),
defined as

L(x1, x2, x3, · · · ) := (x2, x3, · · · ) for all x = (xn) ∈ �2(N).

Evidently,L is onto but not injective, since every vector (x1, 0, 0, · · · ), with x1 �= 0,
belongs to ker L. Corollary 2.61 then shows thatL fails to have the SVEP at 0. Later,
we shall see that other examples of operators which do not have the SVEP at 0 are
semi-Fredholm operators on a Banach space having index strictly greater than 0.

Theorem 2.65 For a bounded operator T on a Banach space X and λ0 ∈ C, the
following implications hold:

p(λ0I − T ) <∞ ⇒ N∞(λ0I − T ) ∩ (λ0I − T )∞(X) = {0}
⇒ T has the SVEP at λ0,



2.4 The Localized SVEP 139

and

q(λ0I − T ) <∞ ⇒ X = N∞(λ0I − T )+ (λ0I − T )∞(X)
⇒ T � has the SVEP at λ0.

Proof There is no loss of generality in assuming λ0 = 0.
Assume that p := p(T ) < ∞. Then N∞(T ) = kerT p, and therefore from

Lemma 1.19 we obtain that

N∞(T ) ∩ T∞(X) ⊆ kerT p ∩ T p(X) = {0}.

From Theorem 2.60 we then conclude that T has the SVEP at 0.
To show the second chain of implications suppose that q := q(T ) < ∞. Then

T∞(X) = T q(X) and

N∞(T )+ T∞(X) = N∞(T )+ T q(X) ⊇ kerT q + T q(X). (2.18)

Now, the condition q = q(T ) < ∞ yields that T 2q(X) = T q(X), so for every
element x ∈ X there exists a y ∈ T q(X) such that T qy = T q(x). Obviously
x − y ∈ kerT q , and therefore X = kerT q + T q(X). From the inclusion (2.18) we
conclude that X = N∞(T )+ T∞(X), and therefore, by Theorem 2.65, T � has the
SVEP at 0. �

In the remaining part of this section we want show that the relative positions of
all the subspaces introduced in the previous chapter are intimately related to the
localized SVEP.

To see this, let us consider for an arbitrary λ0 ∈ C and an operator T ∈ L(X) the
following increasing chain of kernel-type spaces:

ker (λ0I − T ) ⊆ N∞(λ0I − T ) ⊆ H0(λ0I − T ) ⊆ XT ({λ0}),

and the decreasing chain of the range-type spaces:

XT (∅) ⊆ XT (C \ {λ0}) = K(λ0I − T ) ⊆ (λ0I − T )∞(X) ⊆ (λ0I − T )(X).

The next corollary is an immediate consequence of Theorem 2.60 and the
inclusions considered above.

Corollary 2.66 Suppose that T ∈ L(X) satisfies one of the following conditions:
(i) N∞(λ0I − T ) ∩ (λ0I − T )∞(X) = {0};

(ii) N∞(λ0I − T ) ∩K(λ0I − T ) = {0};
(iii) N∞(λ0I − T ) ∩XT (∅) = {0};
(iv) H0(λ0I − T ) ∩K(λ0I − T ) = {0};
(v) ker (λ0I − T ) ∩ (λ0I − T )(X) = {0}.

Then T has the SVEP at λ0. �
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Corollary 2.67 For a bounded operator T ∈ L(X), X a Banach space, the
following implications hold:

(i) H0(λ0I − T ) closed ⇒ H0(λ0I − T )∩K(λ0I − T ) = {0} ⇒ T has the SVEP
at λ0.

(ii) X = H(λ0I − T )+K(λ0I − T )⇒ T ∗ has the SVEP at λ0.

Proof Without loss of generality, we may consider λ0 = 0. For the first implication
in (i) see the proof of Theorem 2.39. The second implication of (i) has been proved
in Corollary 2.66.

(ii) This follows from Theorem 2.41, since the condition X = H(λ0I − T ) +
K(λ0I − T ) is equivalent to saying that λ is isolated in σs(T ). �

The operator in the Example 2.33 shows that, in general, the converse of
Theorem 2.39 does not hold. Indeed, T has the SVEP, since the point spectrum
σp(T ) is empty, while H0(T ) is not closed.

If T or T ∗ have the SVEP then some spectra coincide:

Theorem 2.68 For T ∈ L(X), the following statements hold:
(i) If T has the SVEP then σs(T ) = σ(T ) and σse(T ) = σap(T ).

(ii) If T ∗ has the SVEP then σap(T ) = σ(T ) and σse(T ) = σs(T ).
(iii) If both T and T ∗ have the SVEP then

σ(T ) = σs(T ) = σap(T ) = σse(T ).

Proof The first equality (i) is an obvious consequence of Corollary 2.61, since�(T )
is empty. To prove the second equality of (i) observe first that the inclusion σse(T ) ⊆
σap(T ) is trivial, since every bounded below operator is semi-regular. Conversely,
let λ /∈ σse(T ). From the definition of semi-regularity and Theorem 1.33 we know

ker (λI − T ) ⊆ (λI − T )∞(X) = K(λI − T ).

But ker (λI − T ) ⊆ H0(λI − T ), for all λ ∈ C, so we have

ker (λI − T ) ⊆ K(λI − T ) ∩H0(λI − T ).

From Corollary 2.66 we then obtain ker (λI − T ) = {0}, i.e. λI − T is injective.
This implies, since λI − T has closed range by assumption, that λ /∈ σap(T ).

The two equalities of part (ii) are easily obtained by duality, while (iii) follows
from part (i) and part (ii). �

Then converse of Corollary 2.66 need not be true. The next bilateral weighted
shift provides an example of an operator T which has the SVEP at 0 whileH0(T )∩
K(T ) �= {0}.
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Example 2.69 Let β := (βn)n∈Z be the sequence of real numbers defined as
follows:

βn :=
{

1 + |n| if n < 0,

e−n2
if n ≥ 0.

Let X := L2(β) denote the Hilbert space of all formal Laurent series

∞∑
n=−∞

anz
n for which

∞∑
n=−∞

|αn|2βn2 <∞.

Let us consider the bilateral weighted right shift defined by

T (

∞∑
n=−∞

anz
n) :=

∞∑
n=−∞

anz
n+1 ,

or equivalently, T zn := zn+1 for every n ∈ Z. The operator T is bounded on L2(β)

and

‖T ‖ = sup

{
βn+1

βn
: n ∈ Z

}
= 1 .

Clearly T is injective, so it has the SVEP at 0. We show now that H0(T ) ∩
K(T ) �= {0}. From ‖zn‖β = βn for all n ∈ Z we obtain that

lim
n→∞ ‖zn−1‖β1/n = 0

and

lim
n→∞ ‖z−n−1‖β1/n = 1.

By the formula for the radius of convergence of a power series we then conclude
that the two series

f (λ) :=
∞∑
n=1

λ−nzn−1 and g(λ) := −
∞∑
n=1

λnz−n−1

converge in L2(β) for all |λ| > 0 and |λ| < 1, respectively. Evidently, the function
f is analytic on C \ {0}, and

(λI − T )f (λ) = −
∞∑
n=1

λ−nzn −
∞∑
n=1

λ1−nzn−1 = 1 for all λ �= 0,
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while the function g, which is analytic on the open unit disc D(0, 1), satisfies

(λI − T )g(λ) =
∞∑
n=0

λnz−n −
∞∑
n=0

λ1+nz−n−1 = 1 for all λ ∈ D(0, 1).

This implies that

1 ∈ XT ({0}) ∩ XT (C \ D(0, 1)) = H0(T ) ∩K(T ),

where the last equality follows from Theorems 2.20 and 2.30.

The SVEP may be characterized as follows.

Theorem 2.70 A bounded operator T ∈ L(X) has the SVEP if and only ifH0(λI−
T ) ∩K(λI − T ) = {0} for every λ ∈ C.

Proof If T has the SVEP, from Theorem 2.20 we know that

K(λI − T ) = XλI−T (C \ {0}) = XT (C \ {λ}) for every λ ∈ C,

and hence, by Theorem 2.30,

H0(λI − T ) = XλI−T ({0}) = XT ({λ}) for every λ ∈ C .

Consequently, by Theorem 2.14 we conclude that

H0(λI − T ) ∩K(λI − T ) = XT ({λ}) ∩XT (C \ {λ}) = XT (∅) = {0}.

The converse implication is clear by Corollary 2.66. �
For a quasi-nilpotent operator we have H0(T ) = X. The analytic core K(T ) is

“near” to being the complement of H0(T ). Indeed we have:

Corollary 2.71 If T ∈ L(X) is quasi-nilpotent thenK(T ) = {0}.
Proof By Theorem 2.35 we have H0(T ) = X . On the other hand, since T has the
SVEP, from Theorem 2.70 we have {0} = K(T ) ∩H0(T ) = K(T ). �

The next result shows that a quasi-nilpotent operator T ∈ L(X) cannot be
essentially semi-regular if X is infinite-dimensional.

Theorem 2.72 Let T ∈ L(X) be essentially semi-regular and quasi-nilpotent.
Then X is finite-dimensional and T is nilpotent. In particular, this holds for semi-
Fredholm operators.

Proof Let (M,N) be a GKD for T such that T |N is nilpotent and N is finite-
dimensional. Since T is quasi-nilpotent, Corollary 2.36 entails that X = H0(T ) =
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H0(T |M)⊕ N . Moreover, T |M is semi-regular, hence by Theorems 2.37 and 1.63
H0(T |M) ⊆ K(T |M) = K(T ). By Corollary 2.71 we know that K(T ) = {0}, so
H0(T |M) = {0}. This implies thatX = {0}⊕N = N , henceX is finite-dimensional
and T is nilpotent. �
Theorem 2.73 Suppose that for a bounded operator T ∈ L(X), the sumH0(λ0I −
T )+ (λ0I − T )(X) is norm dense in X. Then T ∗ has the SVEP at λ0.

Proof Also here we assume that λ0 = 0. From Theorem 2.37 we have thatK(T ∗) ⊆
H0(T )

⊥. From a standard duality argument we now obtain

ker (T ∗) ∩K(T ∗) ⊆ T (X)⊥ ∩H0(T )
⊥ = (T (X) ∩H0(T ))

⊥.

If the subspace H(T )+ T (X) is norm-dense in X, then the last annihilator is zero,
hence ker T ∗ ∩K(T ∗) = {0}, and from Theorem 2.60 we conclude that T ∗ has the
SVEP at 0. �
Corollary 2.74 Suppose either that H0(λ0I − T ) + K(λ0I − T ) or N∞(λ0I −
T )+ (λ0I − T )∞(X) is norm dense in X. Then T ∗ has the SVEP at λ0. �

The next theorem is, in a certain sense, dual to Theorem 2.73.

Theorem 2.75 Suppose that for a bounded operator T ∈ L(X) the sumH0(λ0I
�−

T ∗)+ (λ0I
∗ − T ∗)(X∗) is weak*-dense in X∗. Then T has the SVEP at λ0.

Proof From Theorem 2.37 we know that K(T ) ⊆ ⊥H0(T
∗). Therefore

ker T ∩K(T ) ⊆ ⊥T ∗(X∗) ∩ ⊥H0(T
∗) = ⊥(T ∗(X∗)+H0(T

∗)).

But the sum H0(T
∗) + T ∗)(X∗) is weak*-dense in X∗, so, by the Hahn–Banach

theorem, the last annihilator is zero and therefore T has the SVEP at 0, again by
Theorem 2.60. �

The following corollary is clear, since the analytic core of an operator is
contained in the range, while the hyper-kernel is contained in the quasi-nilpotent
part.

Corollary 2.76 Suppose that for a bounded operator T ∈ L(X), either H0(λ0I −
T ∗) + K(λ0I − T ∗) or N∞(λ0 − T ∗) + (λ0 − T ∗)∞(X∗) is weak*-dense in X∗.
Then T has the SVEP at λ0. �

The result of Corollary 2.74 cannot be reversed, as the following example shows:

Example 2.77 Let V denote the Volterra operator on the Banach space X :=
C[0, 1], defined by

(Vf )(t) :=
∫ t

0
f (s)ds for all f ∈ C[0, 1] and t ∈ [0, 1].
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V is injective and quasi-nilpotent. Consequently N∞(V ) = {0} and K(V ) = {0}
by Corollary 2.71. It is easy to check that

V∞(X) = {f ∈ C∞[0, 1] : f (n)(0) = 0, n ∈ Z+},

thus V∞(X) is not closed and hence is strictly larger than V (T ) = {0}. Clearly the
sum N∞(V )+ V∞(X) is not norm dense in X, while V ∗ has the SVEP, because it
is quasi-nilpotent.

Lemma 2.78 Suppose that λ0I − T has a GKD (M,N). Then

λ0I − T |M is surjective ⇔ λ0I
� − T �|N⊥is injective.

Proof We can assume λ0 = 0. Suppose first that T (M) = M and consider an
arbitrary element x∗ ∈ kerT ∗|N⊥ = kerT ∗ ∩ N⊥. For every m ∈ M there exists
an m′ ∈ M such that Tm′ = m. Then we have

x∗(m) = x∗(T m′) = (T �x∗)(m′) = 0,

and therefore x∗ ∈ M⊥ ∩N⊥ = {0}.
Conversely, suppose that T |M is not onto, i.e., T (M) ⊆ M and T (M) �= M . By

assumption T (M) is closed, since T |M is semi-regular, and hence via the Hahn–
Banach theorem there exists a z∗ ∈ X∗ such that z∗ ∈ T (M)⊥ and z∗ /∈ M⊥.

Now, from the decompositionX∗ = N⊥ ⊕M⊥ we have z∗ = n∗ +m∗ for some
n∗ ∈ N⊥ and m∗ ∈ M⊥. For everym ∈ M we obtain

T ∗n∗(m) = n∗(T m) = z∗(T m)−m∗(T m) = 0.

Hence T ∗n∗ ∈ N⊥ ∩M⊥ = {0}, and therefore 0 �= n∗ ∈ kerT ∗ ∩N⊥. �
Theorem 2.79 Suppose that T ∈ L(X) admits a GKD (M,N). Then the following
statements are equivalent:

(i) T has the SVEP at 0;
(ii) T |M has the SVEP at λ0;

(iii) (λ0I − T )|M is injective;
(iv) H0(λ0 − T ) = N;
(v) H0(λ0I − T ) is closed;

(vi) H0(λ0I − T ) ∩K(λ0I − T ) = {0};
(vii) H0(λ0I − T ) ∩K(λ0I − T ) is closed.
Proof Also here we shall consider the particular case λ0 = 0.

The implication (i) ⇒ (ii) is clear, since the SVEP at 0 of T is inherited by the
restrictions on every closed invariant subspace.

(ii) ⇒ (iii) T |M is semi-regular, so T |M has the SVEP at 0 if and only if T |M
is injective.
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(iii) ⇒ (iv) If T |M is injective, from Theorem 2.37 the semi-regularity of T |M
implies that H0(T |M) = N∞(T |M) = {0}, and hence

H0(T ) = H0(T |M)⊕H0(T |N) = {0} ⊕N = N.

The implications (iv) ⇒ (v) and (vi) ⇒ (vii) are obvious, while the implications
(v) ⇒ (vi) and (vii) ⇒ (i) have been proved in Theorem 2.39.

The last assertion is clear since the pair M := X and N := {0} is a GKD for
every semi-regular operator. �

The next result shows that if the operator λ0I − T admits a generalized Kato
decomposition then all the implications of Theorem 2.73 are actually equivalences.

Theorem 2.80 Suppose that λ0I − T ∈ L(X) admits a GKD (M,N). Then the
following assertions are equivalent:

(i) T ∗ has the SVEP at λ0;
(ii) (λ0I − T ) |M is surjective;

(iii) K(λ0I − T ) =M;
(iv) X = H0(λ0I − T )+K(λ0I − T );
(v) H0(λ0I − T )+K(λ0I − T ) is norm dense in X.

In particular, if λ0I − T is semi-regular then the conditions (i)–(v) are
equivalent to the following statement:

(vi) K(λ0I − T ) = X.
Proof We suppose λ0 = 0 here.

(i) ⇔ (ii) We know that the pair (N⊥,M⊥) is a GKD for T �, and hence,
by Theorem 2.79, T � has the SVEP at 0 if and only if T � |N⊥ is injective. By
Lemma 2.78 T ∗ then has the SVEP at 0 if and only if T |M is onto.

(ii) ⇒ (iii) If T |M is surjective thenM = K(T |M) = K(T ), by Theorem 2.37.
(iii) ⇒ (iv) By assumption X = M ⊕ N = K(T ) ⊕ N , and therefore X =

H0(T )+K(T ), since N = H0(T |N) ⊆ H0(T ).
The implication (iv) ⇒ (v) is obvious, while (v) ⇒ (i) has been established in

Theorem 2.73.
The last assertion is obvious since M := X and N := {0} provides a GKD

for T . �
Lemma 2.81 If T ∈ L(X) admits a GKD (M,N) and 0 ∈ σ(T ), then
(i) T has the SVEP at 0 ⇔ 0 ∈ iso σap(T ).

(ii) T ∗ has the SVEP at 0 ⇔ 0 ∈ iso σs(T ).

Proof

(i) The implication (⇐) has been observed before. To show the reverse implica-
tion, suppose that T has the SVEP at 0 and that T has a GKD (M,N). Then
the restriction T |M has the SVEP at 0, so T |M is injective andH0(T ) = N , by
Theorem 2.79. Hence X = M ⊕ H0(T ). But T |M is semi-regular, so T (M) is
closed and hence T |M is bounded below. Since T |N is quasi-nilpotent we then
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have σap(T |N) = {0}. Therefore,

σap(T ) = σap(T |M) ∪ σap(T |N) = σap(T |M) ∪ {0}.

But 0 /∈ σap(T |M) and σap(T |M) is closed, from which we conclude that 0 is
an isolated point of σap(T ).

(ii) The implication (⇐) has been already observed. To show the reverse implica-
tion assume that T ∗ has the SVEP at 0. The pair (N⊥,M⊥) is a GKD for T ∗
and the restriction T ∗|N⊥ has the SVEP at 0 and, as above, we deduce that
T ∗|N⊥ is injective. By Lemma 2.78 we then have that T |M is onto. Since T |N
is quasi-nilpotent then σs(T |N) = {0}. Finally

σs(T ) = σs(T |M) ∪ σs(T |N) = σs(T |M) ∪ {0}.
But 0 /∈ σs(T |M) and σs(T |M) is closed, from which we conclude that 0 is an
isolated point of σs(T ). �

The operators which admit a GKD may be characterized by means of commuting
projections as follows:

Theorem 2.82 If T ∈ L(X) the following statements are equivalent:
(i) T admits a GKD (M,N);

(ii) there exists a commuting projection P such that T +P is semi-regular and T P
is quasi-nilpotent.

In this case K(T ) is closed. If 0 ∈ σ(T ) then 0 ∈ iso σse(T ).

Proof (i) ⇒ (ii) Suppose that T has a GKD (M,N). Then T |M is semi-regular
and T |N is quasi-nilpotent. Let P be the projection of X onto N along M . Then
M = ker P and N = P(X). The pair (M,N) reduces T , so PT = T P .
Since T + P and T P are also reduced by the pair (M,N), by Theorem 1.46 the
restriction (T + P)|M = T |M is also semi-regular. Furthermore, (T + P)|N =
(T + P)|P(X) = T |N + I |N is invertible, since T |N is quasi-nilpotent, hence
T + P = (T + P)|M ⊕ (T + P)|N is semi-regular. We have, by Lemma 2.36 and
since T |N is quasi-nilpotent,

H0(T P ) = H0((T P )|M)⊕H0((T P )|N) = H0(0)⊕H0(T |N) = M ⊕N = X,
so, by Theorem 2.35, T P is quasi-nilpotent.

(ii) ⇒ (i) Suppose that P is a commuting projection for which T + P is
semi-regular and T P is quasi-nilpotent. Then X = ker P ⊕ P(X) and the pair
(ker P,P (X)) reduces T and hence also T + P and T P . By Theorem 1.46 the
restriction (T + P)| ker P = T | ker P is semi-regular.

We show now that the restriction T |P(X) is quasi-nilpotent. Let x ∈ P(X) be
arbitrarily chosen. Then

‖(T |P(X))n‖ 1
n = ‖T nPnx‖ 1

n = ‖(T P )nx‖ 1
n → 0 as n → ∞,
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so x ∈ H0(T |P(X)) and hence P(X) ⊆ H0(T |P(X)). The reverse inclusion
H0(T |P(X)) ⊆ P(X) is obvious, so H0(T |P(X)) = P(X), and this implies
that T |P(X) is quasi-nilpotent. Consequently, the pair (ker P,P (X)) is a GKD
for T , and hence K(T ) = K(T | ker P) by Theorem 1.63. On the other hand, since
the restriction T | ker P is semi-regular, again by Theorem 1.63 we then have that
K(T | ker P) is closed.

Suppose that 0 belongs to σ(T ). By Theorem 1.46 we have

σse(T ) = σse(T | ker P) ∪ σse(T |P(X)) = σse(T | ker P) ∪ {0}.

We know that T |P(X) is quasi-nilpotent, and the Kato spectrum is non-empty, so
σse(T |P(x)) = {0}. Since 0 /∈ σse(T | ker P), and σse(T | ker P) is closed, it then
follows that 0 is an isolated point of σse(T ). �
Corollary 2.83 If T ∈ L(X) then the following statements are equivalent:
(i) T is of Kato-type;

(ii) there exists a commuting projection P such that T +P is semi-regular and T P
is nilpotent.

Proof (i) ⇒ (ii) Let (M,N) be a GKD for T such that T |N is nilpotent. If P is the
projection of X onto N alongM we have (T P )|M = (T P )| ker P = 0. Let ν ∈ N

be such that (T |N)ν = ((T P )|P(X))ν = 0. Then

(T P )ν = ((T P )|M)ν ⊕ (T P |N)ν = 0,

so T P is nilpotent.
(ii) ⇒ (i) Suppose that P is a commuting projection such that T +P is bounded

below and T P is nilpotent. As in the proof of Theorem 2.82, the pair (ker P,P (X))
is a GKD for T . Furthermore, T |P(X) = (T P )|P(X) is nilpotent. �

The following result may be considered as a refinement of Theorem 2.46.

Theorem 2.84 Let T ∈ L(X). Then the following statements are equivalent:
(i) H0(T ) is complemented by a T -invariant subspace M such that T (M) is

closed;
(ii) there exists a pair of proper closed subspaces (M,N) which reduces T such

that the restriction T = T |M ⊕ T |N , T |M is bounded below, while T |N
quasi-nilpotent;

(iii) there exists a commuting projection P �= 0 such that T + P is bounded below
and T P is quasi-nilpotent.

In this case both subspaces H0(T ) and K(T ) are closed. More precisely,
for every projection P which satisfies (ii) we haveH0(T ) = P(X). Moreover,

(iv) H0(T ) ∩K(T ) = {0}.
(v) 0 ∈ iso σap(T ).
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Proof (i) ⇔ (ii) LetM be a closed T -invariant subspace such thatX = H0(T )⊕M
and T (M) is closed. If N := H0(T ) then T = T|M⊕T |N and T2 := T |N is quasi-
nilpotent. Moreover, ker T |M = M ∩ ker T ⊆ M ∩ H0(T ) = {0}, so T1 := T |M
is bounded below, since T (M) is closed. Conversely, let X = M ⊕ N such that
T |M is bounded below and T |N is quasi-nilpotent. Then Ho(T |M) = {0} and
H0(T |N) = N , henceH0(T ) = H0(T |M)⊕H=(T |N) = N , so X = M ⊕H0(T )

and T (M) is closed.
(ii) ⇒ (iii) Clearly, (M,N) is a GKD for T , since every bounded below operator

is semi-regular. As in the proof of Theorem 2.82, if P is the projection of X onto N
along M then M = ker P and N = P(X), and T P is quasi-nilpotent. Moreover,
T + P = (T + P)|M ⊕ (T + P)|N and (T + P)|M = T |M is bounded below,
by Lemma 1.28, while (T + P)|N = T |N + IN is invertible. Therefore, again by
Lemma 1.28, T + P is bounded below.

(iii) ⇒ (ii) TakeM := ker P and N := P(X). As in the proof of Theorem 2.82,
T |M = (T + P)|M is bounded below, while T |N = T |P(X) is quasi-nilpotent.

Observe that K(T ) is closed by Theorem 2.82. To show that H0(T ) is closed
observe that, by Lemma 2.36, we have H0(T ) = H0(T |M) ⊕ N . Since T |M is
bounded below,H0(T |M) = {0}, so H0(T ) = {0} ⊕N = N is closed.

(iii)H0(T )∩K(T ) is closed, so, by Theorem 2.39, we haveH0(T )∩K(T ) = {0}.
(iv) Because H0(T ) is closed, T has the SVEP at 0. By Lemma 2.81, it then

follows that 0 ∈ iso σap(T ). �
Theorem 2.85 Let T ∈ L(X). Then the following statements are equivalent:

(i) K(T ) is closed and complemented by a T -invariant subspace N such that
N ⊆ H0(T );

(ii) there exists a pair of proper closed subspaces (M,N) which reduces T such
that T = T |M ⊕ T |N , T |M is onto and T |N is quasi-nilpotent;

(iii) there exists a commuting projection P �= 0 such that T + P is onto and T P is
quasi-nilpotent.

If the equivalent conditions (i) and (iii) are satisfied we have:
(iii) K(T ) is closed and X = H0(T )+K(T );
(iv) 0 ∈ iso σs(T ).

Proof (i) ⇔ (ii) Let T1 := T |K(T ) and T2 := T |N . Obviously, T1 is onto and
H0(T2) = H0(T ) ∩ N = N , so T2 is quasinilpotent. Conversely, suppose that X =
M⊕N with T1 := T |M onto and T2 := T |N quasi-nilpotent. ThenK(T ) = K(T1)

is closed. Since T1 is onto then M = K(T ), so X = K(T ) ⊕ N and from the
inclusion N ⊆ H0(T ) we obtain that T |N is quasi-nilpotent.

(ii) ⇒ (iii) If T satisfies (ii) then (M,N) is a GKD for T since every onto operator
is semi-regular. If P is the projection ofX ontoN alongM then (T +P)|M = T |M
is onto, while (T + P)|N is invertible. By Lemma 1.28 it then follows that T + P
is onto. As in the proof of Theorem 2.82, we know that T P is quasi-nilpotent.

(iii) ⇒ (ii) Also here, take M := ker P and N := P(X). As in the proof of
Theorem 2.82, T |M = (T+P)|M is onto, while T |N = T |P(X) is quasi-nilpotent.
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(iii) Clearly K(T ) is closed by Theorem 2.82. Now,

H0(T ) = H0(T |M)⊕H0(T |N) = H0(T |M)⊕N ⊇ N,
while K(T ) = K(T |M) = M , since T |M is onto. Therefore, X = M ⊕ N ⊆
K(T )+H0(T ) and hence X = K(T )+H0(T ).

(iv) The conditionX = H0(T )+K(T ) entails that T ∗ has the SVEP at 0, so, by
Lemma 1.70, 0 ∈ iso σs(T ). �

2.5 A Local Spectral Mapping Theorem

Given an operator T ∈ L(X), X a Banach space, and an analytic function f
defined on an open neighborhood U of σ(T ), let f (T ) denote the corresponding
operator defined by the functional calculus. One may be tempted to conjecture that
the spectral theorem holds for the local spectrum, i.e. f (σT (x)) = σf (T )(x) for all
x ∈ X. It can easily be seen that this equality is not true in general. Indeed, if we
consider the constant function f ≡ c on the neighborhood U and an operator T
without the SVEP, then there exists, by Theorem 2.20, a vector 0 �= x ∈ X such that
σT (x) = ∅. Clearly f (σT (x)) = ∅, while

σf (T )(x) = σ(f (T )) = {c} �= ∅.
Denote by H(σ (T )) the set of all analytic functions, defined on an open

neighborhood of σ(T ). In order to show that the spectral theorem for the local
spectrum holds if T has the SVEP, we first need to prove that the SVEP is preserved
under the functional calculus.

Theorem 2.86 If T ∈ L(X) has the SVEP then f (T ) has the SVEP for every
f ∈ H(σ (T )).

Proof Suppose that T has the SVEP and σf (T )(x) = ∅ for some x ∈ X. By
Theorem 2.14 it suffices to show that x = 0. For every λ ∈ C there exists an
analytic function g : Uλ → X defined in an open neighborhood Uλ of λ such that
(μI − f (T ))g(μ) = x. Set Fλ := C \ Uλ. Trivially,

⋂
λ∈C

Fλ = ∅,

and

x ∈
⋂
λ∈C

Xf (T )(Fλ) =
⋂
λ∈C

XT (f−1(Fλ))

⊆ XT (
⋂
λ∈C

f−1(Fλ)) = XT (∅).

Since T has the SVEP, XT (∅) = {0}, hence x = 0, so f (T ) has the SVEP. �
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Denote by Hnc(σ (T )) the set of all analytic functions, defined on an open
neighborhood of σ(T ), such that f is non-constant on each of the components of its
domain.

Theorem 2.87 If T ∈ L(X) the following statements hold:
(i) f (σT (x)) ⊆ σf (T )(x) for all x ∈ X and f ∈ H(σ (T )).

(ii) If T has the SVEP, or if the function f ∈ Hnc(σ (T )), then

f (σT (x)) = σf (T )(x) for all x ∈ X.

Proof

(i) Let x ∈ X, and for every λ /∈ σf (T )(x) let Uλ denote an open neighborhood of
λ such that x ∈ Xf (T )(C \ Uλ). From Theorem 2.29 we have

x ∈ XT (f−1(C \ Uλ)) ⊆ XT (f−1(C \ Uλ)),

so f (σT (x)) ⊆ C \ Uλ for all λ /∈ σf (T )(x). From this it then follows that
f (σT (x)) ⊆ σf (T )(x).

(ii) If T has the SVEP then, by Theorem 2.86 f (T ) has the SVEP and hence, by
Theorem 2.23, local spectral and glocal spectral subspaces corresponding to
the same closed set coincide. By Theorem 2.29 we then have Xf (T )(F ) =
XT (f−1(F )) for all closed sets F ⊆ C, and applying this equality to the closed
set F0 := f (σT (x))we then obtain the reverse inclusion σf (T )(x) ⊆ f (σT (x)).

The proof in the case when f ∈ Hnc(σ (T )) is rather technical and may be
found in [216, Theorem 3.3.8]. �

The next result shows that the localized SVEP is preserved under the functional
calculus under appropriate conditions on the analytic function.

Theorem 2.88 Let T ∈ L(X) and f ∈ Hnc(σ (T )). Then f (T ) has the SVEP at
λ ∈ C if and only if T has the SVEP at every point μ ∈ σ(T ) for which f (μ) = λ.
Proof Suppose first that f (T ) has the SVEP at λ0 ∈ C. By Theorem 2.60 then

ker (λ0I − f (T )) ∩Xf (T )(∅) = {0}.

Suppose now that for some μ0 ∈ σ(T ) we have f (μ0) = λ0. To show
the SVEP of T at μ0 it suffices, again by Theorem 2.60, to show that
ker (μ0I − T ) ∩Xμ0I−T (∅) = {0}.

Let x ∈ ker (μ0I−T )∩XT (∅) be arbitrarily given and define h(μ) := λ0−f (μ)
for all μ ∈ U . Then h(T ) = λ0I − f (T ) and, since h(μ0) = 0, we can write
h(μ) = (μ0 − μ)g(μ), where g is analytic on U . Clearly

h(T ) = (μ0I − T )g(T ) = g(T )(μ0I − T ),
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so that x ∈ ker h(T ) = ker (λ0I − f (T ). On the other hand, from x ∈ XT (∅) we
obtain σT (x) = ∅, and hence

σf (T )(x) = f (σT (x) = f (∅) = ∅,

so x ∈ Xf (T )(∅). Therefore

ker (μ0I − T ) ∩XT (∅) ⊆ ker (λ0I − f (T )) ∩Xf(T )(∅) = {0},

which shows, by Theorem 2.60, that T has the SVEP at λ0.
Conversely, let λ0 ∈ C and assume that T has the SVEP at every μ0 ∈ σ(T )

for which f (μ0) = λ0. Write h(μ) := λ0 − f (μ), where μ ∈ U . By assumption
f is non-constant on each connected component of U , so, by the identity theorem
for analytic functions, the function h has only finitely many zeros in σ(T ) and these
zeros are of finite multiplicity. Hence there exists an analytic function g defined on
U without zeros in σ(T ) and a polynomial p of the form

p(μ) = (μ1 − μ) · · · (μn − μ),

with not necessarily distinct elements μ1, · · · , μn ∈ σ(T ) such that

h(μ) = λ0 − f (μ) = p(μ)g(μ) for all μ ∈ U .

Assume that x ∈ ker (λ0I − f (T )) ∩ Xf (T )(∅). In order to prove that f (T ) has
the SVEP at λ0 it suffices to show, again by Theorem 2.60, that x = 0. From the
classical spectral mapping theorem we know that g(T ) is invertible, so the equality

λ0I − f (T ) = p(T )g(T ) = g(T )p(T )

implies that p(T )x ∈ ker g(T ) = {0}. If we put

q(μ) := (μ2 − μ) · · · (μn − μ)

and y = q(T )x then (μ1I − T )y = 0.
On the other hand, x ∈ Xf(T )(∅) and f is non-constant on each of the connected

components of U . Part (ii) of Theorem 2.87 then ensures that

f (σT (x)) = σf (T )(x) = ∅

and therefore since T and q(T ) commute

σT (y) = σT (q(T )x) ⊆ σT (x) = ∅.
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But T has the SVEP at μ1, by assumption, so, again by Theorem 2.60, y = 0. A
repetition of this argument for μ2, · · · , μn then leads to the equality x = 0, thus
f (T ) has the SVEP at λ0.

The last claim is obvious, being nothing else than a reformulation of the
equivalence proved above. �

Combining Theorems 2.88 and 2.86 we then have:

Corollary 2.89 Let T ∈ L(X) and f ∈ Hnc(σ (T )). Then T has the SVEP if and
only if f (T ) has the SVEP.

An immediate consequence of Theorem 2.88 is that, in the characterization of
the SVEP at a point λ0 ∈ C given in Theorem 2.60, the kernel ker (λ0I − T ) may
be replaced by the hyper-kernel N∞(λ0I − T ).
Corollary 2.90 For every bounded operator on a Banach space X the following
properties are equivalent:

(i) T has the SVEP at λ0;
(ii) (λ0I − T )n has the SVEP at 0 for every n ∈ N;

(iii) N∞(λ0I − T ) ∩XT (∅) = {0};
(iv) N∞(λ0I − T ) ∩K(λ0I − T ) = {0}.
Proof The equivalence (i) ⇔ (ii) is obvious from Theorem 2.88. Combining this
equivalence with Theorem 2.60 we then obtain that T has the SVEP at λ0 if and
only if ker (λ0I − T )n ∩XT (∅) = {0}, for every n ∈ N. Therefore the equivalence
(i) ⇔ (iii) is proved. The equivalence (i) ⇔ (iv) follows from Theorem 2.60 in a
similar way. �

Note that in condition (ii) of Corollary 2.90 the power (λ0I−T )n may be replaced
by f (T ), where f is any analytic function on some neighborhood U of σ(T ) such
that f is non-constant on each of the connected components of U and such that 0 is
the only zero of f in σ(T ).

It is easily seen that if XT (F) = {0} then F ∩ σp(T ) = ∅. In fact, suppose
that XT (F) = {0} and assume that there is a λ0 ∈ F ∩ σp(T ). Then there is an
0 �= x ∈ ker(λ0I − T ). Clearly σT (x) ⊆ {λ0}, and since λ0 ∈ F this implies that
x ∈ XT (F) = {0}, a contradiction.

We also have thatXT (F) = X precisely when σs(T ) ⊆ F . In fact, ifXT (F) = X
and λ /∈ F then

K(λI − T ) = XT (C \ {λ}) ⊇ XT (F \ {λ}) = XT (F) = X,

so that X = K(λI − T ) and hence λI − T is surjective, namely λ /∈ σs(T ).
Conversely, suppose that σs(T ) ⊆ F . By Theorem 2.21 we obtain that σT (x) ⊆ F

for all x ∈ X so that X = XT (F).
One of the deepest results of local spectral theory, due to Laursen and Neumann

[215], shows that analogous results hold for the glocal subspaces in the case where
� is closed subset of C, see also [216, Theorem 3.3.12].
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The following result generalizes Corollary 2.61 to semi-regular operators.

Theorem 2.91 Suppose that λ0I − T is a semi-regular operator on the Banach
space X. Then the following equivalences hold:

(i) T has the SVEP at λ0 precisely when λ0I −T is injective or, equivalently, when
λ0I − T is bounded below;

(ii) T ∗ has the SVEP at λ0 precisely when λ0I − T is surjective.

Proof

(i) We can assume that λ0 = 0. We have only to prove that if T has the SVEP at 0
then T is injective. Suppose that T is not injective. Then, by Theorem 1.44, the
semi-regularity of T entails T∞(X) = K(T ) and {0} �= ker T ⊆ T∞(X) =
K(T ). Thus T does not have the SVEP at 0 by Theorem 2.60.

(ii) If λ0I − T is semi-regular then λ0I
∗ − T ∗ is also semi-regular and λ0I − T is

surjective if and only if λ0I
∗ − T ∗ is bounded below. �

Corollary 2.92 Let X be a Banach space and T ∈ L(X). The following assertions
hold:

(i) If λ0 ∈ σ(T )\σap(T ) then T has the SVEP at λ0, but T � fails to have the SVEP
at λ0.

(ii) If λ0 ∈ σ(T ) \ σs(T ) then T � has the SVEP at λ0, but T fails to have the SVEP
at λ0.

Proof The condition λ0 ∈ σ(T ) \ σap(T ) implies that λ0I − T has closed range
and is injective but not surjective, so we can apply Theorem 2.91. Analogously, if
λ0 ∈ σ(T ) \ σs(T ) then λ0I − T is surjective but not injective, so we can apply
again Theorem 2.91. �

As observed before, the semi-regular resolvent ρse(T ) is an open subset of C, so
it may be decomposed into connected disjoint open non-empty components.

Theorem 2.93 Let T ∈ L(X), X a Banach space, and � a component of ρse(T ).
Then we have the following alternative:

(i) T has the SVEP at every point of �. In this case σp(T ) ∩� = ∅;
(ii) For every λ ∈ �, T does not have the SVEP. In this case σp(T ) ⊇ �.
Proof Suppose that T has the SVEP at a point λ0 ∈ � and consider an arbitrary
point λ of �. In order to show that T has the SVEP at λ it suffices to show, by
Theorem 2.91, that λI − T is injective. By Theorem 2.91 λ0I − T is injective, so
N∞(λ0I−T ) = {0} and thereforeH0(λ0I−T ) = {0}, by part (ii) of Theorem 2.37.
From Theorem 2.57 we know that the subspaces H0(λI − T ) are constant for λ
ranging through �, so that H0(λI − T ) = {0} for every λ ∈ �. This shows that T
has the SVEP at every λ ∈ �.

The assertions on the point spectrum are clear from Theorem 2.91. �
A very special situation is given when σap(T ) and σs(T ) are contained in the

boundary ∂σ(T ) of the spectrum, or, equivalently, are equal, since both contain
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∂σ(T ). Later we shall see that this situation is fulfilled by several classes of
operators. Note first that both T and T ∗ have the SVEP at every point λ ∈ ρ(T ).
Theorem 2.94 Suppose that for a bounded operator T ∈ L(X),X a Banach space,
we have σap(T ) = ∂σ(T ). Then T has the SVEP while �(T ∗) coincides with the
interior of σ(T ). Similarly, if σs(T ) = ∂σ(T ) then T ∗ has the SVEP, while �(T )
coincides with the interior of σ(T ).

Proof Suppose that σap(T ) = ∂σ(T ). If λ belongs to the interior of σ(T ) then
λ /∈ σap(T ), hence T has the SVEP at λ while T ∗ does not have the SVEP at λ, by
part (i) of Corollary 2.92. Similarly the last claim is a consequence of part (ii) of
Corollary 2.92. �

Theorem 2.94 has a nice application to the so-called Césaro operator Cp defined
on the classical Hardy space Hp(D), D the open unit disc and 1 < p < ∞. The
operator Cp is defined by

(Cpf )(λ) := 1

λ

∫ λ

0

f (μ)

1 − μ dμ for all f ∈ Hp(D) and λ ∈ D.

As noted by Miller et al. [241], the spectrum of the operator Cp is the entire
closed disc �p , centered at p/2 with radius p/2, and σap(Cp) is the boundary ∂�p.
Hence, the Cesàro operator has the SVEP, while its adjoint does not have the SVEP
at any point of the interior of �p.

2.6 The Localized SVEP and Topological Uniform Descent

In this section we characterize in several ways the localized SVEP for operators
having uniform descent, and in particular for quasi-Fredholm operators. We begin
first by extending to operators with topological descent the results of Theorems 1.64
and 2.37. Recall that if T ∈ L(X), the operator range topology on T (X) is the
topology induced by the norm ‖ · ‖T defined by:

‖y‖T := inf
x∈X{‖x‖ : y = T x}.

Theorem 2.95 If T ∈ L(X) has topological uniform descent for n ≥ d , then we
have:

(i) H0(T ) = N∞(T ).
(ii) T∞(X) is closed in the range topology on T d(X).

(iii) K(T ) = T∞(X).
(iv) N∞(T ) ⊆ T∞(X)+ ker T d .
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Proof

(i) The inclusion N∞(T ) ⊆ H0(T ) is clear for every operator, since N∞(T ) ⊆
H0(T ). To show the reverse inclusion, observe first that by part (iv) of
Theorem 1.79, the map T̂ induced by T on X/N∞(T ) is bounded below,

in particular upper semi-Fredholm. Hence, by Theorem 2.37, H0(T̂ ) =
N∞(T̂ ) = {0}. Let π : X → X/N∞(T̂ ) be the canonical surjection, defined
by πx := [x]. Since ‖πx‖ ≤ ‖x‖ and π(T x) = T̂ (πx) we then have

‖T̂ n(πx)‖ 1
n = ‖π(T nx)‖ 1

n ≤ ‖T nx‖ 1
n .

If x ∈ H0(T ) we then have ‖T̂ n(πx)‖ 1
n → 0, so πx ∈ H0(T̂ ). Therefore,

π(H0(T ) ⊆ H0(T̂ ) = {0}, and hence π(H0(T ) = {0}. From the definition of
π we easily see that H0(T ) ⊆ N∞(T ), and hence H0(T ) ⊆ N∞(T ).

(ii) Since T has topological uniform descent for n ≥ d , the restriction T |T∞(X) is
onto, by Theorem 1.79, andK(T |T∞(X)) = T∞(X) is closed in the operator
range topology of T d(X).

(iii) For all x ∈ K(T |T∞(X)) there exists, by definition, a δ > 0 and a sequence
(xn) ⊂ T∞(X) such that x0 = x, T xn+1 = xn, and

‖T xn+1‖d ≤ δn‖x‖d for all n = 0, 1, . . . .

Let y := y0, where y0 := xd , and yn := xn+d , for all n ∈ N. Clearly,

Tyn+1 = T xn+d+1 = xn+d = yn.

From the definition of the operator range topology we know that there exists a
constant C > 0 for which

C‖Tyn+1‖ ≤ ‖Tyn+1‖d = ‖T xn+d+1‖d ≤ δn+d‖x‖d
= δn+d‖T dxd‖d ≤ δn+d‖xd‖ = δnδd‖y‖.

Consequently, we can obtain a δ1 > 0 for which ‖Tyn+1‖ ≤ δ1
n‖y‖, so y =

xd ∈ K(T ) and x = T dxd ∈ K(T ). Thus,

T∞(X) = K(T |T∞(X)) ⊆ K(T ) ⊆ T∞(X),

and hence the equalityK(T ) = T∞(X) is proved.
(iv) By part (i) of Lemma 1.80 we have

T∞(X)+ N∞(T ) = T∞(X)+ ker T d,

hence N∞(T ) ⊆ T∞(X)+ ker T d . �
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Corollary 2.96 If T ∈ L(X) is quasi-Fredholm then K(T ) = T∞(X) is closed

Proof Every quasi-Fredholm operator has topological uniform descent, so, by
Theorem 2.95, we have K(T ) = T∞(X). If T ∈ QF(d) then T n(X) is closed
for all n ≥ d , thus T∞(X) is closed. �

The SVEP at a point for operators having topological uniform descent may be
characterized in several ways:

Theorem 2.97 Suppose that λ0I − T has topological uniform descent for n ≥ d .
Then the following conditions are equivalent:

(i) T has the SVEP at λ0;
(ii) the restriction T |(λ0I − T )d(X) has the SVEP at λ0, where the subspace

(λ0I − T )d(X) is equipped with the operator range topology;
(iii) the restriction (λ0I − T )|(λ0I − T )d(X) is bounded below, where (λ0I −

T )d(X) is equipped with the operator range topology;
(iv) λ0I − T has finite ascent, or equivalently λ0I − T is left Drazin invertible;
(v) σap(T ) does not cluster at λ0;

(vi) λ0 /∈ intσap(T ), where int σ(T ) is the interior of σap(T );
(vii) there exists a p ∈ N such that H0(λ0I − T ) = ker (λ0I − T )p;

(viii) H0(λ0I − T ) is closed;
(ix) H0(λ0I − T ) ∩K(λ0I − T ) = {0};
(x) N∞(λ0I − T ) ∩ (λ0I − T )∞(X) = {0}.

In particular, these equivalences hold for semi B-Fredholm operators.

Proof We may assume λ0 = 0. We show that the first six statements are equivalent.
(i) ⇒ (ii) Let U be an open neighborhood of 0 and let f : U → (T d(X), ‖ ·

‖d ) be an analytic function such that (λI − T )f (λ) = 0 for all λ ∈ U . Because
(T d(X), ‖ · ‖d ) may be continuously imbedded in X and

(λI − T )|T d(X)f (λ) = (λI − T )f (λ),

f may be viewed as an analytic function from U into X which satisfies (λI −
T )f (λ) = 0 for all λ ∈ U . This implies f = 0 on U , by the SVEP of T at 0, and
hence T |T d(X) has the SVEP at 0.

(ii) ⇒ (iii) Let Y := T d(X) and S := T |Y . Clearly, S has topological uniform
descent for n ≥ d . By Theorem 1.78 the subspace T d+1(X), which is the range of
S, is closed with respect the operator range topology. Moreover, by Theorem 1.74
we have kerS = ker T ∩ T d(X) ⊆ Sn(Y ) for all n ≥ d , i.e., S is semi-regular. The
SVEP of S at 0 then implies that S is bounded below, by Theorem 2.91.

(iii) ⇒ (iv) Since T |T d(X) is injective we have {0} = ker (T |T d(X)) =
ker T ∩ T d(X), and this implies, by Lemma 1.19, that p(T ) ≤ d < ∞. This,
by Theorem 1.142, is equivalent to saying that T is left Drazin invertible.

(iv) ⇒ (v) This is a consequence of Theorem 1.92, putting S = λI − T with λ
sufficiently small.

(v) ⇒ (vi) Obvious.
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(vi) ⇒ (i) This is an immediate consequence of the identity theorem for analytic
functions.

Therefore, the conditions (i)–(vi) are equivalent.
(vi) ⇒ (vii) By Theorem 2.95 we haveH0(T ) = N∞(T ). If p := p(T ) then

H0(T ) ⊆ H0(T ) = N∞(T ) = ker T p ⊆ H0(T ),

so H0(T ) = ker T p.
(vii) ⇒ (viii) Obvious.
(viii) ⇒ (ix)⇒ (i) See part (i) of Theorem 2.39.
(ix) ⇒ (x) By Theorem 2.95 we have T∞(X) = K(T ). Since N∞(T ) ⊆ H0(T )

holds for every operator, we then have

N∞ ∩ T∞(X) ⊆ H0(T ) ∩K(T ) = {0}.

(x) ⇒ (i) See Theorem 2.66. �
Next, we will consider some characterizations of SVEP for T ∗ at λ0 in the case

when λ0I − T has topological uniform descent. Recall that the property of having
topological uniform descent is not transmitted by duality, so we cannot use the
results of Theorem 2.97.

Theorem 2.98 Suppose that λ0I − T has topological uniform descent for n ≥ d .
Then the following conditions are equivalent:

(i) T ∗ has the SVEP at λ0;
(ii) there exists an n ∈ N such that the restriction (λ0I − T )|(λ0I − T )n(X) is

onto, where (λ0I − T )n(X) is equipped with the operator range topology;
(iii) λ0 /∈ intσs(T );
(iv) σs(T ) does not cluster at λ0;
(v) λ0I −T has finite descent, or equivalently λ0I −T is right Drazin invertible;

(vi) there exists a q ∈ N such that K(λ0I − T ) = (λ0I − T )q(X);
(vii) X = H0(λI − T )+K(λ0I − T );

(viii) H0(λI − T )+K(λ0I − T ) is norm dense in X;
(ix) X = N∞(λ0I − T )+ (λ0I − T )∞(X);
(x) N∞(λ0I − T )+ (λ0I − T )∞(X) is norm dense in X.

In particular, the equivalences hold for semi B-Fredholm operators.

Proof Here we can assume λ0 = 0.
(i) ⇒ (v) Since T has topological uniform descent, for n ≥ d , the operator

T̂ : X/N∞(T ) → X/N∞(T ), defined by T [x] = [T x], is bounded below by
Theorem 1.79. Therefore the dual T̂ ∗ : (X/N∞(T ))∗ → (X/N∞(T ))∗ of T̂ is
onto. Now, by the Annihilator theorem (see Appendix A) there is an linear isometry

J of (X/N∞(T ))∗ onto N∞(T )⊥ such that

J T̂ ∗J−1 = T ∗|N∞(T )⊥.
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Hence, the restriction of T ∗ onN∞(T )⊥ is onto. Note that the invariance ofN∞(T )
under T implies that N∞(T )⊥ is invariant under T ∗. The restriction T ∗|N∞(T )⊥

has the SVEP at 0, so, by Corollary 2.61, T ∗|N∞(T )⊥ is also injective. From
the Annihilator theorem we then deduce that T̂ ∗ is invertible and hence T̂ is also
invertible. This implies that the ranges of T̂ d and T̂ d+1 coincide, consequently

T d(X)+ N∞(T )
N∞(T )

= T d+1(X)+ N∞(T )
N∞(T )

.

By Lemma 1.80 we also have T d(X) ∩ N∞(T ) = T d+1(X) ∩ N∞(T ) and, by
using Lemma 1.68, a simple calculation gives

T d(X)

T d(X) ∩ N∞(T )
= T d+1(X)

(T d(X) ∩ N∞(T ))
.

Since T d+1(X) ⊆ T d(X) we then have that T d+1(X) = T d(X), hence T has
finite descent. By Theorem 1.142 this is equivalent to saying that T is right Drazin
invertible.

(v) ⇒ (iv) If T has finite descent, then, by Corollary 1.92, there exists an ε > 0
such that λI − T is onto for all 0 < |λ| < ε, thus σs(T ) does not cluster at 0.

(iv) ⇒ (iii) Obvious.
(iii) ⇒ (i) This easily follows from the equality σs(T ) = σap(T

∗) and from the
identity theorem for analytic functions.

(ii) ⇒ (v) If for some natural n the restriction T |T n(X) is onto, then

T n+1(X) = T (T n(X) = (T |T n(X))(T n(X)) = T n(X),

and hence T has finite descent.
(v) ⇒ (ii) If q := q(T ) <∞, then

(T |T q(X))(T q(X)) = T (T q(X)) = T q(X),

thus T |T q(X) is onto.
(v) ⇒ (vi) By Theorem 2.95 we have K(T ) = T∞(X). Clearly, if T has finite

descent q then T∞(X) = T q(X).
(vi) ⇒ (v) From Theorem 2.95 we obtain K(T ) = T∞(X) = T q(X), so T has

finite descent.
(v) ⇒ (ix) If q := q(T ) < ∞, then T q(X) = T∞(X) and hence, by

Theorem 1.19,

X = ker T q + T q(X) ⊆ N∞(T )+ T∞(T X).

Therefore,X = N∞(T )+ T∞(T X).
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(ix) ⇒ (vii) We have N∞(T ) ⊆ H0(T ) and, by Theorem 2.95,K(T ) = T∞(X).
Hence, X = H0(T )+K(T ).

Finally, the implications (vii) ⇒ (viii) and (ix) ⇒ (x) are obvious, while the
implications (viii) ⇒ (i) and (x) ⇒ (i) have been shown in Theorem 2.73 and
Corollary 2.74. �

The next corollary is an obvious consequence of Theorems 2.97 and 2.98.

Corollary 2.99 If λ0I − T has uniform topological descent then the following
statements are equivalent:

(i) Both T and T ∗ have the SVEP at λ0;
(ii) λ0 is a pole of the resolvent;

(iii) X = H0(λ0I − T )⊕K(λ0I − T );
(iv) X = N∞(λ0I − T )+ (λ0I − T )∞(X).

We now consider the case where λ ∈ iso σ(T ).

Theorem 2.100 Suppose that T ∈ L(X) and λ ∈ iso σ(T ). Then the following
statements are equivalent:

(i) λI − T ∈ �(X);
(ii) λI − T ∈ �+(X);

(iii) λI − T ∈ �−(X);
(iv) λI − T is Browder;
(v) dimH0(λI − T ) <∞;

(vi) codimK(λI − T ) <∞.

Proof If λ ∈ iso σ(T ) then both T and T ∗ have the SVEP at λ. The implication (i)
⇒ (ii) is obvious. Suppose that λI−T ∈ �+(X). The SVEP of T ∗ at λ then implies,
by Theorem 2.97, that q(λI − T ) < ∞, and hence by Theorem that β(λI − T ) <
α(λI − T ) <∞. Thus, λI − T ∈ �−(X) and hence (ii) ⇒ (iii).

(iii) ⇒ (iv) If λI − T ∈ �−(X), then p(λI − T ) = q(λI − T ) < ∞, by
Corollary 2.99, and hence, again by Theorem 1.22, α(λI − T ) = β(λI − T ) <∞,
so λI − T is Browder.

(iv) ⇒ (v) By Corollary 2.47H0(λI − T ) = ker (λI −T )p, where p; = p(λI −
T ). Since α(λI −T ) <∞, α(λI −T )p <∞, so H0(λI −T ) is finite-dimensional.

(v) ⇒ (vi) Clear, since by Theorem 2.45, or by Corollary 2.99, we have X =
H0(λI − T )⊕K(λI − T ).

(vi) ⇒ (i) From the inclusionK(λI −T ) ⊆ (λI −T ) it then follows that β(λI −
T ) < ∞. The SVEP of T and T ∗ at λ entails that p(λI − T ) = q(λI − T ) < ∞,
so, by Theorem 1.22, α(λI − T ) = β(λI − T ) <∞. Hence, λI − T ∈ �(X). �

Another consequence of Theorems 2.97 and 2.98 is the following theorem, whose
proof is omitted since it is similar to that of Theorem 2.100.
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Theorem 2.101 Suppose that T ∈ L(X) and λ ∈ iso σap(T ). Then the following
statements are equivalent:

(i) λI − T ∈ �(X);
(ii) λI − T ∈ �+(X);

(iii) λI − T is upper semi-Browder.
Analogously, if λ ∈ iso σs(T ) the following statements are equivalent:

(iv) λI − T ∈ �(X);
(v) λI − T ∈ �−(X);

(vi) λI − T is lower semi-Browder.

Theorems 2.97 and 2.98 has some other applications. If T ∈ L(X), define, as in
Chap. 2,

cn(T ) := dim
T n(X)

T n+1(X)

and

c′n(T ) := dim
ker T n+1

ker T n
.

Corollary 2.102 Suppose that T ∈ L(X) has uniform topological descent for n ≥
d .

(i) If T ∗ has the SVEP at 0 then c′d(T ) ≤ cd(T ).
(ii) If S ∈ L(X) commutes with T and is sufficiently small and invertible, then T ∗

has the SVEP at 0 if and only if T ∗ + S∗ has the SVEP at 0.

Proof

(i) Suppose that cd(T ) > c′d(T ). Then cd(T ) > 0. Let λ �= 0 be small enough. By
Theorem 1.89 cn(λI −T ) = cd(T ) > 0 for all n ∈ N, so λI −T is not onto. By
Corollary 1.92 T has infinite descent, so, by Theorem 2.98, T ∗ does not have
the SVEP at 0.

(ii) From Theorem 1.89 and Corollary 1.92, T +S has topological uniform descent
for n ≥ d , and descent q(T ) >∞ precisely when q(T + S) <∞. �

In the case when λ0I−T is quasi-Fredholm, the SVEP at λ0 may be characterized
in several other ways:

Theorem 2.103 Let T ∈ L(X) and suppose that λ0I − T is quasi-Fredholm of
degree d . Then the following assertions are equivalent:

(i) T has the SVEP at λ0;
(ii) N∞(λ0I − T ) ∩ (λ0I − T )∞(X) = {0};

(iii) N∞(λ0I − T )⊥ + (λ0I − T )∞(X)⊥ = X∗;
(iv) N∞(λ0I

∗ − T ∗)+ (λ0I
∗ − T ∗)∞(X)⊥ is weak*-dense in X∗;

(v) H0(λ0I
∗ − T ∗)+K(λ0I

∗ − T ∗) is weak*-dense in X∗;
(vi) H0(λ0I

∗ − T ∗)+ (λ0I
∗ − T ∗)(X∗) is weak*-dense in X∗.
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Proof We may assume that λ0 = 0.
(i) ⇒ (ii) Assume that T has the SVEP at 0, or equivalently, by part (ix) of

Theorem 2.97, that H0(T ) ∩ K(T ) = {0}. Since T is quasi-Fredholm we have
T∞(X) = K(T ), by Corollary 2.96. Therefore,

N∞(T ) ∩ T∞(X) ⊆ H0(T ) ∩ T∞(X) = H0(T ) ∩K(T ) = {0},

thus the statement (i) holds.
(ii) ⇒ (iii) T has topological uniform descent for n ≥ d , so by using part (i) of

Lemma 1.80 and part (v) of Theorem 1.78, we deduce that N∞(T ) + T∞(X) =
ker T d + T∞(X) is closed. Consequently,

N∞(T )⊥ + T∞(X)⊥ = [N∞(T )+ T∞(X)]⊥ = X∗.

(iii) ⇒ (iv) By Theorem 1.104, T ∗ is quasi-Fredholm and hence T ∗n(X∗) is
closed for all n ≥ d . Consequently,

N∞(T )⊥ ⊆ (kerT n)⊥ = T ∗n(X∗) for all n ≥ d.

From this it then follows that N∞(T )⊥ ⊆ T ∗∞(X∗). Similarly, since T is quasi-
Fredholm we have ⊥N∞(T ∗) ⊆ T∞(X), from which we obtain

T∞(X)⊥ ⊆ [⊥N∞(T ∗)]⊥ = N∞(T ∗)w∗
.

From our assumption it then follows that

X∗ = N∞(T )⊥ + T∞(X)⊥ ⊆ T ∗∞
(X∗)+ N∞(T ∗)w∗

⊆ N∞(T ∗)+ T ∗∞(X∗)w∗ ⊆ X∗,

so that N∞(T ∗)+ T ∗∞(X∗) is weak*-dense in X∗.
(iv) ⇒ (v). This is clear, since T ∗ is quasi-Fredholm and hence T ∗∞(X∗) =

K(T ∗), by Corollary 2.96.
(v) ⇒ (vi) Obvious, since K(T ∗) ⊆ T ∗(X∗).
The implication (vi) ⇒ (i) has been proved in Theorem 2.75. �
The next result is dual to Theorem 2.103.

Theorem 2.104 Let T ∈ L(X) and suppose that λ0I − T is quasi-Fredholm of
degree d . Then the following assertions are equivalent:

(i) T ∗ has the SVEP at λ0;
(ii) X = N∞(λ0I − T )+ (λ0I − T )∞(X);

(iii) N∞(λ0I − T )⊥ ∩ (λ0I − T )∞(X)⊥ = {0};
(iv) N∞(λ0I

∗ − T ∗) ∩ (λ0I
∗ − T ∗)∞(X∗) = {0};

(v) ker(λ0 − T ∗) ∩ (λ0I
∗ − T ∗)∞(X∗) = {0}.
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Proof Here we can suppose that λ0 = 0.
(i) ⇒ (ii) Suppose that T ∗ has the SVEP at 0, or equivalently, by Theorem 2.98,

that the descent q := q(T ) < ∞. Then T∞(X) = T q(X) and hence, by
Lemma 1.19,

X = kerT q + T q(X) ⊆ N∞(T )+ T q(X) = N∞(T )+ T∞(X),

thus (ii) holds.
(ii) ⇒ (iii) Clear.
(iii) ⇒ (iv) Since T is quasi-Fredholm of degree d , T n(X) is closed for all

n ≥ d . Hence ker(T n)⊥ = T ∗(X∗) and consequently T ∗∞(X∗) = N∞(T )⊥.
By assumption

N∞(T )⊥ ∩ T∞(X)⊥ = [N∞(T )+ T∞(X)]⊥ = {0},

thus X = N∞(T ) + T∞(X). Since K(T ) = T∞(X) it then follows that X =
N∞(T )+K(T ), and henceH0(T )+K(T ) = X, or equivalently q := q(T ) <∞,
by Theorem 2.98. This implies that p(T ∗) ≤ ∞, so

N∞(T ∗) = kerT ∗q = T q(X)⊥ = T∞(X)⊥.

Thus,

N∞(T ∗) ∩ T ∗∞
(X∗) = N∞(T )⊥ ∩ T∞(X)⊥ = {0}.

(iv) ⇒ (v) Obvious, since kerT ∗ ⊆ N∞(T ∗).
(v) ⇒ (i) This follows from Theorem 2.60. �
From Corollary 1.83 we know that every essentially semi-regular operator has

topological uniform descent, so the results established in Theorems 2.97 and 2.98
are valid for this class of operators.

Theorem 2.105 Suppose that λ0I −T is essentially semi-regular. Then we have

(i) T has the SVEP at λ0 if and only if H0(λ0I − T ) is finite-dimensional. In this
case λ0I − T ∈ �+(X).

(ii) T ∗ has the SVEP at λ0 if and only ifK(λ0I −T ) has finite codimension. In this
case λ0I − T ∈ �−(X).

In particular, these equivalences hold if λ0I − T is semi-Fredholm

Proof Suppose also here that λ0 = 0.

(i) Since T is essentially semi-regular, in the corresponding GKD (M,N) for
T the subspace N is finite-dimensional. Suppose that T has the SVEP at
0. Then T |M has the SVEP at 0, since the SVEP at 0 of T is inherited
by the restrictions on every closed invariant subspaces. Moreover, T |M is
semi-regular, so, by Theorem 2.91, T |M has the SVEP at 0 if and only if
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T |M is injective. From Theorem 2.37 the semi-regularity of T |M implies that
H0(T |M) = N∞(T |M) = {0}, and hence

H0(T ) = H0(T |M)⊕H0(T |N) = {0} ⊕N = N.
Consequently,H0(T ) = N is finite-dimensional. Conversely, ifH0(T ) is finite-
dimensional then H0(T ) is closed, which is equivalent to saying that T has the
SVEP at 0, by Theorem 2.97.

Now, if H0(T ) is finite-dimensional then ker T is also finite-dimensional,
since ker T ⊆ H0(T ). On the other hand, T (X) = T (M) + T (N) and T (M)
is closed, since T |M is semi-regular, so T (X) is closed, because it is the sum
of a closed subspace and a finite-dimensional subspace of X. Therefore, T ∈
�+(X).

(ii) Since T is essentially semi-regular, in the GKD (M,N) for T the subspaceM
has finite codimension in X, since N is finite-dimensional. We also know that
the pair (N⊥,M⊥) is a GKD for T ∗, so T ∗|N⊥ is semi-regular, and hence,
by Theorem 2.79, T ∗ has the SVEP at 0 if and only if T ∗ |N⊥ is injective.
By Lemma 2.78, T ∗ has the SVEP at 0 if and only if T |M is onto. If T |M
is surjective then M = K(T |M) = K(T ), by Theorem 2.37, so K(T ) has
finite codimension. Conversely, suppose that K(T ) has finite codimension. By
Theorem 1.64 we have K(T ) = T∞(X) and T∞(X) ⊆ T n(X) for all n ∈ N,
from which we obtain that the descent q(T ) < ∞, and this is equivalent to
saying that T ∗ has the SVEP at 0, by Theorem 2.98. Finally, from K(T ) =
T∞(X) ⊆ T (X) we see that T (X) has finite codimension, so T ∈ �−(X).

The last assertion is clear: every semi-Fredholm operator is essentially semi-
regular.

�
For semi-Fredholm operators we have the following important result.

Corollary 2.106 Suppose that λ0I − T is semi-B-Fredholm. Then the following
statements hold:

(i) If T has the SVEP at λ0 then ind (λ0I − T ) ≤ 0.
(ii) If T ∗ has the SVEP at λ0 then ind (λ0I − T ) ≥ 0.

Consequently, if both T and T ∗ have the SVEP at λ0 then λ0I − T ∈ �(X)
and ind (λ0I − T ) = 0.

Proof

(i) By Theorem 2.97 we know that if T has the SVEP at λ0 then
p(λ0I − T ) < ∞, and this implies, by part (i) of Theorem 1.22, that
α(λ0I − T ) ≤ β(λ0I − T ), thus ind (λ0I − T ) ≤ 0.

(ii) By Theorem 2.98 we know that if T ∗ has the SVEP at λ0 then
q(λ0I − T ) < ∞, and this implies, by part (i) of Theorem 1.22, that
β(λ0I − T ) ≤ α(λ0I − T ), hence ind (λ0I − T ) ≥ 0.

The last assertion is clear. �
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The converses of the results of Corollary 2.106 do not hold, i.e., a semi-Fredholm
operator with index less than or equal to 0 may fail to have the SVEP at 0. For
instance, if R and L denote the right shift and the left shift on the Hilbert space
�2(N), then it is easy to see that R is injective, and α(R ⊕ L) = α(L) = 1, while
β(R ⊕ L) = β(R) = 1, so R ⊕ L is a Fredholm operator having index 0. Since L
fails SVEP at 0, R ⊕ L does not have the SVEP at 0, by Theorem 2.15.

Corollary 2.107 If λI − T ∈ L(X) is B-Fredholm with ind (λI − T ) = 0 then the
following statements are equivalent:

(i) T has the SVEP at λ;
(ii) λI − T is Drazin invertible;

(iii) T ∗ has the SVEP at λ.

Proof (i) ⇔ (ii) The SVEP of T at λ is equivalent to p(λI − T ) < ∞, by
Theorem 2.97, and this is equivalent to saying that λI − T is Drazin invertible, by
Theorem 1.143. (iii) ⇔ (ii) The SVEP of T ∗ at λ is equivalent to q(λI − T ) < ∞,
by Theorem 2.98, and this is equivalent to saying that λI − T is Drazin invertible,
again by Theorem 1.143. �

It has been observed in Remark 2.62 that if an operator T ∈ L(X) has the SVEP
at λ0 and if Y is a closed subspace ofX such that (λ0I−T )(Y ) = Y , then ker (λ0I−
T ) ∩ Y = {0}.

The following useful result shows that this result is even true if we assume that
Y is complete with respect to a new norm and Y is continuously embedded in X.

Lemma 2.108 Suppose that X is a Banach space and that the operator T ∈ L(X)
has the SVEP at λ0. Let Y be a Banach space which is continuously embedded in X
and satisfies (λ0I − T )(Y ) = Y . Then ker (λ0I − T ) ∩ Y = {0}.
Proof By the closed graph theorem the restriction T |Y is continuous with respect to
the given norm ‖ · ‖1 on Y . Moreover, since every analytic function f : U → (Y, ‖ ·
‖1) on an open set U ⊆ C remains analytic, when considered as a function from
U to X, it is clear that T |Y inherits the SVEP at λ0 from T . Hence Corollary 2.61
applies to T |Y with respect to the norm ‖ · ‖1. �

By Theorem 2.97, T has the SVEP at λ0 precisely when p(λ0I − T ) < ∞.
The next result shows that this equivalence also holds under the assumption that
q(λ0I − T ) <∞.

Theorem 2.109 Let T ∈ L(X), X a Banach space, and suppose that 0 < q(λ0I −
T ) <∞. Then the following conditions are equivalent:

(i) T has the SVEP at λ0;
(ii) p(λ0I − T ) <∞;

(iii) λ0 is a pole of the resolvent;
(iv) λ0 is an isolated point of σ(T ).

Proof There is no harm in assuming λ0 = 0.
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(i) ⇒ (ii) Let q := q(T ) and Y := T q(X). Let us consider the map T̂ :
X/ker T q → Y defined by T̂ (̂x) := T x where x ∈ x̂. Clearly, since T̂ is continuous
and bijective we can define in Y a new norm

‖y‖1 := inf{‖x‖ : T q(x) = y},

for which (Y, ‖ · ‖1) becomes a Banach space. Moreover, if y = T q(x) from the
estimate

‖y‖ = ‖T q(x)‖ ≤ ‖T q‖‖x‖

we deduce that Y can be continuously embedded in X. Since T (T q(X)) =
T q+1(X) = T q(X), by Corollary 2.108 we conclude that ker T ∩ T q(X) = {0}
and hence by Lemma 1.19 p(T ) <∞.

(ii) ⇒ (iii) If p := p(λ0I − T ) = q(λ0I − T ) <∞ then λ0 is a pole of order p.
(iii) ⇒ (iv) Obvious.
(iv) ⇒ (i) This has been observed above. �
The quasi-nilpotent operators may be characterized in the following way:

Theorem 2.110 If T ∈ L(X) then the following statements are equivalent:
(i) T is quasi-nilpotent;

(ii) K(T ) = {0} and 0 ∈ iso σ(T );
(iii) H0(T ) = X and 0 ∈ iso σ(T ).

Proof (i) ⇔ (ii). The implication (i) ⇒ (ii) is clear by Theorem 2.71. Conversely,
suppose that 0 ∈ iso σ(T ) and K(T ) = {0}. If P0 is the spectral projection
associated with {0} then, by Theorem 2.45, ker P0 = K(T ) = {0}, and P0(X) =
H0(T ). This implies that P0 is the identity and hence H0(T ) = X, so T is quasi-
nilpotent by Theorem 2.35.

(i) ⇔ (iii) The implication (i) ⇒ (ii) is clear, since H0(T ) = X. The reverse is
also clear, since H0(T ) = P0(X) is closed, so H0(T ) = H0(T ) = X. �

We know, from Theorem 2.45, that if λ0 is isolated in σ(T ) then X = K(λ0I −
T )⊕H0(λ0I − T ), where the direct sum is in the topological sense. We now show
that the reverse implication holds if we assume that only K(λ0I − T ) is closed and
the direct sum is in the algebraic sense.

Theorem 2.111 For a bounded operator T ∈ L(X), where X is a Banach space,
the following assertions are equivalent:

(i) λ0 is an isolated point of σ(T );
(ii) K(λ0I − T ) is closed and X = K(λ0I − T ) ⊕ H0(λ0I − T ), where ⊕ is the

algebraic sum.

Proof Here we assume λ0 = 0. By assumptionK(T ) is closed and by Theorem 1.39
we know K(T ) is T -invariant. Let T := T |K(T ). Since kerT ⊆ H0(T ), T is
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invertible. Hence there exists an ε > 0 such that λI − T is invertible for every
|λ| < ε. Consequently,

(λI − T )(K(T )) = K(T ) for every |λ| < ε. (2.19)

Since ker (λI − T ) ⊆ K(T ) for all λ �= 0, we then have

ker (λI − T ) = {0} for every 0 < |λ| < ε. (2.20)

From part (iv) of Lemma 2.34, we also have

H0(T ) ⊆ (λI − T )(X) for every λ �= 0. (2.21)

The equality (2.19) and the inclusion (2.20) then imply

X = K(T )⊕H0(T ) ⊆ (λI − T )(X) for every 0 < |λ| < ε.

Consequently

{λ ∈ C : 0 < |λ| < ε} ⊆ ρ(T ),

and hence 0 is an isolated point of σ(T ). �
Theorem 2.112 Suppose that either H0(T ) or H0(T )∩K(T ) are closed. Then the
following statements are equivalent:

(i) there exists a commuting projection P such that T + P is onto and T P is
quasi-nilpotent.

(ii) 0 ∈ iso σ(T ).

Proof (ii) ⇒ (i) There is nothing to prove, by Theorem 2.46. To show (i) ⇒ (ii)
observe that X = H0(T ) + K(T ) by Theorem 2.85. Our assumption that H0(T )

is closed, or that H0(T ) ∩ K(T ) is closed, entails by Theorem 2.39 that H0(T ) ∩
K(T ) = {0}, soX is the algebraic direct sum ofH0(T ) andK(T ). By Theorem 2.85
K(T ) is closed, and Theorem 2.111 then entails that 0 ∈ iso σ(T ). �
Remark 2.113 The assumption that H0(T ) is closed is essential in Theorem 2.112.
To see this, let R denote the right shift on the Hilbert space �2(N), defined as

R(x1, x2, . . . ) := (0, x1, x2, . . . ) for all (xn) ∈ �2(N).

The Hilbert adjoint of R is the left shift L defined as

L(x1, x2, . . . ) := (x2, , x3, . . . ) for all (xn) ∈ �2(N).
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The operator L is onto, indeed we have σap(R) = σs(L)) = �, where � denotes
the unit circle of C, and σ(L) = D(0, 1), the unit closed disc of C. Define
T := L⊕Q, where Q is any quasi-nilpotent operator on �2(N). By Theorem 2.85
the condition (ii) of Theorem 2.112 is satisfied by T . Note that the quasi-nilpotent
part H0(T ) is not closed, otherwise T would have the SVEP at 0, and hence, by
Theorem 2.15, L would also have the SVEP at 0, and we known that this is not true.
Now, 0 ∈ iso σs(T ), by Theorem 2.85, while σ(T ) = σ(L) ∪ σ(Q) = D(0, 1), so
0 /∈ iso σ(T ).

2.7 Components of Semi B-Fredholm Regions

In this section we give a classification of the components of the semi B-Fredholm
region of an operator, by using the localized SVEP.

Let us consider the upper semi B-Fredholm region of T ∈ L(X), defined as

u(T ) := {λ ∈ C : λI − T is upper semi B-Fredholm},

and analogously let us consider the lower semi B-Fredholm region, defined as

l(T ) := {λ ∈ C : λI − T is lower semi B-Fredholm}.

According to Theorem 1.117, if λ0I − T ∈ L(X) is upper semi B-Fredholm
(respectively, lower semi B-Fredholm), then there exists an open disc D(λ0, ε)

centered at λ0 such that λI − T is upper semi-Fredholm (respectively, lower semi-
Fredholm) for all λ ∈ D(λ0, ε)\{λ0}. Moreover,α(λI−T ) (respectively,β(λI−T ))
is constant as λ ranges over D(λ0, ε) \ {λ0} and

ind (λI − T ) = ind (λ0 − T ) for all λ ∈ D(λ0, ε).

From this it then follows that both u(T ) and l(T ) are open subsets of C, so
they can be decomposed into components, i.e. maximal open, connected, pairwise
disjoint non-empty subsets of C. Note that u(T ), as well as l(T ), may coincide
with all of C (this is the case for an algebraic operator, whose spectrum is a finite
set of poles, see the next chapter). Recall that λ ∈ C is said to be a deficiency value
of T if λI − T is not onto.

In the sequel, by accK we denote the set of all accumulation points of K ⊆ C.

Theorem 2.114 If � is a component of u(T ), or a component of l(T ), then the
index ind (λI − T ) is constant as λ ranges over �.
Proof Join a fixed point λ0 of a component� ofu(T ) to an arbitrary point λ1 ∈ �
by a polygonal line � contained in �. Associate with each μ ∈ � an open disc in
which ind (λI − T ) = ind (μI − T ). By the Heine–Borel theorem already finitely
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many of these discs cover �. Therefore, we have ind (λ1I − T ) = ind (λ0I − T ).
The proof for a component of l(T ) is the same. �
Theorem 2.115 Suppose that λ0 ∈ u(T ). Then the following alternative holds:

(i) p(λ0I − T ) <∞. In this case λ0 /∈ accσap(T ).
(ii) p(λ0I −T ) = ∞. In this case there exists an open disc D0 centered at λ0 such

that all points λ ∈ D0 are eigenvalues of T .
Analogously, if λ0 ∈ l(T ) then we have the following alternative:

(iii) q(λ0I − T ) <∞. In this case λ0 /∈ accσs(T ).
(iv) q(λ0I −T ) = ∞. In this case there exists an open disc D0 centered at λ0 such

that all points λ ∈ D0 are deficiency values of T .

Proof

(i) Every semi B-Fredholm operator is quasi-Fredholm, hence has uniform topo-
logical descent, so, by Theorem 2.97, p(λ0I −T ) <∞ precisely when σap(T )

does not cluster at λ0.
(ii) Suppose that p(λ0I − T ) = ∞. Clearly, α(λ0I − T ) > 0. Again by

Theorem 2.97, λ0 ∈ accσap(T ), so there exists a sequence {λn} ⊆ σap(T ),
λn �= λ0, such that λn → λ0 as n → ∞. By Theorem 1.117, there exists
an n0 ∈ N such that the operators λnI − T are upper semi-Fredholm for
n ≥ n0, and hence have closed range. Since λn ∈ σap(T ) it then follows that
α(λnI − T ) > 0 for n ≥ n0.

On the other hand, by Theorem 1.117 there exists an open disc D(λ0, ε),
centered at λ0, such that α(λI −T ) is constant as λ ranges over D(λ0, ε)\{λ0}.
Therefore, for n ∈ N sufficiently large and λ ∈ D(λ0, ε) \ {λ0} we have

α(λI − T ) = α(λnI − T ) > 0,

so statement (ii) is proved.
(iii) Since λ0I −T is lower semi B-Fredholm then, by Theorem 2.98, q(λI −T ) <

∞ if and only if σs(T ) does not cluster at λ0.
(iv) Argue as in the proof of part (ii): just use the constancy of β(λI − T ) as λ

ranges over a suitable punctured disc D(λ0, ε) centered at λ0. �
Now we give a complete classification of the components of u(T ), or l(T ).

Theorem 2.116 Let T ∈ L(X). Then the following statements hold:
(i) If �1 is a component of u(T ) then λ − T is left Drazin invertible either for

every point of �1 or for no point of �1, or equivalently, T has the SVEP either
at every point of �1 or at no point of �1. In the first case ind (λI − T ) ≤ 0 for
all λ ∈ �1.

(ii) If �2 is a component of l(T ) then λ − T is right Drazin invertible either for
every point of�2 or for no point of�2, or equivalently, T ∗ has the SVEP either
at every point of �2 or at no point of �2. In the first case ind (λI − T ) ≤ 0 for
all λ ∈ �2.
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Proof (i) Suppose that λI − T is upper semi B-Fredholm for all λ ∈ �1. It suffices
to prove by Theorem 2.97 that p(λI − T ) is finite either for every point or for no
point of �1. Define

�1 := {λ ∈ �1 : p(λI − T ) <∞}.

If λ0 ∈ �1 then, by part (i) of Theorem 2.115, there exists an open disc D0 centered
at λ0 such that λI − T is bounded below for all λ ∈ D0 \ {λ0}, in particular p(λI −
T ) = 0 for all λ ∈ D0 \ {λ0}. Therefore,�1 is an open subset of �1.

Next, we want show that �1 is also a closed subset of �1. To see this, let
μ ∈ acc�1 and {λn} be a sequence from �1, λn �= μ, such that λn → μ.
Suppose that p(μI − T ) = ∞. By Theorem 2.115, part (ii), there exists an open
disc D centered at μ consisting of eigenvalues. Therefore, for n sufficiently large,
a neighborhood of λn would consist of eigenvalues of T , in contradiction with the
case (i) of Theorem 2.115. Thus μ ∈ �1, �1 is a closed subset of �1 and since �1
is connected it then follows that �1 = �1. Therefore, p := p(λI − T ) < ∞ for
all λ ∈ �1. By Theorem 1.23 we have p(λI − Tk) = 0 for all k ≥ p. But for k
sufficiently large λI − Tk has closed range, so λI − T is left Drazin invertible, and
ind (λI − T ) ≤ 0, by Theorem 1.141.

The proof of part (ii) is similar. If

�2 := {λ ∈ �2 : q(λI − T ) <∞},

by using part (iii) and part (iv) of Theorem 1.117 and by arguing as in part (i), just
use Theorem 2.98, it then easily follows that �2 = �2. Therefore, q(λI − T ) <∞
for all λ ∈ �2, and hence, by Theorem 1.24, q(λI − Tk) = 0 for all k ≥ q .
Again, since for k sufficiently large λI −Tk has closed range, λI −T is right Drazin
invertible, and hence ind (λI − T ) ≥ 0, by Theorem 1.141. �
Theorem 2.117 Suppose that T ∈ L(X) and � is a component of u(T ). If T has
the SVEP then only the following cases are possible:

(i) T ∗ has the SVEP at every λ ∈ �. In this case p(λI−T ) = q(λI−T ) <∞ and
ind (λI −T ) = 0 for all λ ∈ �. Every λ ∈ σ(T )∩� is a pole. The eigenvalues
and the deficiency values do not cluster in �. This case occurs exactly when �
intersects the resolvent ρ(T ) := C \ σ(T ).

(ii) T ∗ fails the SVEP at some points λ ∈ �. In this case T ∗ fails the SVEP at every
point λ ∈ �. Moreover, p(λI−T ) <∞, q(λI−T ) = ∞ and ind (λI−T ) < 0
for all λ ∈ �. Every λ ∈ σ(T )∩� is a left pole. The eigenvalues do not cluster
in �, while every point of � is a deficiency value.

Proof

(i) By Theorem 2.98, if λI − T is upper semi B-Fredholm, the SVEP for T ∗ at λ
is equivalent to saying that q(λI − T ) < ∞, and, again by Theorem 2.97, the
SVEP for T implies p(λI − T ) < ∞ for all λ ∈ �. Therefore, p(λI − T ) <
∞ = q(λI − T ), so every λ ∈ σ(T ) ∩� is a pole. Therefore λI − T is Drazin
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invertible, and hence, by Theorem 1.141, ind (λI − T ) = 0. The remaining
assertion follows from Theorem 2.116.

(ii) If T ∗ fails the SVEP at a point λ0 ∈ � then, by Theorem 2.98, q(λ0I−T ) = ∞.
The SVEP for T implies that p(λ0I − T ) < ∞, and hence, by Theorem 1.22,
we have ind (λ0I − T ) ≤ 0. On the other hand, if ind (λ0I − T ) = 0, then
the SVEP of T at λ0 is equivalent to the SVEP of T ∗ at λ0, by Theorem 2.107,
and this is impossible. Therefore, ind (λ0I − T ) < 0. By Theorem 2.114 then
ind (λ0I − T ) < 0 for all λ ∈ � and this implies that q(λI − T ) = ∞ for all
λ ∈ �, or equivalently T ∗ fails the SVEP at every point λ ∈ �. �

In a very similar way we can prove:

Corollary 2.118 Suppose that T ∈ L(X) and � is a component of l(T ). If T ∗
has the SVEP then only the following cases are possible:

(i) T has the SVEP at every λ ∈ �. In this case p(λI −T ) = q(λI −T ) <∞ and
ind (λI −T ) = 0 for all λ ∈ �. Every λ ∈ σ(T )∩� is a pole. The eigenvalues
and the deficiency values do not cluster in �. This case occurs exactly when �
intersects the resolvent ρ(T ) := C \ σ(T ).

(ii) T fails the SVEP at some point λ ∈ �. In this case, T fails the SVEP at every
point λ ∈ �, q(λI − T ) < ∞, p(λI − T ) = ∞ and ind (λI − T ) > 0 for all
λ ∈ �. Every λ ∈ σ(T )∩� is a right pole. The deficiency values do not cluster
in �, while every point of � is an eigenvalue.

Remark 2.119 By using analogous arguments the results of Theorem 2.117 and
Corollary 2.118 are still valid for the components of the semi-Fredholm region
ρsf(T ), ρusf(T ), or ρlsf(T ).

Let us denote by σtud(T ) the topological uniform descent spectrum, i.e., the set
of all λ ∈ C such that λi − T does not have topological uniform descent. By
Corollary 1.90 this spectrum is closed, and may be empty, since, by Theorem 1.142,
it is contained in the Drazin spectrum σd(T ), and it will be shown in Chap. 3 that
this spectrum is empty whenever T is algebraic.

Let ρtud(T ) be the topological uniform descent resolvent, i.e. ρtud(T ) := C \
σtud(T ). Clearly, ρtud(T ) is an open subset of C, and hence can be decomposed into
components, i.e. maximal open, connected, pairwise disjoint non-empty subsets of
C. We want show that the previous results on the components of semi B-Fredholm
regions may be extended to the components of ρtud(T ). We first need a preliminary
result.

Theorem 2.120 If T ∈ L(X) has topological uniform descent then there exists an
ε > 0 such that;

(i) K(λI − T )+H0(λI − T ) = K(T )+H0(T ) for all 0 < |λ| < ε.
(ii) K(λI − T )+H0(λI − T ) = K(T )+H0(T ) for all 0 < |λ| < ε.
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Proof If T has topological uniform descent then, by Corollary 1.90, there exists an
ε > 0 such that λI − T is semi-regular and

(λI − T )∞(X) = T∞(X)+ N∞(T ) for all 0 < |λ| < ε.

From Theorem 1.44 we haveK(λI −T ) = (λI −T )∞(X), so, from Theorem 2.37,
we obtain

K(λI − T )+H0(λI − T ) = K(λI − T ) = (λI − T )∞(X),

and hence

K(λI − T )+H0(λI − T ) = T∞(X)+ N∞(T ). (2.22)

From Theorem 2.95, together with Lemma 1.80, part (i), it then follows that

K(T )+H0(T ) ⊆ K(T )+H0(T ) = T∞(X)+ N∞(T )

= T∞(X)+ N∞(T ) ⊆ K(T )+H0(T ).

Hence

K(T )+H0(T ) = T∞(X)+ N∞(T ). (2.23)

From (2.22) and (2.23) it then follows that the statement (i) holds.
(ii) By Corollary 1.90, there exists an ε > 0 such that λI −T is semi-regular and

N∞(λI − T ) = T∞(X) ∩ N∞(T ) for all 0 < |λ| < ε.

Again by Theorem 2.37, we have

K(λI − T ) ∩H0(λI − T ) = H0(λI − T ) = N∞(λI − T ),

and hence

K(λI − T ) ∩H0(λI − T ) = T∞(X) ∩ N∞(T ). (2.24)

From Lemma 1.80 and Theorem 2.95 we also deduce that

K(T ) ∩H0(T ) ⊆ K(T ) ∩H0(T ) = T∞(X) ∩ N∞(T )

= T∞(X) ∩ N∞(T ) ⊆ K(T ) ∩H0(T ),
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thus,

K(T ) ∩H0(T ) = T∞(X) ∩ N∞(T ). (2.25)

Combining (2.24) and (2.25) we then conclude that (ii) holds. �
By using the Heine–Borel theorem, as in the proof of Theorem 2.114, we easily

obtain the following corollary.

Corollary 2.121 Let T ∈ L(X) and let � be a component of ρtud(T ). If λ0 ∈ � is
arbitrarily given, then for all λ ∈ � we have

K(λI − T )+H0(λI − T ) = K(λ0I − T )+H0(λ0I − T ),

and

K(λI − T ) ∩H0(λI − T ) = K(λ0I − T ) ∩H0(λ0I − T ).

Consequently, the mappings

λ → K(λI − T )+H0(λI − T ) (2.26)

and

λ → K(λI − T ) ∩H0(λI − T ) (2.27)

are constant on the components of ρtud(T ).

From the proof of Theorem 2.120, the two mappings

λ→ (λI − T )∞(X)+ N∞(λI − T )

and

λ→ (λI − T )∞(X) ∩ N∞(λI − T )

coincide with the mappings (2.26) and (2.27), respectively, as λ ranges over a
component of ρtud(T ), so we have:

Corollary 2.122 Suppose that T ∈ L(X) has topological uniform descent. Then

K(T )+H0(T ) = T∞(X)+ N∞(T ),

and

K(T ) ∩H0(T ) = T∞(X) ∩ N∞(T ).
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The mappings

λ→ (λI − T )∞ + N∞(λI − T ),

and

λ→ (λI − T )∞(X) ∩ N∞(λI − T )

are constant on the components of ρtud(T ).

By using the previous results we obtain the following classification of the
components of ρtud(T ), similar to the classification of the semi B-Fredholm regions.

Theorem 2.123 Let � be a component of ρtud(T ). Then the following alternative
holds:

(i) T has the SVEP at every λ ∈ �. In this case λI − T is left Drazin invertible for
all λ ∈ �. Furthermore, σap(T ) does not cluster in �, and no point of � is an
eigenvalue of T , except for a subset of � which consists of at most countably
many isolated points.

(ii) T does not have the SVEP at any point λ ∈ �. In this case the ascent p(λI −
T ) = ∞ for all λ ∈ �. Furthermore, every point of � is an eigenvalue of T .

Proof

(i) Suppose that T has the SVEP at some λ0 ∈ �. Then, by Theorem 2.97,
K(λ0I − T ) ∩ H0(λ0I − T ) = {0} and hence, by Corollary 2.121, K(λI −
T ) ∩H0(λI − T ) = {0}, so T has the SVEP at λ, and, again by Theorem 2.97,
λI − T is left Drazin invertible and σap(T ) does not cluster at any point λ ∈ �.
Consequently, no point of � is an eigenvalue of T except for a subset of �
which consists of at most countably many isolated points.

(ii) Suppose that T does not have the SVEP at any point of �. Then, again by
Theorem 2.97, p(λI −T ) = ∞ for all λ ∈ �. By Theorem 2.60 it then follows
that ker (λI−T ) �= {0} for every λ ∈ �, hence every point of� is an eigenvalue
of T . �

With respect to the dual T ∗ we have the following classification:

Theorem 2.124 Let � be a component of ρtud(T ). Then the following alternative
holds:

(i) T ∗ has the SVEP at every λ ∈ �. In this case λI − T is right Drazin invertible
for all λ ∈ �. Furthermore, σs(T ) does not cluster in �, and no point of �
is a deficiency value of T , except for a subset of � which consists of at most
countable many isolated points.

(ii) T ∗ does not have the SVEP at any point λ ∈ �. In this case the descent q(λI −
T ) = ∞ for all λ ∈ �. Furthermore, every point of � is a deficiency value
of T .
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Proof

(i) If T ∗ has the SVEP at some λ0 ∈ �, then, by Theorem 2.98,X = K(λ0I−T )+
H0(λ0I−T ) and hence, by Corollary 2.121,X = K(λI−T )+H0(λI −T ) for
all λ ∈ �, so T ∗ has the SVEP at λ, and, again by Theorem 2.98, λI−T is right
Drazin invertible and σs(T ) does not cluster at any point λ ∈ �. Consequently,
no point of� is a deficiency value of T except for a subset of� which consists
of at most countably many isolated points.

(ii) Suppose that T ∗ does not have the SVEP at any point of �. Then, again by
Theorem 2.98, q(λI −T ) = ∞ for all λ ∈ �. If there exists a λ0 ∈ � such that
λ0I − T is surjective, then λI − T ∗ is injective, and hence T ∗ has the SVEP at
λ0, a contradiction. �

For the SVEP we have the following classification:

Corollary 2.125 Let T ∈ L(X) and let� be a component of ρtud(T ). For the SVEP
then only the following cases are possible:

(i) Both T and T ∗ have the SVEP at every point of �. In this case p(λI − T ) =
q(λI − T ) < ∞ and λI − T is Drazin invertible, for all λ ∈ �. The spectra
σap(T ) and σs(T ) do not have a limit point in �, and the same holds for the
spectrum σ(T ). This case occurs exactly when � ∩ ρ(T ) �= ∅.

(ii) T has the SVEP at every point of �, while T ∗ fails to have the SVEP at every
λ ∈ �. In this case λI − T is left Drazin invertible, while q(λI − T ) = ∞,
for all λ ∈ �. The spectrum σap(T ) does not have a limit point in �, while
� ⊆ σs(T ).

(iii) T ∗ has the SVEP at every point of �, while T fails to have the SVEP at every
λ ∈ �. In this case λI − T is right Drazin invertible, while p(λI − T ) = ∞,
for all λ ∈ �. The spectrum σs(T ) does not have a limit point in�, while every
λ ∈ � is an eigenvalue

(iv) Both T and T ∗ fail to have the SVEP at the points λ ∈ �. In this case p(λI −
T ) = q(λI − T ) = ∞, for all λ ∈ �. Every λ ∈ � is an eigenvalue and
� ⊆ σs(T ).

Theorem 2.126 If X is an infinite-dimensional Banach space then the semi-
Fredholm spectra σusf(T ) and σlsf(T ) are non-empty.

Proof Suppose that σusf(T ) = ∅. Then λI − T ∈ �+(X) for all λ ∈ C, so λI − T
has topological uniform descent for all λ ∈ C. Therefore, � = C is a component
of ρtud(T ), so by part (i) of Corollary 2.125, p(λI − T ) = q(λI − T ) < ∞ for all
λ ∈ C. By Theorem 1.22, α(λI − T ) = β(λI − T ) < ∞, and hence the essential
spectrum σe(T ) = ∅, so X is finite-dimensional by Remark 1.56. �
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2.8 The SVEP Under Commuting Riesz Perturbations

We first mention that SVEP is not preserved under non-commuting perturbations.
In fact, by [292, Example 5.6.29], the sum of a decomposable operator and a rank-
one operator may fail to have the SVEP, although decomposable operators and finite
rank operators have the SVEP.

In general the SVEP is also not stable under arbitrary sums and products of
commuting operators. A specific example based on the theory of weighted shifts
may be found in [81], but here we present a general principle that shows that such
examples exist in abundance.

Theorem 2.127 Let S ∈ L(X) and suppose that there exist α �= β ∈ C such that

K(αI − S) = K(βI − S) = {0}. (2.28)

If T ∈ L(X) commutes with S, then T is the sum of two commuting operators with
SVEP, while exp(T ) is the product of two commuting operators with SVEP.

Proof Since all quasi-nilpotent operators share the SVEP, we may assume that the
spectral radius r(T ) > 0. To verify that T (S − αI) has the SVEP, we consider
an arbitrary open set U ⊆ C and an analytic function f : U → X for which
(μI − T (S − αI))f (μ) = 0 for all μ ∈ U . For fixed non-zero μ ∈ U and arbitrary
λ ∈ C with λ < |μ|/r(T ), the operator λT − μI is invertible and its inverse
commutes with both S and T . Moreover,

(λI − (S − αI))T (λT − μI)−1f (μ)

= (λT − μI)−1[(μI − T (S − αI)) + (λT − μI)]f (μ) = f (μ).

This shows that 0 ∈ ρS−αI (f (μ)) and therefore, by Theorem 2.20, f (μ) ∈ K(S −
αI) = {0} for all non-zero μ ∈ U . Thus f ≡ 0 on U , which establishes SVEP for
T (S − αI) and, of course, similarly also for T (S − βI). Because

(β − α)T = T (S − αI) + T (βI − S),

the first assertion is now immediate, and the last claim, concerning the product,
follows from the fact that SVEP is preserved under the analytical calculus. �

Note that in Theorem 2.127 the operators T and exp(T ) may fail to have
the SVEP, while the condition on S entails that XT (∅) = {0} and hence, by
Theorem 2.23, the SVEP for S. To provide concrete examples of operators that
satisfy condition (2.28) onK(λI −S) of the preceding result, we now introduce the
concept of a semi-shift.

A bounded operator S ∈ L(X) is said to be a semi-shift if S is an isometry
for which S∞(X) = {0}. Examples of semi-shifts T are the unilateral right shift
operators of arbitrary multiplicity on the sequence spaces �p(N), with 1 ≤ p <∞,
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defined as

T x := (0, x1, x2, . . . ) for all x = (xn) ∈ �p(N).

Other important examples of semi-shifts are the right translation operators on the
Lebesgue spaces Lp([0,+∞]), 1 ≤ p < ∞. Note that if T is a semi-shift then
σT (x) = σ(T ) coincides with the closed unit disc D(0, 1) of C for all non-zero
x ∈ X, see [216, Proposition 1.6.8].

Now, if x �= 0 and α ∈ D(0, 1) then α ∈ σT (x) and hence 0 ∈ σαI−T (x), so
x /∈ K(αI −T ), by Theorem 2.20. Therefore,K(αI −T ) = {0} for all α ∈ D(0, 1).

To find an operator without SVEP that commutes with a semi-shift is perhaps not
completely obvious, but this task can easily be accomplished whenX is a separable
Hilbert space. Indeed, in this case, for arbitrary S, T ∈ L(X) the operators T ⊗ I
and I ⊗ S on the Hilbert tensor productX ⊗X commute, since

(T ⊗ I)(I ⊗ S) = T ⊗ S = (I ⊗ S)(T ⊗ I);

see Kadison and Ringrose [197, Section 2.6] for a nice exposition of the theory
of the Hilbert tensor product. Moreover, since T ⊗ I is unitarily equivalent to the
Hilbert direct sum

∑∞
n=1 ⊕T , it is easily seen that the failure of SVEP at a point

λ extends from T to T ⊗ I . In the same vein, it follows that I ⊗ S is a semi-shift
whenever S is, since I ⊗ S is unitarily equivalent to

∑∞
n=1 ⊕S. Note that, in the

Hilbert space case, the semi-shifts are precisely the pure isometries.
Thus neither the SVEP nor the localized SVEP is, in general, preserved under

sums and products of commuting perturbations. Next we will show that the
SVEP is preserved under Riesz commuting perturbations. In the sequel we need
a preliminary elementary result.

Lemma 2.128 Let R ∈ L(X) be a Riesz operator and � a spectral subset of
σ(R) such that 0 /∈ �. Then the spectral projection P associated with � is finite-
dimensional.

Proof We know that every spectral point λ �= 0 of the spectrum of a Riesz operator
is an isolated point of σ(R). Consequently, � is a finite subset of C. Set � :=
{λ1, . . . , λk}. Every spectral projection Pi associated with {λi} is finite dimensional,
so P =∑n

i=1 Pi is finite-dimensional operator. �
We now show that the localized SVEP from an operator T is preserved under

Riesz commuting perturbations.

Theorem 2.129 Let X be a Banach space, T ,R ∈ L(X), where R is a Riesz
operator such that TR = RT . If λ ∈ C, then T has the SVEP at λ if and only if
T − R has the SVEP at λ. In particular, the SVEP is stable under Riesz commuting
perturbations.

Proof Without loss of generality we may assume that λ = 0. Suppose T does not
have the SVEP at 0. We show that T −R does not have the SVEP at 0. Since T does
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not have the SVEP at 0, ker T ∩ K(T ) �= {0}, by Theorem 2.60, so there exists a
sequence of vectors (xi)i=0,1,... of X such that x0 �= 0, T x0 = 0, T xi = xi−1 (i ≥
1) and supi≥1 ‖xi‖1/i <∞. Let C := supi≥1 ‖xi‖1/i . Fix an ε, 0 < ε < 1

2C . Let

� := {λ ∈ σ(R) : |λ| ≥ ε}

and denote by P the spectral projection associated with �. Then P is finite-
dimensional, by Lemma 2.128, and if X2 := P(X) and X1 := ker P , then we
can write X = X1 ⊕ X2. According the spectral decomposition theorem, we have
R(Xj ) ⊂ Xj (j = 1, 2),

σ(R|X1) ⊂ {λ : |λ| < ε} and σ(R|X2) ⊂ {λ : |λ| ≥ ε}.

Since T R = RT , we also have T (Xj ) ⊂ Xj (j = 1, 2). Clearly,

T Px0 = PT x0 = 0,

and

T Pxi = PT xi = Pxi−1 (i ≥ 1).

We claim that Pxi = 0 for all i. To see this, suppose that Pxi �= 0 for some i ≥ 0.
From T Pxi+1 = Pxi �= 0 we then deduce that Pxi+1 �= 0, and by induction it then
follows that Pxn �= 0 for all n ≥ i.

Let k ≥ 1 be the smallest integer for which Pxk �= 0. Then

T Pxk = Pxk−1 = 0.

For all n ≥ k we have

T n−kPxn = T n−k−1(T Pxn) = T n−k−1Pxn−1 = . . . .
= T Pxk+1 = Pxk �= 0,

so Pxn /∈ ker (T |X2)
n−k , for all n ≥ k. Furthermore,

T n−k+1Pxn = T T n−kPxn = T Pxk = Pxk−1 = 0,

so Pxn ∈ ker (T |X2)
n−k+1. This implies that T |X2 has infinite ascent, which is

impossible, since dimX2 < ∞. Therefore, Pxi = 0, and hence xi ∈ ker P = X1,
for all i ≥ 0.

Let us consider the restriction R1 = R|X1. We have r(R1) < ε, so there exists a
j0 such that ‖Rj1‖ ≤ εj for all j ≥ j0.
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Set

y0 :=
∞∑
i=0

Rixi,

and similarly, for every k ≥ 1 let

yk :=
∞∑
i=k

(
i

k

)
Ri−kxi .

This definition is correct, since

∞∑
i=k

(
i

k

)
‖Ri−kxi‖ ≤

∞∑
i=k

2i‖Ri−k1 ‖Ci

≤
j0+k∑
i=k

2iCi‖Ri−k1 ‖ +
∞∑

i=j0+k+1

2iCiεi−k <∞.

Moreover, for k ≥ 2j0 we have

‖yk‖ ≤
2k−1∑
i=k

2iCi‖Ri−k1 ‖ +
∞∑
i=2k

(2C)iεi−k

≤ kmax{(2C)k, (2C)2k−1‖R1‖k−1} + (2C)2kεk

1 − 2Cε
.

Thus,

‖yk‖1/k ≤ k1/k(max{(2K)k, (2C)2k−1‖R1‖k−1})1/k +
( (2C)2kεk

1 − 2Cε

)1/k

≤ k1/k max{2C, (2C) 2k−1
k ‖R1‖ k−1

k } + 4C2ε

1 − 2Cε
,

from which we obtain lim supk→∞ ‖yk‖1/k <∞.
We also have

(T − R)y0 =
∞∑
i=1

Rixi−1 −
∞∑
i=0

Ri+1xi = 0.
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Now, for k ≥ 1 we have

(T − R)yk =
∞∑
i=k

(
i

k

)
Ri−kxi−1 −

∞∑
i=k

(
i

k

)
Ri−k+1xi

= xk−1 +
∞∑
i=k
Ri−k+1xi

((i + 1

k

)
−
(
i

k

))
= yk−1.

It remains to show that not all of the yk’s are equal to zero. Suppose on the
contrary that yk = 0 (k ≥ 0) and let j1 ≥ j0. Then we have

j1∑
k=0

(−1)kRkyk =
∞∑
i=0

αiR
ixi,

where, if we let ν := min {i, j1}, we have

αi =
ν∑
k=0

(−1)k
(
i

k

)
for every i = 0, 1, . . . .

Clearly, α0 = 1. For 1 ≤ i ≤ j1 we obtain

αi =
i∑
k=0

(−1)k
(
i

k

)
= 0.

For i > j1 we have |αi | ≤ 2i , so

0 =
j1∑
k=0

(−1)kRkyk = x0 +
∞∑

i=j1+1

αiR
ixi

and

‖x0‖ ≤
∞∑

i=j1+1

2i‖Ri1‖‖xi‖ ≤
∞∑

i=j1+1

2iεiCi = (2Cε)j1+1

1 − 2Cε
.

Letting j1 → ∞ yields ‖x0‖ = 0, a contradiction. Therefore, ker (T −R)∩K(T −
R) �= {0}, and this implies, again by Theorem 2.60, that T − R does not have the
SVEP at 0.

By symmetry we then conclude that T has the SVEP at 0 if and only if T − R
has the SVEP at 0. �
Remark 2.130 Every Riesz operator is meromorphic, i.e., every nonzero λ ∈ σ(T )
is a pole of the resolvent of T . Meromorphic operators have the same spectral
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structure as Riesz operators, i.e., every 0 �= λ ∈ σ(T ) is an eigenvalue, and
the spectrum is at most countable and has no nonzero cluster point. A simple
example shows that the result of Theorem 2.129 cannot be extended to meromorphic
operators. Denote by L the left shift on �2(N) and let λ0 /∈ σ(L) = D(0, 1), D(0, 1)
the closed unit disc. Then L does not have the SVEP at 0. Since L has the SVEP
at λ0, T := λ0I − L has the SVEP at 0, while T − λ0I = −L, does not have the
SVEP at 0, and, obviously, λ0I is meromorphic.

Remark 2.131 If σe(T ) is the essential Fredholm spectrum of T , and re(T ) denotes
the essential spectral radius of T , i.e.,

re(T ) := sup {|λ| : λ ∈ σe(T )}.

Obviously, in the case of a Riesz operator K we have re(K) = 0. A closer look
at the proof of Theorem 2.129 reveals that the stability of the localized SVEP also
holds if we assume that re(K) is small enough.

The assumption of commutativity is essential in Theorem 2.129. To see this,
define

ρ+
sf (T ) := {λ ∈ ρsf(T ) : ind (λI − T ) > 0}.

Theorem 2.132 Let T ∈ L(X) and K ∈ K(X). If T + K has the SVEP then
ρ+

sf (T ) = ∅ and σuw(T ) = σsf(T ).

Proof Suppose that ρ+
sf (T ) = ρ+

sf (T +K) �= ∅. Then there exists a λ ∈ �±(T +K)
such that ind (λI −T ) > 0. But this is impossible, since the SVEP of T +K entails
that ind (λI − (T + K) ≤ 0, by Corollary 2.106. The last assertion follows from
Lemma 3.57. �

Let ρw(T ) denote the Weyl region of T , i.e., the set of all λ ∈ C : λI − T ∈
�(X), and ind (λI−T ) = 0, and denote by σw(T ) := C\ρw(T ) the Weyl spectrum.
In Chap. 5 we shall prove that if ρw(T ) is connected and int σw(T ) = ∅. Then both
T +K and T ∗ +K∗ have the SVEP. The stability of SVEP under (not necessarily
commuting) compact perturbations for Hilbert space operators has been studied by
Zhu and Li [307], which showed that the reverse of Theorem 5.6 holds for Hilbert
space operators. The proof is omitted, since it involves rather technical results on
Hilbert spaces operators, due to Herrero [177] and Ji [187].

Theorem 2.133 Let T ∈ L(H), H a Hilbert space. Then T +K has the SVEP for
all K ∈ K(H) if and only if ρw(T ) is connected and int σw(T ) = ∅.

The next example shows that for a (non commuting) compact perturbation T +K
of an operator T which has the SVEP, the SVEP may fail.

Example 2.134 Let S ∈ L(X) be the bilateral shift on �2(Z)). It is easily seen
that σ(S) = σ(S∗) is the unit circle T. We also have σw(S) = T. The inclusion
σw(S) ⊆ T is obvious. Observe that both S and S∗ have the SVEP, since every
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spectral point of S belongs to the boundary of σ(S). Suppose now that λ ∈ T
and λ /∈ σw(S). Since λI − S ∈ �(X), the SVEP for S and S∗ implies that 0 <
p(λI −S) = q(λI −S) <∞. But this is impossible, since isoσ(S) = ∅. Therefore
T = σw(S), so ρw(S) is not connected. Consequently, by Theorem 2.133, there
exists a compact operatorK such that T +K does not satisfy the SVEP.

We now consider the question of whether the SVEP is preserved under small
perturbations. By ρsf(T ) = C \ σsf(T ) we denote the semi-Fredholm domain of T .
The following results are due to Zhu and Li [307], again we omit the proof.

Theorem 2.135 Let T ∈ L(H). Then the following statements are equivalent:
(i) Given ε > 0, there exists a compact operator K ∈ K(H) with ‖K‖ < ε such

that T +K has the SVEP.
(ii) Given ε > 0, there exists a K ∈ L(H) with ‖K‖ < ε such that T +K has the

SVEP.
(iii) There exists a K ∈ K(H) such that T +K has the SVEP.
(iv) ρ+

sf (T ) is empty, where ρ
+
sf (T ) := {λ ∈ ρsf(T ) : ind (λI − T ) > 0}.

The following result characterizes those operators for which SVEP is stable
under small compact perturbations.

Theorem 2.136 Let T ∈ L(H). Then there exists a δ > 0 such that T +K has the
SVEP for all compact operators K ∈ K(H) if and only if

(i) the interior of the set ρsf(T ) ∩ σp(T ) is empty, where ρsf(T ) = C \ σsf(T ),
(ii) the interior of the semi-Fredholm spectrum σsf(T ) is empty,

(iii) ρsf(T ) consists of finitely many connected components.

In Chap. 4 we shall see that the class of operators which have the SVEP is very
rich, and includes several important classes of operators. However, we conclude this
section by showing that the class of operators which do not have the SVEP is very
large. The following concept is due to Herrero [178].

Definition 2.137 A certain property (P ) concerning Hilbert space operators is said
to be a bad property (P ) if the following conditions are fulfilled:

(a) If T has property (P ) then μI + ηT has property (P ) for all μ, η ∈ C with
0 �= η.

(b) If T has property (P ) and S is similar to T , then T has property (P ).
(c) If T has property (P ), and S is another operator for which σ(T ) ∩ σ(S) = ∅,

then the orthogonal direct sum T ⊕ S has property (P ).

A natural question is whether the SVEP is stable under small perturbations. The
answer to this question is negative. As noted in [178, Theorem 3.51], if there exists
an operator T ∈ L(H) which has a bad property (P ), then the set of all operators
which has property (P ) is dense in L(H). The property of being an operator for
which the SVEP fails is a bad property, so we have

Theorem 2.138 If T ∈ L(H) and ε > 0, then there exists an operator S ∈ L(H)
with ‖S‖ < ε such that T + S does not have the SVEP.
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2.9 Stability of the Localized SVEP Under Quasi-Nilpotent
Equivalence

Local spectral theory is a powerful tool when the issue is that of relating the spectral
properties of two operators T ∈ L(X) and S ∈ L(Y ), X and Y Banach spaces, that
are linked in some way by an operator T A ∈ L(X, Y ). We have seen that a natural
link is provided by the intertwining condition SA = AT , by some non-zero operator
A ∈ L(X, Y ). If A is bijective then the condition SA = AT means that T and S
are similar. If T and S are similar, it is easily seen that σ(T ) = σ(S), and that the
various distinguished parts of the spectrum coalesce. In this section the condition of
invertibility of A will be replaced by weaker conditions on the intertwiner A. We
begin with some definitions.

Definition 2.139 An operator A ∈ L(X, Y ) between Banach spaces X and Y is a
quasi-affinity if it has a trivial kernel and dense range. We say that T ∈ L(X) is a
quasi-affine transform of S ∈ L(Y ), and we write T ≺ S, if there is a quasi-affinity
A ∈ L(X, Y ) that intertwines T and S, i.e. SA = AT . If there exists two quasi-
affinities A ∈ L(X, Y ), B ∈ L(X, Y ) for which SA = AT and BS = T B then we
say that S and T are quasi-similar. If A is invertible and SA = AT then S and T
are said to be similar.

The commutator of two operators S, T ∈ L(X) is the operator C(S, T ) on L(X)
defined by

C(S, T )(A) := SA− AT for all A ∈ L(X).

By induction it is easy to show the binomial identity

C(S, T )n(A) =
n∑
k=0

(
n

k

)
(−1)kSn−kAT k. (2.29)

Obviously, C(λI − S, λI − T )n(A) = (−1)nC(S, T )n(A) for all λ ∈ C, from
which we obtain

C(S, T )n(A) = (−1)nC(λI − S, λI − T )n(A)

=
n∑
k=0

(
n

k

)
(−1)n−k(λI − S)n−kA(λI − T )k

for all A ∈ L(X), n ∈ N. The equality (2.29) also entails that

C(S, T )n(A)x = SnAx for all x ∈ kerT . (2.30)

Let us consider a very weak notion of intertwining which dates back to I.
Colojoară and C. Foiaş, see [98, Chapter 4] or [216, Chapter 3].
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Definition 2.140 Given the operators T ∈ L(X) and S ∈ L(Y ), we say that
the pair (S, T ) is asymptotically intertwined by the operator A ∈ L(X, Y ) if
‖C(T , S)(A)‖1/n → 0 as n→ ∞. The operators S ∈ L(X) and T ∈ L(X) are said
to be quasi-nilpotent equivalent if (S, T ) and (T , S) are asymptotically intertwined
by the identity operator I on X.

Evidently, the notion of asymptotically intertwined pairs is a generalization of the
intertwining condition C(S, T )(A) = 0 which appears in the definition of T ≺ S.
This notion is also a generalization of the higher order intertwining condition:

C(S, T )n(A) = 0 for some n ∈ N.

Theorem 2.141 Let T ∈ L(X), S ∈ L(Y ) and suppose that for some injective map
A ∈ L(X, Y ) there exists an integer n ∈ N for which C(S, T )n(A) = 0. If S has the
SVEP at λ0 then T has the SVEP at λ0. In particular, if T ∈ L(X) and S ∈ L(Y )
are intertwined by an injective map A ∈ L(X, Y ) then the localized SVEP carries
over from S to T .

Proof Let U ⊆ C be an open neighborhood of λ0 and f : U → X be an analytic
function such that (λI − T )f (λ) = 0, for all λ ∈ U . Since f (λ) ∈ ker (λI − T ),
taking into account (2.30) we then obtain

0 = (λI − S)[C(S, T )n(A)f (λ)] = (λI − S)[C(λI − S, λI − T )n(A)f (λ)]
= (λI − S)n+1Af (λ).

Now,

(λI − S)n+1Af (λ) = (λI − S)[(λI − S)nAf (λ)] on U,

and the SVEP of S at λ0 implies (λI − S)nAf (λ) = 0. Repeating this argument we
easily deduce that (λI −S)(A(f λ)) = 0. Since S has the SVEP at λ0 it then follows
thatAf (λ) = 0 for all λ ∈ U and the injectivity of A entails f (λ) = 0 for all λ ∈ U .
Therefore T has the SVEP at λ0. The last assertion is clear. �

The following example shows that the converse of Theorem 2.141 does not hold,
i.e. if T ≺ S the SVEP from T may not be transmitted to S.

Example 2.142 Let C denote the Cesàro matrix.C is a lower triangular matrix such
that the nonzero entries of the n-th row are n−1 (n ∈ N)

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 · · ·
1/2 1/2 0 0 · · ·
1/3 1/3 1/3 0 · · ·
1/4 1/4 1/4 1/4 · · ·
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎠
.
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Let 1 < p < ∞ and consider the matrix C as an operator Cp acting on �p. Let q
be such that 1/p+ 1/q = 1. In [266] Rhoades proved that σ(Cp) is the closed disc
�q , where

�q := {λ ∈ C : |λ− q/2| ≤ q/2}.

Moreover, it has been proved by González [157] that for each μ ∈ int�q the
operatorμI −Cp is an injective Fredholm operator with β(Cp) = 1. Consequently,
every μ ∈ int�q belongs to the surjectivity spectrum σs(Cp).

Let Cp∗ ∈ L(�q) denote the conjugate operator of Cp . Obviously, σs(Cp)

clusters at every μ ∈ int�q and since μI − Cp is Fredholm it then follows that
Cp

∗ does not have the SVEP at these points μ, by Theorem 2.98. Every operator
has the SVEP at the boundary of the spectrum, and since σ(C∗

p) = σ(Cp) = �q
it then follows that Cp∗ has the SVEP at λ precisely when λ /∈ int�q . Choose
1 < p′ < p < ∞ and let q ′ be such that 1/p′ + 1/q ′ = 1. Then 1 < q < q ′ < ∞.
If we denote by A : �q → �q ′ the natural inclusion then we have C∗

p′A = AC∗
p and

clearly A is an injective operator with dense range, i.e., C∗
p ≺ C∗

p′ . As noted before
the operatorC∗

p has the SVEP at every point outside of �q , in particular at the points
λ ∈ �q ′ \ �q , while C∗

p′ fails SVEP at the points λ ∈ �q ′ \ �q which do not belong
to the boundary of �q ′ .

The work required for the following permanence results is rather technical. The
reader can be find the proofs in Laursen and Neumann [216, Chapter 3].

Theorem 2.143 Quasi-nilpotent equivalence preserves SVEP. Moreover, quasi-
nilpotent equivalent operators have the same local spectra, the same surjectivity
spectrum, the same approximate point spectrum, and the same spectrum. Further-
more, if T and S are quasi-nilpotent equivalent then the identity XT (�) = XS(�)
holds for every closed subset � of C.

Theorem 2.143 then implies that the identity XT (�) = XS(�) holds for every
closed subset � of C. Moreover, since by Theorem 2.14 an operator T ∈ L(X)

has the SVEP precisely when XT (∅) = {0}, and since quasi-nilpotent equivalence
preserves the analytic spectral subspaces, it is clear that the SVEP is stable
under quasi-nilpotent equivalence. If there exists an integer n ∈ N for which
C(S, T )n(I) = C(T , S)n(I) = 0, then the operators S and T are said to be nilpotent
equivalent. For S, T ∈ L(X) with ST = T S, it is easily seen that

C(S, T )n(I) = (S − T )n for all n ∈ N.

Thus, in this case, S and T are quasi-nilpotent equivalent precisely when S − T
is quasi-nilpotent, while S and T are nilpotent equivalent if and only if S − T is
nilpotent.

Theorem 2.144 Suppose that the operators S, T ∈ L(X) are nilpotent equivalent,
and let λ ∈ C. Then T has the SVEP at λ precisely when S does. In particular, if
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T has the SVEP at λ, and if N ∈ L(X) is nilpotent and satisfies T N = NT, then
T +N also has the SVEP at λ.

Proof By symmetry, it suffices to show that the SVEP at λ is transferred from S to
T . By Theorem 2.66, the condition on S entails that

N∞(λI − S) ∩XS(∅) = {0},

while the nilpotent equivalence of S and T ensures that XS(∅) = XT (∅). We
now choose an n ∈ N for which C(S, T )n(I) = 0, and consider an arbitrary
x ∈ ker(λI−T ). Then (λI−T )kx = 0 for k = 1, . . . , n, so that the identities (2.30)
imply that (λI − S)nx = 0. Consequently, we obtain

ker(λI − T ) ⊆ ker(λI − S)n ⊆ N∞(λI − S)

and therefore

ker(λI − T ) ∩XT (∅) ⊆ N∞(λI − S) ∩XS(∅) = {0}.

Hence Theorem 2.66 guarantees that T has the SVEP at λ. �
The result of Theorem 2.129 implies that the localized SVEP is stable under

quasi-nilpotent commuting perturbations. A natural question is if the SVEP at a
point is preserved under quasi-nilpotent equivalence. Although we do not know the
answer to this question in general, we can handle certain important special cases.

Nilpotent operators are special cases of algebraic operators. Recall that an
operator K ∈ L(X) is said to be algebraic if there exists a non-trivial complex
polynomial h such that h(K) = 0. In addition to nilpotent operators, examples of
algebraic operators are idempotent operators and operators for which some power
has finite-dimensional range. Note that if K is algebraic, by the classical spectral
mapping theorem we have h(σ(K)) = σ(h(K)) = {0}, so the spectrum σ(K) is
finite.

If T ∈ L(X) has the SVEP at a point λ, then it may be tempting to conjecture that
T + K has the SVEP at λ for every algebraic operator K ∈ L(X) that commutes
with T . However, this cannot be true in general. Indeed, in the example given in
Remark 2.130, the operator K := −λ0I is obviously algebraic, T has the SVEP at
0 while T +K does not have the SVEP at 0. Nevertheless, we obtain the following
result.

Theorem 2.145 Let T ,K ∈ L(X) be commuting operators, suppose that K is
algebraic, and let h be a non-zero polynomial for which h(K) = 0. If T has the
SVEP at each of the zeros of h, then T − K has the SVEP at 0. In particular, if T
has SVEP, then so does T +K.
Proof We know that K has a finite spectrum, say σ(K) = {μ1, . . . , μn}. For i =
1, . . . , n, let Pi ∈ L(X) denote the spectral projection associated with K and with
the spectral set {μi}, and let Yi := Pi(X) be the range of Pi . From standard spectral
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theory it is known that P1+· · ·+Pn = I, that Y1, . . . , Yn are closed linear subspaces
of X which are each invariant under both K and T , and that X = Y1 ⊕ · · · ⊕ Yn.
Moreover, for arbitrary i = 1, . . . , n, the two restrictions Ki := K | Yi and Ti :=
T | Yi commute, and we have σ(Ki) = {μi}. Because h(Ki) = h(K) | Yi = 0, we
obtain

h({μi}) = h(σ(Ki)) = σ(h(Ki)) = {0}.

Hence we may factor h in the form

h(μ) = (μ− μi)ni qi(μ) for all μ ∈ C,

where ni ∈ N and qi is a complex polynomial for which qi(μi) �= 0. We conclude
that

0 = h(Ki) = (Ki − μiI)ni qi(Ki),

where qi(Ki) ∈ L(Yi) is invertible in light of σ(qi(Ki)) = qi(σ (Ki)) = {qi(μi)}
and qi(μi) �= 0. Therefore (Ki − μiI)ni = 0, which shows that the operatorNi :=
Ki − μiI is nilpotent. Now observe that

Ti −Ki = (Ti − μiI)− (Ki − μiI) = Ti − μiI −Ni.

Because T has the SVEP at μi, we know that T −μiI has the SVEP at 0. Since this
condition is inherited by restrictions to closed invariant subspaces, we conclude that
Ti−μiI has the SVEP at 0, and hence, by Theorem 2.129, Ti−Ki = Ti−μiI−Ni
also has the SVEP at 0 for all i = 1, 2, . . . , n. From Theorem 2.15, it then follows
that

T −K = (T1 −K1)⊕ · · · ⊕ (Tn −Kn)

has the SVEP at 0, as desired. An application of the main result to the operators −K
and T − λI , for arbitrary λ ∈ C, then establishes the final claim. �

From a closer look at the proof of Theorem 2.145 it is easy to deduce that the
SVEP is stable under commuting perturbationsK which have finite spectrum.

The case of commuting quasi-nilpotent equivalence seems to be more compli-
cated. In the next theorem we assume that H0(λI − T ) ∩ XT (∅) = {0}. This
condition, as it has been shown in Theorem 2.39, is stronger than the SVEP for
T at λ.

Theorem 2.146 Suppose that T ∈ L(X) satisfies H0(λI − T ) ∩ XT (∅) = {0} for
some λ ∈ C, and let S ∈ L(X) be quasi-nilpotent equivalent to T . Then S has the
SVEP at λ.
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Proof Let x ∈ ker (λI − S). Then (λI − S)kx = 0 for all k ∈ N. Moreover, for
arbitrary n ∈ N, we know that

C(T , S)n(I) =
n∑
k=0

(
n

k

)
(−1)n−k(λI − T )n−k(λI − S)k.

Consequently, we obtain that

‖(λI − T )nx‖1/n = ‖C(T , S)n(I)x‖1/n ≤ ‖C(T , S)n(I)‖1/n‖x‖1/n → 0

as n → ∞. Thus ker(λI − S) ⊆ H0(λI − T ), while XS(∅) = XT (∅), by quasi-
nilpotent equivalence. We conclude that

ker (λI − S) ∩XS(∅) ⊆ H0(λI − T ) ∩XT (∅) = {0},

so that Theorem 2.60 ensures that S has the SVEP at λ. �
The SVEP at a point is preserved under quasi-nilpotent equivalence, if we assume

that λI − T either admits a generalized Kato decomposition or is quasi-Fredholm.

Corollary 2.147 Let S, T ∈ L(X) be quasi-nilpotent equivalent operators, let λ ∈
C, and suppose that λI − T either admits a generalized Kato decomposition or is
quasi-Fredholm. If T satisfies SVEP at λ, then so does S.

Proof Under either of the two conditions on λI − T , it is known that SVEP for
T at λ is equivalent to the condition that H0(λI − T ) ∩ K(λI − T ) = {0}; see
Theorem 2.97. Consequently, the assertion is clear from Theorem 2.39. �

We finally address the permanence of the localized SVEP for the adjoint T ∗ of an
operator T ∈ L(X). The conditionH0(λI − T )+K(λI − T ) = X may be thought
of as being dual to the condition H0(λI − T ) ∩ K(λI − T ) = {0}, and entails the
SVEP for T ∗ at λ, by Theorem 2.39. These observations concerning the localized
SVEP are improved in the following result.

Theorem 2.148 For every pair of quasi-nilpotent equivalent operators S, T ∈
L(X) and arbitrary λ ∈ C, the following assertions hold:

(i) if K(λI − T )+H0(λI − T ) is norm dense in X, then S∗ has the SVEP at λ;
(ii) if H0(λI − T ∗) + K(λI − T ∗) is weak-*-dense in X∗, then S has the SVEP

at λ.

Proof

(i) By Theorem 2.37 we have the inclusions

H0(λI − T ) ⊆ ⊥K(λI − T ∗) and K(λI − T ) ⊆ ⊥H0(λI − T ∗),
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and therefore, by duality,

K(λI − T ∗) ⊆ H0(λI − T ∗)⊥ and H0(λI − T ∗) ⊆ K(λI − T )⊥.

We conclude that

K(λI − T ∗) ∩H0(λI − T ∗) ⊆ H0(λI − T )⊥ ∩K(λI − T )⊥
= [H0(λI − T )+K(λI − T )]⊥ = {0},

where the last equality follows from the condition that H0(λI − T )+
K(λI − T ) is norm dense in X. Moreover, since

[C(S, T )(A)]∗ = (−1)nC(T ∗, S∗)n(A∗)

for all A ∈ L(X) and n ∈ N, it is clear that the pair (S∗, T ∗) inherits quasi-
nilpotent equivalence from the pair (S, T ). The assertion is now immediate
from Theorem 2.146.

(ii) Similarly, we obtain

H0(λI − T ) ∩K(λI − T ) ⊆ ⊥K(λI − T ∗) ∩ ⊥H0(λI − T ∗)

= ⊥[K(λI − T ∗)+H0(λI − T ∗)] = {0},

where the last identity follows from the Hahn–Banach theorem and the weak∗-
density of H0(λI − T ∗) + K(λI − T ∗) in X∗. Another application of
Theorem 2.146 now ensures that S has the SVEP at λ. �

2.10 Spectral Properties of Products of Operators

Let X and Y be Banach spaces and consider two operators S ∈ L(X, Y ) and R ∈
L(Y,X). We begin this section by proving that the non-zero points of the spectra
σ(RS) and σ(SR) are the same, and the same holds for a number of distinguished
parts of the spectrum.

Theorem 2.149 Let S ∈ L(X, Y ), R ∈ L(Y,X) and λ �= 0. Then we have:

(i) α(λI − SR) = α(λI − RS).
(ii) β(λI − SR) = β(λI − RS).

(iii) λI − SR has closed range if and only if λI − RS has closed range.

Proof

(i) If x ∈ X is an eigenvector of λI − RS then

(λI − RS)x = 0 = T (λI − RS)x = (λI − SR)Sx.
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Since λ �= 0 implies Sx �= 0, Sx is an eigenvector of (λI − SR). Let (xk)
k = 1, 2, . . . n be a set of linearly independent eigenvectors for λI − RS. We
show that the set {Sx1, Sx2, . . . Sxn} is linearly independent. Assume not, so
there exist non-zero scalars α1, α2, . . . αn such that

∑n
k=1 αkSxk = 0. Then

S(

n∑
k=1

αkxk) = 0 = RS(
n∑
k=1

αkxk) = λ(
n∑
k=1

αkxk).

Since λ �= 0, this contradicts the linearly independence of the xk’s. Therefore,
{Sx1, Sx2, . . . Sxn} is a linearly independent set and, consequently, α(λI −
SR) ≤ α(λI − RS). The reverse inequality follows by symmetry.

(ii) Let X̂ := X/(λI − SR)(X) and y ∈ X such that ŷ �= 0. Then R̂y �= 0. Assume
Ry ∈ (λI − RS)(X). Then there exists a sequence (zn) ⊆ (λI −RS)(X) such
that (λI − RS)zn = Ry, as n→ ∞. Therefore,

(λI − SR)Szn = SRy,

and SRy ∈ (λI − SR)(X). Since

λy = (λI − SR)y + SRy ∈ (λI − SR)(X)

contradicts our assumption ŷ �= 0, it then follows that Ry /∈ (λI − RS)(X).
Let (ŷk) be a set of linearly independent vectors in X̂, and set X̃ :=

X/(λI − RS)(X). We claim that (̃Ryk) are linearly independent vectors in X̃.
Indeed, assume that there are scalars (αk) such that

∑n
k=1 αkR̃yk = 0. Then

there exists a sequence (zk) in X such that (λI − RS)zn → ∑n
k=1 αkRyk,

which implies that

n∑
k=1

αkSRyk = lim
k→∞(λI − SR)Szn.

Now,

−λ
n∑
k=1

αkSRyk =
n∑
k=1

αk[(λI − SR)yk − SRyk],

hence

λ(

n∑
k=1

αkyk) ∈ (λI − SR)(X)
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and

α1 = α2 = . . . αn = 0.

Thus, the vectors (̃Ryk) are linearly independent and consequently, we have
β(λI − SR) ≤ β(λI − RS). Similarly, β(λI − RS) ≤ β(λI − SR) and the
equality then follows.

(iii) Suppose that (λI−RS)(X) is closed and y ∈ X is such that (λI−RS)xn → y,
with xn ∈ X. Then (λI − RS)Rxn → Ry and since (λI − RS)(X) is closed,
Ry ∈ (λI−RS)(X). That is, there exists an x ∈ X such thatRy = (λI−RS)x.
But

λy = SRy − (SR − λI)y = S(λI − RS)x − (SR − λI)y
= (λI − SR)Sx + (λI − SR)y

and since λ �= 0 we have y ∈ (λI − SR)(X). In a similar fashion the reverse
implication follows. �

Corollary 2.150 If R, S ∈ L(X) then the nonzero points of the spectrum, or of the
approximate point spectrum, of RS and SR are the same. The same happens for the
upper semi-Fredholm spectra and the essential spectrum of RS and SR.

It is easy to find examples of operators for which the product SR is invertible,
while RS is not invertible. For instance, if R is the right shift on �2(N) and L is
the left shift, then LR = I is invertible, while RL is not injective and hence not
invertible.

Corollary 2.151 If S,R ∈ L(X) then RS is Riesz if and only if SR is Riesz.

Note that by Theorem 2.4 the local spectrum of RS at x and the local spectrum
of SR at Sx have the same non-zero points. Further results concerning other spectra
of the products SR and RS will be given in the next chapter. We next want show
that SR and RS also share some other local spectral properties.

It is not surprising that the property of having closed local spectral subspaces
XT (F) for every closed set F ⊆ C is an important property. For instance, for every
spectral operator T ∈ L(X) with spectral measure E(·), the subspace XT (F) is
closed, for every closed set F , since it coincides with the range of the projection
E(F), see [216, Corollary 1.2.25]. To label this situation we introduce the following
definition.

Definition 2.152 A bounded operator T ∈ L(X), X a Banach space, is said to
have Dunford’s property (C), shortly property (C), if the analytic subspace XT (F)
is closed for every closed subset F ⊆ C.

Property (C) dates back to the earliest days of local spectral theory. It was first
introduced by Dunford (see [143]) and plays an important role in the development
of the theory of spectral operators (this condition is one of the three basic
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conditions that are used in the abstract characterization of spectral operators), and
more generally in the development of the theory of decomposable operators. The
monograph by Dunford and Schwartz [143] and the book by Laursen and Neumann
[216] contain a number of pertinent results.

Trivially, by Theorem 2.14, we have the following relevant fact:

Theorem 2.153 If T ∈ L(X), X a Banach space, has property (C) then T has the
SVEP.

Note that if an operator T has property (C), and hence the SVEP, then the quasi-
nilpotent part H0(T ) is closed since H0(T ) = XT ({0}), see Theorem 2.30. The
operator T considered in Example 2.33 shows that the implication of Theorem 2.153
cannot be reversed in general. Further examples of operators with the SVEP but
without property (C)may be found among the class of all multipliers of semi-simple
commutative Banach algebras, which will be introduced in more detail in Chap. 3.
In fact, these operators have the SVEP, since the quasi-nilpotent part of λI − T
coincides with the kernel ker (λI − T ) for all λ ∈ C, see the next Theorem 4.48,
while property (C) plays a distinctive role in this context, see [216, Chapter 4].

A first example of operators which have property (C) is given by quasi-nilpotent
operators.

Theorem 2.154 Let T ∈ L(X) be a quasi-nilpotent operator on a Banach space
X. Then T has property (C).

Proof Consider any closed subset of F ⊆ C. Consider first the case 0 /∈ F . Then
since T has the SVEP,

XT (F) = XT (F ∩ σ(T )) = XT (∅) = {0}

is trivially closed. On the other hand, if 0 ∈ F then by Theorem 2.35 and
Theorem 2.30

XT (F) = XT (F ∩ σ(T )) = XT ({0}) = H0(T ) = X.

Hence, also in this case XT (F) is closed. �
Lemma 2.155 Suppose that T ∈ L(X) has the SVEP, and that F ⊆ C is a closed
set for which XT (F) is closed. Then σ(T |XT (F)) ⊆ F ∩ σ(T ).
Proof Set A := T |XT (F). Clearly, λI − A has the SVEP and part (ii) of
Theorem 2.13 ensures that λI − S is onto for all λ ∈ C \ F . By Corollary 2.61 then
λI − S is invertible for all λ ∈ C \ F . On the other hand, part (iii) of Theorem 2.13
shows that λI − S is invertible for all λ ∈ F which belong to the resolvent, so
σ(S) ⊆ (C \ F) ∪ σ(T ), and hence σ(S) ⊆ F ∩ σ(T ). �

Property (C) is inherited by restrictions to closed invariant subspaces.
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Theorem 2.156 Suppose that T ∈ L(X), where X is a Banach space, has property
(C). If Y is a T -invariant closed subspace of X then the restriction T |Y has
property (C).

Proof Set S := T | Y and let F be a closed subset of C. Suppose that the sequence
(xn) ⊂ YS(F ) converges at x ∈ X. We have to show that x ∈ YS(F ). Evidently,
YS(F ) ⊆ XT (F) ∩ Y , so that x ∈ YS(�) ⊆ XT (�). By Theorem 2.153 we know
that T has the SVEP, so there exists an analytic function f : C \ � → X such that
(λI − T )f (λ) = x for all λ ∈ C \�.

To show that x ∈ YS(F ) it suffices to prove that f (λ) belongs to Y for all λ ∈
C \ F . Since T has the SVEP, for every n ∈ N there exists an analytic function
fn : C \ F → Y such that (λI − T )fn(λ) = xn for all λ ∈ C \ F . The elements
x and xn belong to XT (F), so Theorem 2.9 implies that f (λ) and fn(λ) belong to
XT (F) for all λ ∈ C\F and n ∈ N. Since T has the SVEP, andXT (F) is closed by
assumption, from Lemma 2.155 we know that σ(T | XT (F)) ⊆ F , and therefore
the bounded operator λI−T | XT (F) onXT (F) has an inverse (λI−T | XT (F))−1

for every λ ∈ C \ F .
From this we then obtain that fn(λ) = (λI − T | XT (F))−1xn converges to the

element (λI − T | XT (F))−1x, as n → ∞. Therefore f (λ) ∈ Y , so the proof is
complete. �

The next result shows that property (C) is preserved by the Riesz functional
calculus. For a proof, see Theorem 3.3.6 of Laursen and Neumann [216].

Theorem 2.157 If T ∈ L(X) has property (C) and f is an analytic function on
an open neighborhoodU of σ(T ), then f (T ) has property (C). Similar statements
hold for property (β).

It could be reasonable to expect that the converse of Theorem 2.157 is true if we
assume that f is non-constant on each connected component of U , as is the case, by
Theorem 2.89, for the SVEP; but this is not known.

Lemma 2.158 Let S ∈ L(X, Y ) and R ∈ L(Y,X) and μ ∈ C. Then RS has the
SVEP at λ if and only if SR has the SVEP at λ.

Proof Suppose that RS has the SVEP at λ and let f : Dλ → Y be an analytic
function defined in an open disc centered at λ such that

(μI − SR)f (μ) = 0 for all μ ∈ Dλ. (2.31)

Then SRf (μ) = μf (μ) for all μ ∈ Dλ. From (2.31) we have

R(μI − SR)f (μ) = (μI − RS)Rf (μ) = 0 for all μ ∈ Dλ,

and hence, since RS has the SVEP at λ, Rf (μ) = 0. Then 0 = SRf (μ) = μf (μ)

for all μ ∈ Dλ, from which we obtain f (μ) = 0 for all μ ∈ Dλ. Therefore, SR has
the SVEP at λ. The converse may be proved in a similar way. �
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Theorem 2.159 Let F be a closed subset ofC such that 0 ∈ F . If S ∈ L(X, Y ) and
R ∈ L(Y,X) then YSR(F ) is closed if and only if XRS(F ) is closed.
Proof Suppose that YSR(F ) is closed and let (xn) be a sequence in XRS(F ) which
converges to x ∈ X. Since xn ∈ XRS(F ), σRS(xn) ⊆ F for all n ∈ N. Since 0 ∈ F ,
σRS(xn) ∪ {0} ⊆ F . By Theorem 2.4, part (i), we have

σRS(xn) ∪ {0} = σSR(Sxn) ∪ {0},

so σSR(Sxn) ⊆ F and hence Sxn ∈ YSR(F ). But Sxn → Sx and YSR(F ) is closed,
thus Sx ∈ YSR(F ), that is, σSR(Sx) ⊆ F . Again by Theorem 2.4 we obtain

σRS(x) ⊆ σSR(Sx) ∪ {0} ⊆ F,

thus x ∈ XRS(F ).
The converse implication follows in a similar way, just use part (ii) of Theo-

rem 2.4. �
In order to study the case when 0 /∈ F we need a preliminary result:

Lemma 2.160 Suppose that T ∈ L(X) has the SVEP and let F be a closed subset
of C such that Z := XT (F) is closed. If A := T |XT (F) then XT (K) = ZA(K) for
all closed K ⊆ F .
Proof Note first that A has the SVEP, so every glocal spectral subspace ZA(K)
coincides with the local spectral subspace ZA(K), and XT (K) ⊆ XT (F) = Z. The
inclusion ZA(K) ⊆ XT (K) is immediate. In order to prove the opposite inclusion,
suppose that x ∈ XT (K) = XT (K). Then σT (x) ⊆ K and there is an analytic
function f : C \ K → X such that (μI − T )f (μ) = x for all μ ∈ C \ K . By
Theorem 2.9 we have

σT (f (μ)) = σT (x) ⊆ K for all μ ∈ C \K,

thus f (μ) ∈ XT (K) ⊆ Z. Therefore, f is a Z-valued function and hence

(μI − T )f (μ) = (μI − A)f (μ) = x for all μ ∈ C \K,

i.e. x ∈ ZA(K) = ZA(K). �
Theorem 2.161 Let F be a closed subset of C such that λ /∈ F . If T ∈ L(X) has
the SVEP and XT (F ∪ {λ}) is closed then XT (F) is closed.
Proof Let Z := XT (F ∪ {λ}) and S := T |XT (F ∪ {λ}). From Lemma 2.155
we know that σ(S) ⊆ F ∪ {λ}. We consider two cases: Suppose first that λ /∈
σ(S). Then σ(S) ⊆ F and hence Z = ZS(F ). By Lemma 2.160 we then have
ZS(F ) = XT (F), so XT (F) is closed. Suppose the other case that λ ∈ σ(S) and
set F0 := σ(S) ∩ F . Then σ(S) = F0 ∪ {λ}. Since λ ∈ σ(S), by Theorem 2.26 we
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have Z = ZS(F0)⊕ ZS({λ}. From Lemma 2.160 it then follows that

ZS(F0) = ZF (σ(S) ∩ F) = ZS(F ) = XT (F),

and hence XT (F) is closed. �
Corollary 2.162 Let S ∈ L(X, Y ) and R ∈ L(Y,X) be such thatRS has the SVEP,
and denote by F a closed subset of C such that 0 /∈ F . Then we have:
(i) If YSR(F ∪ {0}) is closed then XRS(F ) is closed.

(ii) If XRS(F ∪ {0}) is closed then YSR(F ) is closed.
Proof Theorem 2.159 ensures that Z := XRS(F ∪{0}) is closed, since 0 ∈ F ∪{0}.
The SVEP for RS entails the SVEP for SR, by Lemma 2.158, thus Theorem 2.161
entails that XRS(F ) is closed. An analogous argument proves (ii). �

A remarkable consequence of the previous results is that property (C) for RS is
equivalent to property (C) for SR.

Corollary 2.163 If S ∈ L(X, Y ) andR ∈ L(Y,X) thenRS has Dunford’s property
(C) if and only if SR has Dunford’s property (C).

Proof Suppose that RS has Dunford’s property (C), i.e. XRS(F ) is closed for
every closed subset F ⊆ C. If 0 ∈ F then YSR(F ) is closed, by Theorem 2.159.
Obviously, if 0 /∈ F then F ∪ {0} is closed, so XRS(F ∪ {0} is closed and hence
YSR(F ) is closed, by Corollary 2.162. Therefore SR has Dunford’s property (C).
The proof of the opposite implication is similar. �

Let us consider the particular case when F is a singleton set, say F := {λ}. Recall
H0(λI − T ) = XT ({λ}), where XT ({λ}) is the glocal spectral subspace associated
with the closed set {λ}.
Definition 2.164 An operator T ∈ L(X) is said to have property (Q) ifH0(λI−T )
is closed for every λ ∈ C.

Evidently, by Corollary 2.67,

property (C) ⇒ property (Q) ⇒ SVEP.

Consequently, by part (v) of Theorem 2.23, for operators T having property (Q) we
have H0(λI − T ) = XT ({λ}). Property (Q) is strictly weaker than property (C),
indeed every multiplier of a semi-simple commutative Banach algebra has property
(Q), see the next Theorem 4.48, in particular every convolution operator Tμ, μ ∈
M(G), on the group algebra L1(G) has property (Q), but there are convolution
operators which do not enjoy property (C), see [216, Chapter 4].

Lemma 2.165 Let F be a closed subset of C. If S ∈ L(X, Y ) and R ∈ L(Y,X) are
both injective, then YSR(F ) is closed if and only if XRS(F ) is closed.
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Proof Suppose that YSR(F ) is closed and let (xn) be a sequence in XRS(F ) which
converges to x ∈ X. Since xn ∈ XRS(F ), σRS(xn) ⊆ F for all n ∈ N. Because S
is injective we have σRS(xn) = σSR(Sxn), by Theorem 2.4, hence Sxn ∈ YSR(F ),
since σSR(Sxn) ⊆ F . But Sxn → Sx, and YSR(F ) is closed, so that Sx ∈ YSR(F )
and hence σSR(Sx) ⊆ F . Again, by Theorem 2.4, we have σRS(x) = σSR(Sx) ⊆ F ,
hence x ∈ XRS(F ). By using the same argument and, since R is injective, we easily
obtain the reverse implication. �
Theorem 2.166 If S ∈ L(X, Y ) and R ∈ L(Y,X) are both injective, then RS has
property (Q) if and only if SR has property (Q).

Proof Suppose that RS has property (Q). Then RS has the SVEP and hence SR
also has the SVEP, by Lemma 2.158. By Theorem 2.23, part (iv), for every λ ∈ C

we have XRS({λ}) = XRS({λ}) = H0(λI − RS), and analogously YSR({λ}) =
YSR({λ}) = H0(λI − SR). Now, if λ = 0 then, by Theorem 2.159 H0(RS) =
XRS({0}) is closed if and only if H0(SR) = YSR({0}) is closed. If λ �= 0 from
Lemma 2.165 we see that H0(λI − SR) = YSR(λ} is closed if and only if H0(λI −
RS) = XRS(λ} is closed. �

An interesting question is if the result of Theorem 2.166 is still valid without
assuming that R, S are injective.

In order to establish some results concerning the analytic core of RS and SR,
recall that, by Theorem 2.20, for every T ∈ L(X) we have K(λI − T ) = XT (C \
{λ}) = {x ∈ X : λ /∈ σT (x)}.
Theorem 2.167 Let S ∈ L(X, Y ) and R ∈ L(Y,X). We have:
(i) If λ �= 0, thenK(λI − SR) is closed if and only if K(λI − RS) is closed.

(ii) If R and S are injective thenK(SR) is closed if and only if K(RS) is closed.

Proof

(i) Suppose that K(λI − SR) is closed and let (xn) be a sequence of elements of
K(λI − RS) which converges to x ∈ X. Then λ /∈ σRS(xn) for every n ∈ N,
and hence, by Theorem 2.4, λ /∈ σSR(Sxn), that is, Sxn ∈ K(λI − SR). Since
Sxn → Sx and K(λI − SR) is closed, Sx ∈ K(λI − SR), i.e. λ /∈ σSR(Sx).
Again from Theorem 2.4 we then have λ /∈ σRS(x), hence x ∈ K(λI − RS).

(ii) The proof is similar to that of part (i), just recalling the equalities between the
local spectra of SR and RS, established in Theorem 2.4 in the case where R
and S are injective. �

Another important property which plays a central role in local spectral theory is
the property (β) introduced by Bishop [79]. Let H(U,X) denote the space of all
analytic functions fromU intoX. With respect to pointwise vector space operations
and the topology of locally uniform convergence, H(U,X) is a Fréchet space.
Denote, as usual, by D(λ, r) an open disc centered at λ with radius r < 0.

Definition 2.168 An operator T ∈ L(X) is said to have Bishop’s property (β) at
λ ∈ C if there exists an r > 0 such that for every open subset U ⊆ D(λ, r), and for
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every sequence of analytic functions (fn) ⊂ H(U,X) for which (μI −T )fn(μ)→
0 in H(U,X), we have fn(μ) → 0 in H(U,X). T ∈ L(X) is said to have property
(β) if T has property (β) at every λ ∈ C.

The relevance of property (β) in local spectral theory is not immediately evident
at first glance. It should be noted that the following implication holds:

property (β)⇒ property (C)⇒ SVEP.

For a proof, see Laursen and Neumann’s book [216, Proposition 1.2.19]. A dual
property of property (β) is given by the following decomposition property (δ).

Definition 2.169 An operator T ∈ L(X) is said to have the decomposition property
(δ) if the decomposition

X = XT (U)+ XT (V )

holds for every open cover {U,V } of C.

A remarkable result of local spectral theory is that the there is a complete
duality between property (δ) and property (β). Indeed, T ∈ L(X) has property
(δ) (respectively, property (β)) if and only if T ∗ has property (β) (respectively,
property (δ)), see [216, Theorem 2.5.5].

We now introduce an important class of operators on Banach spaces which
admits a rich spectral theory and contains many important classes of operators.

Definition 2.170 Given a Banach space X, an operator T ∈ L(X) is said to be
decomposable if, for any open covering {U1,U2} of the complex plane C, there
are two closed T -invariant subspaces Y1 and Y2 of X such that Y1 + Y2 = X and
σ(T |Yk) ⊆ Uk for k = 1, 2.

A very deep result in local spectral theory is that decomposability may be
described as the union of the two weaker properties (β) and (δ), more precisely:

T is decomposable ⇔ T has both properties (β) and (δ),

or,

T is decomposable ⇔ T has both properties (C) and (δ),

see [216, Theorem 1.2.29].

Theorem 2.171 Let S ∈ L(X, Y ) and R ∈ L(Y,X). Then we have
(i) SR has property (β) if and only if RS has property (β).

(ii) SR has property (δ) if and only if RS has property (δ).
(iii) SR is decomposable if and only if RS is decomposable.
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Proof

(i) Suppose that SR has property (β) at λ ∈ C. Then there exists an r > 0
such that for every open subset U ⊆ D(λ, r) and for every sequence (gn) ⊂
H(U,X) for which

lim
n→∞(μI − SR)gn(μ) = 0 in H(U, Y )

we have

lim
n→∞ gn(μ) = 0 in H(U, Y ).

LetW ⊆ D(λ, r) be open and suppose that for (fn) ⊂ H(W,X) we have

lim
n→∞(μI − RS)fn(μ) = 0 in H(W,X).

From this we obtain

lim
n→∞(μI − SR)Sfn(μ) = lim

n→∞ S(μI − RS)fn(μ) = 0,

in H(W,X), and hence limn→∞ Sfn(μ) = 0 in H(W,X). This implies that
limn→∞ SRSfn(μ) = 0 in H(W,X), and consequently,

lim
n→∞μfn(μ) = 0 in H(W,X). (2.32)

Obviously, if we set T = 0, the identity (2.32) may be rewritten as

lim
n→∞(μI − T )fn(μ) = 0 in H(W,X).

Therefore, since T has property (β), we have limn→∞ fn(μ) = 0 inH(W,X),
and hence RS has property (β) at λ. The reverse implication easily follows by
interchanging S and R.

(ii) This follows from the duality between properties (β) and (δ).
(iii) As observed above, an operator is decomposable if and only if has both

properties (β) and (δ). �

2.11 Operators Which Satisfy RSR = R2 and SRS = S2

In this section we consider some local spectral properties of operators S,R ∈ L(X)
for which the operator equations

RSR = R2 and SRS = S2 (2.33)
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hold. This is a rather special case, but an easy example of operators which satisfy
these equations can be obtained by putting R := PQ and S := QP , where P and
Q are idempotent operators. A remarkable result of Vidav [293, Theorem 2] shows
that if R, S are self-adjoint operators on a Hilbert space then the Eq. (2.33) hold if
and only if there exists a (uniquely determined) idempotent P such that R = PP ∗
and S = P ∗P , where P ∗ is the adjoint of P .

It is easily seen that if 0 /∈ σ(R) ∩ σ(S) then R = S = I , so this case is
without interest. For this reason we shall assume that 0 ∈ σ(R) ∩ σ(S). Evidently,
the operator equations RSR = R2 implies (SR)2 = SR2, while SRS = S2 implies
(RS)2 = RS2.

Theorem 2.172 Let S,R ∈ L(X) be such that RSR = R2. Suppose that F is a
closed subset of C and 0 ∈ F . Then XR(F) is closed if and only if XSR(F ) is
closed.

Proof Suppose that XR(F) is closed and let (xn) be a sequence in XSR(F ) which
converges to x ∈ X. We need to show that x ∈ XSR(F ). For every n ∈ N

we have σSR(xn) ⊆ F and hence, by the first inclusion of Lemma 2.7, we have
σR(Rxn) ⊆ F , i.e., Rxn ∈ XR(F). Since 0 ∈ F we then have, by part (iii)
of Theorem 2.13, xn ∈ XR(F), and since by assumption XR(F) is closed it
then follows that x ∈ XR(F), hence σR(x) ⊆ F . From the second inclusion of
Lemma 2.7 we then have σSR(SRx) ⊆ F , and this implies that SRx ∈ XSR(F ).
Again by part (iii) of Theorem 2.13, we conclude that x ∈ XSR(F ), thusXSR(F ) is
closed.

Conversely, suppose thatXSR(F ) is closed and let (xn) be a sequence of XR(F)
which converges to x ∈ X. Then σR(xn) ⊆ F for every n ∈ N and hence, from the
second inclusion of Lemma 2.7, we have σSR(SRxn) ⊆ F , so SRxn ∈ XSR(F ).
But 0 ∈ F , so, by part (iii) of Theorem 2.13, xn ∈ XSR(F ). Since, by assumption,
XSR(F ) is closed, x ∈ XSR(F ), and hence σSR(x) ⊆ F . From the first inclusion of
Lemma 2.7 we then obtain σR(Rx) ⊆ F , so Rx ∈ XR(F), and the condition 0 ∈ F
then implies x ∈ XR(F). �
Lemma 2.173 Let S,R ∈ L(X) be such that RSR = R2. Then if one of the
operators R, SR, RS has the SVEP, all of them have the SVEP. Additionally, if
SRS = S2, and one of R, S, SR, RS has the SVEP then all of them have the SVEP.

Proof By Lemma 2.158, SR has the SVEP if and only if RS has the SVEP. So it
suffices only to prove that R has the SVEP at λ0 if and only if so has RS.

Suppose that R has the SVEP at λ0 and let f : U0 → X be an analytic function
on an open neighborhood U0 of λ0 for which (λI − RS)f (λ) ≡ 0 on U0. Then
RSf (λ) = λf (λ) and

0 = RS(λI − RS)f (λ) = (λRS − (RS)2)f (λ) = (λRS − (R2S)f (λ)

= (λI − R)RSf (λ).
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The SVEP of R at λ0 implies that

RSf (λ) = λf (λ) = 0 for all λ ∈ U0.

Therefore, f ≡ 0 on U0, and hence RS has the SVEP at λ0.
Conversely, suppose that RS has the SVEP at λ0 and let f : U0 → X be an

analytic function on an open neighborhood U0 of λ0 such that (λI − R)f (λ) ≡ 0
on U0. Clearly, Rf (λ) = λf (λ), and hence

R2f (λ) = λRf (λ) = λ2f (λ) for all λ ∈ U0.

Furthermore,

0 = RS(λI − R)f (λ) = λRSf (λ)− R2f (λ) = λRSf (λ)− λ2f (λ)

= (λI − RS)(−λf (λ)),
and since RS has the SVEP at λ0 we then have λf (λ) ≡ 0, hence f (λ) ≡ 0, thus R
has the SVEP at λ0.

The second assertion is clear, if SRS = S2, just interchanging R and S in the
argument above, the SVEP for S holds if and only if SR, or equivalently RS, has
the SVEP. �

We now consider the case where 0 /∈ F .

Theorem 2.174 Let F be a closed subset of C such that 0 /∈ F . Suppose that
R, S ∈ L(X) satisfy RSR = R2 and R has the SVEP. Then we have

(i) If XR(F ∪ {0}) is closed then XSR(F ) is closed.
(ii) If XSR(F ∪ {0}) is closed then XR(F) is closed.
Proof

(i) Let F1 := F ∪ {0}. Clearly, F1 is closed and by assumption XR(F1) is closed.
Since 0 ∈ F1, XSR(F1) is closed, by Theorem 2.172. Moreover, the SVEP for
R is equivalent to the SVEP for SR by Lemma 2.173. By Theorem 2.161 then
XSR(F ) is closed.

(ii) The argument is similar to that of part (i): ifXSR(F∪{0}) is closed thenXR(F∪
{0}) by Theorem 2.172, and since R has the SVEP then XR(F) is closed, by
Theorem 2.161. �

Theorem 2.175 Suppose that S,R ∈ L(X) satisfy the operator equation RSR =
R2 and one of the operators R, SR, RS has property (C). Then all of them have
property (C). If, additionally, SRS = S2 and one of the operators R, S, RS, SR
has property (C), then all of them have property (C).

Proof Since property (C) entails the SVEP, all the operators have the SVEP, by
Lemma 2.173. Moreover the equivalence of property (C) for SR and RS has been
proved in Corollary 2.163, so it is enough to show that R has property (C) if and
only if so has RS.
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Suppose that R has property (C) and let F be a closed set. If 0 ∈ F thenXSR(F )
is closed, by Theorem 2.172, while in the case where 0 /∈ F we have that XR(F ∪
{0}) is closed, and hence, by part (i) of Theorem 2.174, the SVEP for R ensures that
also in this case XSR(F ) is closed. Therefore, SR has property (C).

Conversely, suppose that SR has property (C). For every closed subset F which
contains 0 then XR(F) is closed, again by Theorem 2.172. If 0 /∈ F then XSR(F ∪
{0}) is closed and hence, by part (ii) of Theorem 2.174, XR(F) is closed. Hence R
has property (C).

If additionally SRS = S2 then, by interchanging S with R, the same argument
above proves the second, so the proof is complete. �
Lemma 2.176 Let S,R ∈ L(X) be such that RSR = R2, SRS = S2, and λ ∈ C.
Then the following statements are equivalent:

(i) λI − R is injective;
(ii) λI − SR is injective;

(iii) λI − RS is injective;
(iv) λI − S is injective.

Proof We consider first the case λ �= 0. For λ �= 0, the equivalence (ii) ⇔ (iii)
follows from Theorem 2.149, without any assumption on R and S. We show that if
λ �= 0, then (i) ⇒ (ii). Suppose that ker (λI − R) = {0} and (λI − SR)x = 0 for
some x �= 0. Then

0 = R(λI − SR)x = (λI − R)Rx,

so Rx = 0 and hence SRx = λx = 0, from which we conclude that x = 0, a
contradiction. Therefore, (i) ⇒ (ii).

(iii) ⇒ (iv). Suppose that ker (λI − RS) = {0} and (λI − S)z = 0 for some
z �= 0, i.e., Sz = λz. Then

0 = RS(λI − S)z = R(λS − S2) = R(λS − SRS)z = (λI − RS)RSz,

so RSz = 0, and hence

0 = SRSz = S2z = λ2z,

i.e., z = 0, a contradiction.
(iv) ⇒ (i) Observe first that SR2 = S2R and hence SR(λI −R) = (λI − S)SR.

Now, suppose that ker (λI − S) = {0} and (λI − R)u = 0 for some u �= 0, i.e.,
Ru = λu. Then

0 = SR(λI − R)u = (λI − S)SRu,
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from which we obtain SRu = 0. Consequently,

0 = RSRu = R2u = λ2u,

i.e., u = 0, a contradiction. Hence (iv) ⇒ (i) for λ �= 0.
Therefore, the equivalence of the statements (i)–(iv) are proved for λ �= 0.
Now, consider the case λ = 0. Evidently, ker SR = {0} (respectively, ker SR =

{0}) implies that ker R = {0} (respectively, ker S = {0}). If kerR = {0}
(respectively, kerS = {0}), then RSR = R2 (respectively. SRS = S2) implies
kerSR = {0} (respectively, kerRS = {0}). Hence, (i) ⇔ (ii) and (iii) ⇔ (iv) for
λ = 0. Suppose that ker RS = {0} and Ry = 0. Then RSRy = R2y = 0, so
SR2y = RS2y = 0, which implies Sy ∈ ker RS and hence Sy = 0. ThenRSy = 0,
i.e. y = 0. Therefore, (iii) ⇒ (i). In a similar way we can prove that (ii) ⇒ (iv). �

The following construction, known in the literature as the Sadovskii/Buoni,
Harte, Wickstead construction, leads to a representation of the Calkin algebra
L(X)/K(X) as an algebra of operators on a suitable Banach space.

Let us consider the Banach space �∞(X) of all bounded sequences x̃ := (xn) of
elements of X, endowed with the norm ‖x̃‖∞ := supn∈N ‖xn‖, and if T ∈ L(X)
define the induced operator on �∞(X), as

T∞x̃ := (T xn) for all x̃ := (xn).

Let m(X) denote the set of all precompact sequences (xn) of elements of X, (i.e.
the closure of {xn : n ∈ N} is compact in X). The set m(X) is a closed subspace of
�∞(X) invariant under T∞. Let X̃ := �∞(X)/m(X), and let T̃ : X̃ → X̃ be defined
by

T̃ (x̃ +m(X)) := T∞x̃ +m(X) for all x̃ ∈ X̃.

The mapping T ∈ L(X) → T̃ ∈ L(X̃) is a unital homomorphism from L(X) to
L(X̃) with kernel K(X), which induces a norm decreasing monomorphism from
L(X)/K(X) to L(X̃) with the following properties (see [245, §17, Chap. 3] for
details):

(a) T ∈ �+(X) ⇔ T̃ is injective ⇔ T̃ is bounded below;
(b) T ∈ �−(X) ⇔ T̃ is onto;
(c) T ∈ �(X) ⇔ T̃ is invertible.

These properties easily imply that the upper semi-Fredholm spectrum σusf(T )

coincides with σap(T̃ ), the lower semi-Fredholm spectrum σlsf(T ) coincides with
σs(T̃ ), while the essential spectrum σe(T ) coincides with σ(T̃ ).

Lemma 2.177 Let R, S ∈ L(X) be such that RSR = R2 and SRS = S2. If
one of the operators R, RS, SR or S is upper semi-Fredholm (respectively, lower
semi-Fredholm, Fredholm) then all are upper semi-Fredholm (respectively, lower
semi-Fredholm, Fredholm).
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Proof Evidently,

R̃S̃R̃ = R̃2 and S̃R̃S̃ = R̃S2
.

Suppose that λI −T ∈ �+(X), where U stands for one of the operatorsR, RS, SR
and S. Then λĨ − T̃ is injective, by part (a) above. This implies, by Lemma 2.176,
that the operators Ĩ − R̃, Ĩ − R̃S, Ĩ − S̃R and Ĩ − S̃ are all injective. This shows
that the upper semi-Fredholm spectra of R, RS, SR and S coincide. The assertions
concerning the other spectra may be proved in a similar way. �

Similar results to those of Lemma 2.177 hold for the upper semi-Browder opera-
tors, lower semi-Browder operators, Browder operators, upper semi-Weyl operators,
lower semi-Weyl operators, Weyl operators, and Drazin invertible operators, see
Duggal [126, 282] and Schmoeger [283].

We consider now property (Q).

Theorem 2.178 Let R, S ∈ L(X) satisfy RSR = R2, and R, S ∈ �+(X) or
R, S ∈ �−(X). Then R has property (Q) if and only if SR has property (Q).

Proof Suppose that R, S ∈ �+(X) and R has property (Q). Then R has the
SVEP and, by Lemma 2.173, SR also has the SVEP. Consequently, by part (iii)
of Theorem 2.23, the local and glocal spectral subspaces relative to a closed set
coincide for R and SR. By assumption H0(λI − R) = XR({λ}) is closed for every
λ ∈ C, andH0(SR) = XSR({0}) is closed by Theorem 2.172. Let 0 �= λ ∈ C. From
part (iv) of Theorem 2.23 we have

XR({λ} ∪ {0}) = XR({λ})+XR({0} = H0(λI − R)+H0(R).

Since R ∈ �+(X) has the SVEP at 0, Theorem 2.105 implies that H0(R) is finite-
dimensional, so XR({λ}∪ {0}) is closed. Then, by Theorem 2.174, we conclude that
H0(λI − SR) = XSR({λ}) is closed, hence SR has property (Q).

Conversely, suppose that SR has property (Q). If λ = 0 then H0(SR) =
XRS({0}) is closed by assumption, and H0(R) = XR({0}) is closed by Theo-
rem 2.172. In the case λ �= 0 we have

XSR({λ} ∪ {0}) = XSR({λ})+ XSR({0} = H0(λI − SR)+H0(SR).

Since SR has the SVEP and SR ∈ �+(X) thenH0(SR) is finite-dimensional, again
by Theorem 2.105. So XSR({λ} ∪ {0}) is closed. By Theorem 2.174 then XR({λ} =
H0(λI − R) is closed. Therefore R has property (Q).

The proof in the case where R, S ∈ �−(X) is analogous. �
Corollary 2.179 Let R, S ∈ L(X) be such that RSR = R2. If both R, S are
bounded below, then R has property (Q) if and only if SR has property (Q).

Proof By Lemma 2.176, the operators R, S, RS, and SR are all injective when
one of them is injective, and the same is true for being upper semi-Fredholm, by
Lemma 2.177. Hence, if one of the operators is bounded below, then all of them are
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bounded below. By Theorem 2.179 property (Q) forR and for SR are equivalent. So
the same is true for S andRS, and also forRS and SR sinceR and S are injective. �
Corollary 2.180 Let S,R ∈ L(X) satisfy the operator equations RSR = R2 and
SRS = S2, and suppose thatR and S are bounded below. If any one of the operators
R, S, RS, and SR has property (Q), then all have property (Q).

Proof Also RS, and SR are bounded below, as observed in the proof of Theo-
rem 2.178, and property (Q) for R and SR are equivalent. By interchanging R
and S we deduce that property (Q) is equivalent for S and RS. Finally, since R and
S are injective, as noted before, property (Q) for RS and SR are equivalent. �

We conclude this section by giving some results on the analytic core of RS and
SR.

Theorem 2.181 Suppose that R, S ∈ L(X) satisfy RSR = R2.

(i) If 0 �= λ ∈ C, then K(λI − R) is closed if and only K(λI − SR) is closed, or
equivalentlyK(λI − RS) is closed.

(ii) If R is injective then K(λI −R) is closed if and onlyK(λI − SR) is closed, or
equivalentlyK(λI − RS) is closed, for all λ ∈ C.

Proof

(i) Suppose λ �= 0 andK(λI−R) is closed. Let (xn) be a sequence ofK(λI−SR)
which converges to x ∈ X. Then λ /∈ σSR(xn) and hence, by Lemma 2.7,
λ /∈ σR(Rxn), thus Rxn ∈ K(λI − R). Since Rxn → Rx and K(λI − R) is
closed, it then follows that Rx ∈ K(λI −R), i.e., λ /∈ σR(Rx). Since λ �= 0, by
part (i) of Corollary 2.5 we have λ /∈ σR(x) and hence λ /∈ σSR(SRx), again by
Lemma 2.7. This implies, again by part (i) of Corollary 2.5, that λ /∈ σSR(x).
Therefore x ∈ K(λI − SR), and consequently,K(λI − SR) is closed.

Conversely, suppose that λ �= 0 and K(λI − SR) is closed. Let (xn) be a
sequence in K(λI − R) which converges to x ∈ X. Then λ /∈ σR(xn) and, by
Lemma 2.7, we have λ /∈ σSR(SRxn). From part (i) of Corollary 2.5 we have
λ /∈ σSR(xn), so xn ∈ K(λI − SR), and hence x ∈ K(λI − SR), since the last
set is closed. This implies that λ /∈ σSR(x), and hence λ /∈ σR(Rx), again by
Lemma 2.7. Again by part (i) of Corollary 2.5 we then have λ /∈ σR(x), so that
x ∈ K(λI−R). Therefore,K(λI−R) is closed. The equivalence,K(λI−SR)
is closed if and only if K(λI − RS) is closed, has already been proved.

(ii) The proof is analogous to that of part (i), just use part (ii) of Corollary 2.4. �
Corollary 2.182 If RSR = R2 and SRS = S2 and λ �= 0 then the following
statements are equivalent:

(i) K(λI − R) is closed;
(ii) K(λI − SR) is closed;

(iii) K(λI − RS) is closed;
(iv) K(λI − S) is closed.

If R is injective then these equivalences also hold for λ = 0.
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Proof The equivalence (iii)–(iv) follows from Theorem 2.181 by interchanging
R and S. Because the injectivity of R is equivalent to the injectivity of S, the
equivalences (i)–(iv) also hold for λ = 0. �

2.12 Local Spectral Properties for Drazin Invertible
Operators

We have seen in Theorem 1.135 that a generalization of the notion of invertibility,
which satisfies the relationships of “reciprocity” observed between the nonzero parts
of the spectrum is provided by the concept of Drazin invertibility. In this section
we see that many local spectral properties are transmitted from a Drazin invertible
operator T to its Drazin inverse S. Recall from Chap. 1 that if T ∈ L(X) is Drazin
invertible then there exist two closed invariant subspaces Y and Z such that X =
Y ⊕ Z and, with respect to this decomposition, we can write T = T1 ⊕ T2 with
T1 := T |Y nilpotent and T2 := T |Z invertible. The Drazin inverse S of T , if
it exists, is uniquely determined, and in the proof of Theorem 1.132, it has been
observed that S may be represented, with respect to the decompositionX = Y ⊕Z,
as the direct sum S := 0 ⊕ S2 with S2 := T2

−1. It has already been observed in
Sect. 2.10 of this chapter that if T has property (C) then so does f (T ) for every
function f analytic on an open neighborhood U of σ(T ). The same happens for the
SVEP, by Theorem 2.86. An easy consequence is that the SVEP and property (C)
are transmitted from T ∈ L(X) to T −1 in the case when T is invertible:

Lemma 2.183 Suppose that T ∈ L(X) is invertible and let λ0 �= 0.

(i) If T has the SVEP at λ0 then T −1 has the SVEP at 1/λ0.
(ii) If T has property (C) then T −1 has property (C).

Proof

(i) Let g(λ) = 1
λ

. Since 0 /∈ σ(T ), there is an open neighborhood U containing
the spectrum such that 0 /∈ U and obviously g is analytic onD. Since T has the
SVEP at λ0 then, by Theorem 2.88, g(T ) = T −1 has the SVEP at 1

λ0
.

(ii) This is proved by using a similar argument and Theorem 2.157. �
A natural question, suggested by Lemma 2.183, is if property (C) or the other

local spectral properties are transmitted to the Drazin inverse, if the operator is
Drazin invertible. In this section we show that the answer to this question is positive.
We begin with the SVEP.

Theorem 2.184 Suppose that R ∈ L(X) is Drazin invertible with Drazin
inverse S.

(i) R has the SVEP at λ0 �= 0 if and only if S has the SVEP at 1
λ0
.

(ii) R has the SVEP if and only if S has the SVEP.



2.12 Local Spectral Properties for Drazin Invertible Operators 205

Proof

(i) Let X = Y ⊕ Z, R = R1 ⊕ R2 and S = 0 ⊕ S2, where S2 = R2
−1. Suppose

that R has the SVEP at λ0. Then R2 = R|Z has the SVEP at λ0, since the
localized SVEP is inherited by the restriction on invariant closed subspaces.
By Lemma 2.183 then S2 has the SVEP at 1

λ0
. Since the null operator has the

SVEP at every point, and by Theorem 2.15, S has the SVEP at 1
λ0

. The reverse
is proved similarly, since every nilpotent operator has the SVEP.

(ii) Suppose that R has the SVEP and that it is Drazin invertible with Drazin
inverse S. We can assume that 0 ∈ σ(R). Then there exist two closed invariant
subspaces Y and Z of X such that X = Y ⊕ Z, R1 := R|Y is nilpotent and
R2 := R|Z is invertible. The operator R1 has the SVEP, since it is nilpotent,
and also the restriction R2 := R|Z has the SVEP. By Lemma 2.183, S2 := R−1

2
also has the SVEP, so the Drazin inverse S = 0 ⊕ S2 has the SVEP.

Conversely, if S = 0 ⊕ S2 has the SVEP then the restriction S2 = S|Z has the
SVEP, and hence its inverse R2 = R|Z has the SVEP. Consequently, R = R1 ⊕ R2
has the SVEP, since R1 is nilpotent and hence has the SVEP. �

Recall that T ∈ L(X) is relatively regular if there exists an S ∈ L(X) such
that T ST = T . S is called a pseudo-inverse of T . The reciprocal relationship
between the nonzero part of the local spectrum of a relatively regular operator T
and the nonzero part of the local spectrum of any of its pseudo-inverses is not
satisfied. For instance, if T is the unilateral right shift in �2(N) then, as observed
in Example 1.137, since

σT (x) = σ(T ) = D(0, 1),

where D(0, 1) is the closed unit disc of C, σT (x)\{0} is the punctured disc D(0, 1)\
{0}. Consequently, the points of σS(x)\ {0}, for any pseudo-inverse S, cannot be the
reciprocals of σT (x) \ {0}, otherwise σS(x) would be unbounded.

It should be noted that if S is a pseudo-inverse of T ∈ L(X) the SVEP for T
does not entail, in general, the SVEP for S. Indeed, the unilateral left shift L is a
pseudo-inverse of the right shift T , since trivially T = T LT , but T has the SVEP,
while L does not have the SVEP.

Theorem 2.185 Suppose that T ∈ L(X) is Drazin invertible with Drazin inverse
S. If T has the SVEP then for every x ∈ X we have:

σS(x) \ {0} =
{

1

λ
: λ ∈ σT (x) \ {0}

}
. (2.34)

Proof Suppose that T has the SVEP. If 0 /∈ σ(T ) then S = T −1 and the
equality (2.34) follows from part (ii) of Theorem 2.87, applied to the function
f (λ) := 1

λ
. Suppose that 0 ∈ σ(T ). According to the decomposition X = Y ⊕ Z,

T1 := T |Y nilpotent and T2 := RT |Z invertible, the restrictions T1 and T2 have the
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SVEP. If x = y + z, y ∈ Y , z ∈ Z, we then have

σT (x) = σT1(y) ∪ σT2(z),

by Theorem 2.15. The Drazin inverse S := 0 ⊕ S2, with S2 := T −1
2 , has the SVEP,

by Theorem 2.184, so, again by Theorem 2.15, we have

σS(x) = σ0(y) ∪ σT2(z).

Since S2 is the inverse of T2, from the spectral mapping theorem of the local
spectrum applied to the function f (λ) := 1

λ
, we have

σS2(z) =
{

1

λ
: λ ∈ σT2(z)

}
for all z ∈ Z.

Now, in the decomposition x = y + z, y ∈ Y , z ∈ Z, consider first the case y = 0.
Then σT1(y) = ∅ and hence σT (x) = σT2(z) and, analogously, σS(x) = σS2(z).
Therefore,

σS(x) =
{

1

λ
: λ ∈ σT (x)

}
.

Suppose that x = y + z, with y �= 0. Since T1 is nilpotent (and hence has the
SVEP), σT1(y) �= ∅, hence σT1(y) = {0} and analogously, σ0(y) = {0}. Therefore,
σT (x) \ {0} = σT2(z) and σS(x) \ {0} = σS2(z), since T2 and S2 are invertible, from
which we obtain:

σS(x) \ {0} = σS2(z) =
{

1

λ
: λ ∈ σT2(z)

}

=
{

1

λ
: λ ∈ σT (x) \ {0}

}
,

so the proof is complete. �
Note that the right shift considered above has the SVEP, so the SVEP for a

relatively regular operator does not ensure the reciprocal relationship noted for
Drazin invertible operators with SVEP.

The following elementary result will be needed in the sequel.

Lemma 2.186 Suppose that T ∈ L(X) is quasi-nilpotent and F is a closed subset
of C. If 0 ∈ F then XT (F) = X, while XT (F) = {0} if 0 /∈ F .
Proof If T is quasi-nilpotent we have

XT (F) = XT (F ∩ σ(T )) = XT (F ∩ {0}),
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so XT (F) = XT (∅) = {0} if 0 /∈ F , while XT (F) = XT ({0}) = H0(T ) = X, if
0 ∈ F , and T is quasi-nilpotent. �

Property C) is transmitted from a Drazin invertible operator T to its Drazin
inverse S:

Theorem 2.187 Let T ∈ L(X), X a Banach space, be Drazin invertible with
Drazin inverse S. Then T has property (C) if and only if S has property (C).

Proof Suppose that T has property (C) and that it is Drazin invertible. Also here we
can assume, by Lemma 2.183, that 0 ∈ σ(T ). Let X = Y ⊕ Z such that T1 := T |Y
is nilpotent and T2 := T |Z is invertible. For the Drazin inverse S := 0 ⊕ S2 of T ,
with S2 := T −1

2 , we have, by Corollary 2.16,

XS(F) = Y0(F )⊕ ZS2(F ), for every closed F ⊆ C.

Since T has property (C), the restriction T2 = T |Z also has property (C). But T2
is invertible, so S2 = T −1

2 has property (C), by Lemma 2.183, and hence ZS2(F ) is
closed for all closed F ⊆ C. From Lemma 2.186 we know that if 0 /∈ F then the
spectral subspace Y0(F ) of the null operator 0 is {0}, while if 0 ∈ F then Y0(F ) =
X. Hence XS(F) coincides with {0} ⊕ ZS2(F ), if 0 /∈ F , or coincides with X, if
0 ∈ F . In both cases XS(F) is closed, and consequently S has property (C).

Conversely, suppose that S has property (C) and F is a closed subset of C. Then
XS(F) is closed, and as above XS(F) = {0} ⊕ ZS2(F ) if 0 /∈ F , or XS(F) = Y ⊕
ZS2(F ) if 0 ∈ F . This implies thatZS2(F ) is closed, and hence S2 has property (C).
Consequently its inverse T2 has property (C), by Lemma 2.183. Since XT (F) =
YT1(F ) ⊕ ZT2(F ), by Theorem 2.19, and T1 is nilpotent it then follows, again by
Lemma 2.186, that XT (F) is either {0} ⊕ ZT2(F ) (if 0 /∈ F), or is Y ⊕ ZT2(F ) (if
0 ∈ F), so XT (F) is closed for every closed F ⊆ C, thus T has property (C). �

Consider now the case where the singleton set F := {λ}. Recall that since
property (Q) for T entails SVEP then H0(λI − T ) = XT ({λ}) = XT ({λ}).
Lemma 2.188 If T ∈ L(X) has property (Q) and f is an injective analytic
function defined on an open neighbourhoodU of σ(T ), then f (T ) also has property
(Q).

Proof Recall that, by Theorem 2.29, the equality Xf (T )(F ) = XT (f−1(F ))

holds for every closed subset F of C and every analytic function f on an open
neighbourhood U of σ(T ). Now, to show that f (T ) has property (Q), f injective,
we have to prove that H0(λI − f (T )) is closed for every λ ∈ C. If λ /∈ σ(f (T ))
then H0(λI − f (T )) = {0}, while if λ ∈ σ(f (T )) = f (σ(T )), then

H0(λI − f (T )) = Xf (T )({λ}) = XT (f−1{λ}) = H0(μI − T ),

where f (λ) = μ, and, consequently, H0(λI − f (T )) is closed. In particular,
considering the function f (λ) := 1

λ
, we see that if T is invertible and has property

(Q) then its inverse has property (Q). �
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Property (Q) is transmitted to the Drazin inverse:

Theorem 2.189 Let T ∈ L(X), X a Banach space, be Drazin invertible with
Drazin inverse S. Then T has property (Q) if and only if S has property (Q).

Proof Suppose that T is Drazin invertible and has property (Q). We need only
consider the case 0 ∈ σ(T ). Then there exist two closed invariant subspaces Y and
Z of X such that X = Y ⊕ Z, T1 := T |Y is nilpotent, T2 := T |Z is invertible and
the Drazin inverse of T is given by S := 0 ⊕ S2, with S2 := T −1

2 . Since T has the
SVEP, S has the SVEP, by Theorem 2.184, so we have

H0(λI − S) = XS({λ}) = Y0({λ})⊕ ZS2({λ}), for all λ ∈ C.

Moreover, property (Q) for T implies that the restriction T2 = T |Z has property
(Q). Since 0 /∈ σ(T2) then S2 := T2

−1 has property (Q), and hence ZS2({λ}) =
H0(λI − S2) is closed. By Lemma 2.186, the spectral subspace H0(λI) = Y0({λ})
of the null operator 0 is {0} if 0 �= λ, while Y0({λ}) = Y if 0 = λ. Therefore,
XS({λ}) is either {0} ⊕ ZS2({λ}) or Y ⊕ ZS2({λ}), so it is closed, and consequently
S has property (Q).

Conversely, suppose that S = 0 ⊕ S2 has property (Q). Then S2 = S|Z has
property (Q) and hence T2 = S2

−1 has property (Q). From

H0(λI − T ) = H0(λI − T1)⊕H0(λI − T2) = XT1({λ})⊕H0(λI − T2),

we obtain that H0(λI − T ) is either Y ⊕ H0(λI − T2) or {0} ⊕ H0(λI − T2), so
H0(λI − T ) is closed for all λ ∈ C. �

Property (β) is transmitted from a Drazin invertible operator to its Drazin inverse.
Recall that property (β) is inherited by the restriction to closed invariant subspaces,
see [216, Theorem 3.3.6]. Property (β) is also preserved by the functional calculus,
i.e. if T ∈ L(X) has property (β) and f is an analytic function on an open
neighbourhood U of σ(T ), then f (T ) has property (β), see [216, Theorem 3.3.6].
Consequently, if T ∈ L(X) is invertible and has property (β) then T −1 has property
(β). Let H(U,X) denote the space of all analytic functions from U into X. With
respect to pointwise vector space operations and the topology of locally uniform
convergence,H(U,X) is a Fréchet space. For every T ∈ L(X) and every open set
U ⊆ C, define TU : H(U,X)→ H(U,X) by

(TUf )(λ) := (λI − T )f (λ) for all f ∈ H(U,X) and λ ∈ U.

Property (β) for T holds precisely when, for every open set U ⊆ C, the operator TU
has closed range in H(U,X), see Laursen and Neumann [216, Proposition 3.3.5].
Evidently, the restriction of an operator with property (β) to a closed invariant
subspace inherits this property.
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Theorem 2.190 Let T ∈ L(X), X a Banach space, be Drazin invertible with
Drazin inverse S. Then T has property (β) if and only if S has property (β).

Proof Suppose that T has property (β). Also here we may assume 0 ∈ σ(T ). Let
X = Y ⊕ Z, where T1 := T |Y is nilpotent and T2 := T |Z is invertible. Consider
the Drazin inverse of R given by S := 0 ⊕ S2, with S2 := T −1

2 . As noted above, to
show property (β) for S it suffices to prove that the operator (SUf )(λ) := (λI −
S)f (λ) defined on H(U,X), U an open subset of C, has closed range. By a result
of Gleason [153] we can identifyH(U,X) with the direct sumH(U, Y )⊕H(U,Z)
(for a proof, see also [216, Proposition 1.2.2] in the case when U is an open disc,
and [216, Proposition 2.1.4] for the more general case of arbitrary open subsets of
C). The restriction R2 has property (β) and hence S2 := R−1

2 has property (β).
Consequently, the operator S2U defined as

(S2Ug)(λ) := (λI − S2)g(λ) for all g ∈ H(U,Z), λ ∈ U,

has closed range in H(U,Z). Now,

SU [H(U,X)] = (0 ⊕ S2)U [H(U, Y )⊕H(U,Z)]
= 0U [H(U, Y )] ⊕ S2U [H(U,Z)].

Clearly, the operator 0U has closed range in H(U, Y ), since, trivially, the null
operator has property (β). Consequently,SU has closed range inH(U,X) and hence
S has property (β).

Conversely, suppose that S has property (β). Then S2 := S|Z has property (β)
and, consequently, its inverse R2 has property (β) and hence R2U has closed range
in H(U,Z). Since the nilpotent operator R1 has property (β), R1U also has closed
range in H(U, Y ). From the decomposition

RU [H(U,X)] = R1U [H(U, Y )] ⊕ R2U [H(U,Z)],

we then conclude that RU [H(U,X)] is closed, so property (β) holds for R. �
Corollary 2.191 Suppose that T is Drazin invertible with Drazin inverse S. If T
has property (δ) then S has property (δ), and analogously, if T is decomposable
then S is decomposable.

Proof Clearly, from the definition of Drazin invertibility it follows that if T is
Drazin invertible then its dual T ∗ is Drazin invertible, with Drazin inverse S∗. If
T has property (δ) then T ∗ has property (β) and hence, by Theorem 2.190, S∗
also has property (β). By duality this implies that S has property (δ). The second
assertion is clear: if T is decomposable then T has both properties (δ) and (β) and
the same holds for S, by Theorem 2.190 and the first part of the proof. Thus, S is
decomposable. �
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2.13 Comments

An extensive treatment of the role of the local spectral subspaces in the theory of
spectral decomposition may be found in the book of Laursen and Neumann [216].
This book also provides a large variety of examples and applications to several
concrete cases. Lemma 2.4 is due to Benhida and Zerouali [66]. The characterization
of the analytic core of an operator given in Theorem 2.20 is due to Vrbová [293] and
Mbekhta [230].

The concept of a glocal spectral subspace dates back to the early days of local
spectral theory and may be found, for instance, in Bishop [79]. However, the precise
relationship between local spectral subspaces and glocal spectral subspaces has been
established, together with some other basic properties, by Laursen and Neumann
[214]. The result that the glocal spectral subspaces behave canonically under the
functional calculus, established in Theorem 2.29, is due to Bartle and Kariotis
[59], which also showed Theorem 2.30, see also Laursen and Neumann [215].
Theorem 2.30 is due to Vrbová [294]. The equality H0(T ) = XT ({0}) for an
operator having the SVEP may also be found in Mbekhta [230].

The localized SVEP at a point was introduced by Finch [148], and the charac-
terization of the SVEP at a single point λ0 given in Theorem 2.60 is taken from
Aiena and Monsalve [19], while the classical result of Corollary 2.61 is owed to
Finch [148]. Except for Theorem 2.70 and Corollary 2.71, owed to Mbekhta [232],
the source of the results of the second section is essentially that of Aiena et al.
[33, 34]. The relations between the local spectrum and the surjectivity spectrum
established in Theorem 2.21 are taken from Laursen and Vrbová [218] and Vrbová
[293]. The section concerning the localized SVEP for operators having topological
uniform descent is modeled after Jiang and Zhong [191], which extended previous
results concerning the localized SVEP for quasi-Fredholm operators established in
[3]. Theorem 2.104 is taken from [305], while Theorems 2.118 and 2.117 is taken
from [24]. The SVEP on the components of the semi-Fredholm regions was first
studied in Aiena and Villafãne [31]. Successively, this study has been extended to
the components of a Kato-type resolvent in [192], and extended to the components
of a quasi-Fredholm region in [305]. Finally, the SVEP on the components of
the topological uniform descent resolvent, established here in Theorem 2.124 and
Corollary 2.125, has been studied in Jiang et al. [193]. Theorem 2.111 is due to
Schmoeger [273].

The stability of the localized SVEP under commuting Riesz perturbations is due
to Aiena and Muller [20], while the subsequent material concerning the localized
SVEP and quasi-nilpotent equivalence is modeled after Aiena and Neumann [21].
Property (C) was introduced by Dunford and plays a large role in the development
of the theory of spectral operators. In the book by Dunford and Schwartz [143] prop-
erty (C) was one of the three basic conditions used in the abstract characterization
of spectral operators, and another one was the SVEP. The SVEP as a consequence
of property (C) was observed by Laursen and Neumann [214].
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The section concerning property (C) for RS and SR is inspired by the work of
Aiena and Gonzalez [14, 15], and the work of Zeng and Zhong [302]. The spectral
properties and the local spectral properties of operators which satisfy RSR = R2

and SRS = S2 have been investigated by some other authors, see Schmoeger
[283], Duggal [126] and Aiena and Gonzalez [15]. The section concerning the local
spectral theory of Drazin invertible operators is modelled after Aiena and Triolo
[27]. Some of these results have been extended to generalized Drazin invertible
operators, i.e. operators which are either invertible or such that 0 ∈ iso σ(T ), by
Duggal in [128].



Chapter 3
Essential Spectra Under Perturbations

The spectrum of a bounded linear operator on a Banach space X can be sectioned
into subsets in many different ways, depending on the purpose of the inquiry. This
chapter plays a central role in this book, since we establish the relationships between
the various parts of the spectrum. More precisely, we look more closely at some
parts of the spectrum of many bounded linear operators from the viewpoint of
Fredholm theory, and we shall study in detail, by using the localized SVEP, some
of the spectra generated by the classes of operators introduced in the first chapter.
Moreover, we shall give further results concerning the stability of these essential
spectra under commuting perturbations. In this chapter the interaction between the
localized SVEP and Fredholm theory appears in full strength and elegancy: indeed,
many classical results from Fredholm theory may be deduced by using the localized
SVEP.

The first section of this chapter concerns the class of Riesz operators, and
in particular we shall see, by using the stability of the localized SVEP under
Riesz commuting perturbations, that the Browder spectra are invariant under
Riesz commuting perturbations. The second section regards some representation
theorems for Weyl and Browder operators, while the third section is focused on
Drazin invertible operators. The fourth section addresses the class of meromorphic
operators, a class of operators which contains the class of Riesz operators, while
the fifth section concerns the subclass of all algebraic operators. The sixth section is
mainly devoted to the study of Drazin spectra and the relationship of these spectra
with the spectra generated by the B-Fredholm theory.

We also give in this section some other results concerning the spectra of the
products of operators TR andRT of two operatorsR and T . In the following section
we introduce the concept of regularity in order to establish the spectral mapping
theorem for several classes of operators. The eighth section addresses the concept
of the pole of the resolvent, and some generalizations of it, such as the concept of
the left pole or right pole of the resolvent.
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3.1 Weyl, Browder and Riesz Operators

We begin this section by proving several perturbation results concerning the spectra
relative to some important classes of operators in Fredholm theory that have already
been introduced in the first chapter. Recall that a bounded operator T ∈ L(X)

is said to be a Weyl operator, T ∈ W(X), if T is a Fredholm operator having
index 0. The classes of upper semi-Weyl and lower semi-Weyl operators are defined,
respectively, as:

W+(X) := {T ∈ �+(X) : ind T ≤ 0},

and

W−(X) := {T ∈ �−(X) : ind T ≥ 0}.

Clearly,W(X) = W+(X) ∩W−(X). The Weyl spectrum is defined as

σw(T ) := {λ ∈ C : λI − T /∈ W(X)},

the upper semi-Weyl spectrum is defined as

σuw(T ) := {λ ∈ C : λI − T /∈ W+(X)},

and the lower semi-Weyl spectrum is defined as

σlw(T ) := {λ ∈ C : λI − T /∈ W−(X)}.

By duality we have σw(T ) = σw(T
∗),

σuw(T ) = σlw(T
∗) and σlw(T ) = σuw(T

∗).

Let us now consider the following spectra associated with the Browder operators
defined in Chap. 1. The Browder spectrum, defined by

σb(T ) := {λ ∈ C : λI − T /∈ B(X)},

the upper semi-Browder spectrum of T , defined as

σub(T ) := {λ ∈ C : λI − T /∈ B+(X)},

and the lower semi-Browder spectrum of T defined as

σlb(T ) := {λ ∈ C : λI − T /∈ B−(X)}.
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Clearly, every Browder (respectively, upper semi-Browder, lower semi-Browder)
operator T ∈ L(X) is Weyl (respectively, upper semi-Weyl, lower semi-Weyl), by
Theorem 1.22, so

σw(T ) ⊆ σb(T ), σuw(T ) ⊆ σub(T ), σlw(T ) ⊆ σlb(T ).

The operator T := L⊕ R, where R and L are the right unilateral shift and the left
unilateral shift in �2(N), respectively, provides an example of a Weyl operator which
is not Browder. Indeed, T is Fredholm with index indT = indL+ indR = 0, while
0 ∈ σ(T ) = D(0, 1) is not isolated in σ(T ), hence T cannot be Browder.

By duality, we have σb(T ) = σb(T
∗),

σub(T ) = σlb(T
∗) and σlb(T ) = σub(T

∗).

Since σusf (T ) ⊆ σub(T ) and σlsf (T ) ⊆ σlb(T ), Theorem 2.126 also entails that the
semi-Browder spectra are non-empty. These spectra are closed subsets of C, see the
next Corollary 3.42.

We have already observed, in Chap. 2, in the case of a Hilbert space operator
T , that the conjugate linear isometry defined as U : y ∈ H → fy ∈ H ∗, where
fy(x) := (x, y) for all x ∈ H , satisfies the identity

U(λI − T ′) = (λI − T ∗)U for all λ ∈ C,

where as usual T ′ denotes the Hilbert adjoint of T . From this it then easily follows
that

λI − T ∗ ∈ �+(H ∗)⇔ λI − T ′ ∈ �+(H). (3.1)

Theorem 3.1 Let T ∈ L(H), H a Hilbert space. Then σb(T
∗) = σb(T ′) and

σub(T
∗) = σub(T ′) and σlb(T

∗) = σlb(T ′).

Analogously, σw(T
∗) = σw(T ′) and

σuw(T
∗) = σuw(T ′) and σlw(T

∗) = σlw(T ′).

Similar equalities hold for the approximate point spectrum and the surjective
spectrum.

Proof We only prove that λI − T ∗ ∈ B+(H ∗) if and only if λI − T ′ ∈ B+(H).
Suppose that p := p(λI − T ∗) < ∞ and let x ∈ ker (λI − T ′)p+1 be arbitrary.
Then

U(λI − T ′)p+1x = (λI − T ∗)p+1x = 0, (3.2)
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so Ux ∈ ker (λI − T ∗)p+1 = ker (λI − T ∗)p, from which we obtain

(λI − T ∗)pUx = U(λI − T ′)px = 0.

SinceU is injective we then have (λI−T ′)px = 0, so ker (λI−T ′)p+1 ⊆ ker (λI−
T ′)p. Since the opposite inclusion always holds, we then conclude p(λI −T ′) ≤ p.
A similar argument shows that if p(λI − T ′) <∞ then p(λI − T ∗) ≤ p(λI − T ′).
Therefore, p(λI − T ∗) = p(λI − T ′). Taking into account (3.1) we then conclude
that λI − T ∗ ∈ B+(H ∗) if and only if λI − T ′ ∈ B+(H). Hence the first equality
in (3.2) is proved. The other equalities may be shown in a similar way. �

We have already introduced the class of Riesz operators as those operators R ∈
L(X) such that λI − R ∈ �(X) for every λ ∈ C \ {0}. Riesz operators may be
characterized in several ways.

Theorem 3.2 For a bounded operator T on a Banach space the following state-
ments are equivalent:

(i) T is a Riesz operator;
(ii) λI − T ∈ B(X) for all λ ∈ C \ {0};

(iii) λI − T ∈ W(X) for all λ ∈ C \ {0};
(iv) λI − T ∈ B+(X) for all λ ∈ C \ {0};
(v) λI − T ∈ B−(X) for all λ ∈ C \ {0};

(vi) λI − T ∈ �+(X) for all λ ∈ C \ {0};
(vii) λI − T ∈ �−(X) for all λ ∈ C \ {0};

(viii) λI − T is essentially semi-regular for all λ ∈ C \ {0};
(ix) Each spectral point λ �= 0 is isolated and the spectral projection associated

with {λ} is finite-dimensional.
Proof (i) ⇒ (ii) If T is a Riesz operator the topological uniform descent resolvent
has a unique component C \ {0}. By Theorems 2.123 and 2.124 it then follows that
both T and T � have the SVEP at every λ �= 0. Therefore, again by Theorems 2.97
and 2.98, λI − T ∈ B(X) for all λ �= 0.

The implications (ii) ⇒ (iii) ⇒ (i) are clear, so (i), (ii), and (iii) are equivalent.
The implications (ii) ⇒ (iv) ⇒ (vi) ⇒ (viii) and (ii) ⇒ (v) ⇒ (viii) are evident, so
in order to show that all these implications are equivalences we need only to show
that (viii) ⇒ (ii).

(viii) ⇒ (ii) Suppose that (viii) holds. Then the topological uniform descent
resolvent ρk(T ) contains C \ {0}, and hence, by Theorem 2.125, both T and T �

have the SVEP at every λ �= 0. By Theorems 2.97 and 2.98 we then conclude that
λI − T ∈ B(X) for all λ �= 0.

(i) ⇒ (ix) As above, both T and T � have the SVEP at every λ �= 0, so every
non-zero spectral point λ is an isolated point of σ(T ). From Corollary 2.47 it then
follows that the spectral projection associated with {λ} is finite-dimensional.

(ix) ⇒ (ii) If the spectral projection associated with the spectral set {λ} is
finite-dimensional then H0(λI − T ) is finite-dimensional and K(λI − T ) has
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finite codimension, by Theorem 2.45. Hence, by Theorem 2.100, λI − T is
Browder. �

Since every non-zero spectral point of a Riesz operatorT is isolated, the spectrum
σ(T ) of a Riesz operator T ∈ L(X) is a finite set or a sequence of eigenvalues which
converges to 0. Moreover, since λI − T ∈ B(X) for all λ ∈ C \ {0}, every spectral
point λ �= 0 is a pole of R(λ, T ). Clearly, if X is an infinite-dimensional complex
space the spectrum of a Riesz operator T contains at least the point 0. In this case
T ∈ L(X) is a Riesz operator if and only if T̂ := T + K(X) is a quasi-nilpotent
element in the Calkin algebra L̂ := L(X)/K(X). This result is an easy consequence
of the Atkinson characterization of Fredholm operators (see the Appendix A) and in
the literature this result is known as the Ruston characterization of Riesz operators.

Further information on Riesz operators may be found in Aiena [1, Chapter 3
and Chapter 7]. A good treatment of Riesz operator theory may also be found in
Heuser’s book [179] and some generalization of Riesz operators are considered in
the recent book by Jeribi [186].

In the sequel we collect some other basic facts about Riesz operators that will be
used in the rest of the chapter.

Generally, the sum and the product of Riesz operators T , S ∈ L(X) need not be
Riesz. However, the next result shows this is true if we assume T and S commute.

Theorem 3.3 If T , S ∈ L(X) on a Banach space X the following statements
hold:

(i) If T and S are commuting Riesz operators then T + S is a Riesz operator.
(ii) If S commutes with the Riesz operator T then the products T S and ST are

Riesz operators.
(iii) The limit of a uniformly convergent sequence of commuting Riesz operators is

a Riesz operator.
(iv) If T is a Riesz operator and K ∈ K(X) then T +K is a Riesz operator.

Proof If T and S commute, the equivalences classes T̂ and Ŝ commute in L̂, so (i),
(ii), and (iii) easily follow from the Ruston characterization of Riesz operators and
from the well-known spectral radius formulas

r(T̂ + Ŝ) ≤ r(T̂ )+ r(Ŝ) and r(T̂ Ŝ) ≤ r(T̂ )r(Ŝ).

The assertion (iv) is obvious, again by the Ruston characterization of Riesz
operators. �

It should be noted that in part (i) and part (ii) of Theorem 3.3 the assumption
that T and S commute may be relaxed into the weaker assumption that T and S
commute moduloK(X), i.e., T S − ST ∈ K(X).
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Theorem 3.4 Let T ∈ L(X) and suppose f ∈ H(σ (T )) does not vanish on σ(T )\
{0}. Then we have:
(i) If T is a Riesz operator and f (0) = 0 then f (T ) is a Riesz operator.

(ii) If f (T ) is a Riesz operator and f ∈ H(σ (T ) does not vanish on σ(T )\{0} then
T is a Riesz operator. In particular, if T n is a Riesz operator for some n ∈ N

then T is a Riesz operator.

Proof

(i) Suppose that T is a Riesz operator. Since f (0) = 0 there exists an analytic
function g on a neighborhood of σ(T ) such that f (λ) = λg(λ). Hence f (T ) =
Tg(T ) and since T and g(T ) commute it then follows that f (T ) is a Riesz
operator.

(ii) Assume that f (T ) is a Riesz operator and f vanishes only at 0. Then there
exist an analytic function g on a neighborhood of σ(T ) and n ∈ N such that
f (λ) = λng(λ) holds on the set of definition of f and g(λ) �= 0. Hence f (T ) =
T ng(T ) and g(T ) is invertible. The operators f (T ) and g(T )−1 commute, so,
by part (ii) of Theorem 3.3, T n = f (T )g(T )−1 is a Riesz operator. Hence T n

is quasi-nilpotent moduloK(X) and from this it easily follows that T is quasi-
nilpotent modulo K(X). By the Ruston characterization we then conclude that
T is a Riesz operator. �

Let T ∈ L(X) and M a closed T -invariant subspace of X. Denote by T |M the
restriction of T to M and by T̂M : X/M → X/M the operator induced by T ,
defined as T̂Mx̂ := T̂ x, for every x̂ := x +M .

Lemma 3.5 Let T ∈ L(X) and suppose that M is a closed T -invariant subspace
of X.

(i) If T is invertible then T |M is bounded below and T̂M is onto.
(ii) If T ∈ �(X) then T |M ∈ �+(M) and T̂M ∈ �−(X/M).

Proof The assertion (i) is easy to see. Suppose that T ∈ �(x). Since ker T |M =
ker T ∩ M , we have α(T |M) < ∞. Define T̃ : x| ker T → T (X) by F̃ (x +
ker T ) = T x. Since T (X) is closed and T̃ is injective, T̃ is an open map, by the
open mapping theorem. Hence T̃ (N+ker T ) = T (M) is closed, thus T |M is upper
semi-Fredholm.

To show that T̂M ∈ �−(X/M), observe first that since T (X) has finite
codimension, there exists a finite-dimensional subspace W of X such that X =
T (X)⊕W . Then

T̂M(X/M)+ (M +W)/M = (T (X)+M +W)/M = X/M.

Therefore, β(T̂M) <∞ and hence T̂M is lower semi-Fredholm. �
Remark 3.6 The result of Lemma 3.5 cannot, in general, be improved, in the sense
that T is Fredholm does not imply that T |M ∈ �(M) and T̂M ∈ �(X/M). For
instance, suppose that H is an infinite-dimensional Hilbert space, and let R and L
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denote the right shift and the left shift on the Hilbert space Y := �2(H). Denote by
P the projection

P(x1, x2, . . . ) := (x1, 0, 0, . . . ) for all (xn) ∈ �2(H).

It is straightforward to check that

LR = I, RL = I − P, LP = 0, and PR = 0.

Let X = Y ⊕X and define the operator matrix T :=
(
R P

0 L

)
. Then T is invertible

with inverse T −1 :=
(
L 0
P R

)
. Thus, T ∈ �(X) but neither R and L are Fredholm.

Taking M := Y ⊕ 0, we have, as is easy to check, that T |M is similar to R, while
T̂M is similar to L, from which we conclude that neither T |M nor T̂M are Fredholm.

The property of being a Riesz operator is inherited by the restrictions on closed
invariant subspaces:

Theorem 3.7 Let R ∈ L(X) be a Riesz operator. Then we have
(i) IfM is a closed R-invariant subspace of R then R|M and R̂M are Riesz.

(ii) The dual R∗ is a Riesz operator. Conversely, if R∗ is Riesz then R is Riesz.

Proof

(i) If R is Riesz then λI −R ∈ �(X) for all λ �= 0. By Lemma 3.5, (λI −R)|M ∈
�+(M) for all λ �= 0. By Theorem 3.2 then T |M is Riesz. Analogously, by
Lemma 3.5, λÎM − R̂M ∈ �−(X/M) for all λ �= 0, so, by Theorem 3.2, R̂M is
Riesz.

(ii) IfR is a Riesz operator then λI−R ∈ �(X) for all λ �= 0. Therefore λI∗−R∗ ∈
�(X∗) for all λ �= 0, so R∗ is Riesz. Conversely, if R∗ is a Riesz operator, by
what we have just proved the bi-dual R∗∗ is also a Riesz operator. Since the
restriction of R∗∗ to the closed subspace X of X∗∗ is R, it follows from part (i)
that R itself must be a Riesz operator. �

We now turn to the stability of semi-Browder spectra under commuting Riesz
perturbations.

Theorem 3.8 Let T ∈ L(X) and R be a Riesz operator such that T R = RT . Then
we have:

(i) T ∈ B+(X)⇔ T + R ∈ B+(X).
(ii) T ∈ B−(X)⇔ T + R ∈ B+(X).

(iii) T ∈ B(X) ⇔ T + R ∈ B(X).
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Proof

(i) If T is upper semi-Browder then p(T ) < ∞ and this is equivalent to saying
that T has the SVEP at 0, by Theorem 2.97. By Theorem 2.129 it then follows
that T + R has the SVEP at 0, and since T + R is upper semi-Fredholm,
p(T +R) <∞, again by Theorem 2.97, so T +R is upper semi-Browder. The
converse follows by symmetry.

(ii) The proof is analogous to that of part (i). Let T be lower semi-Browder, so
q(T ) < ∞ and this is equivalent to saying that T ∗ has the SVEP at 0, by
Theorem 2.98. The dual of a Riesz operator is also Riesz. By Theorem 2.129 it
then follows that T ∗ + R∗ has the SVEP at 0, and since T + R is lower semi-
Fredholm it then follows that q(T +R) <∞, so T +R is lower semi-Browder.

(iii) Clear.

Corollary 3.9 The Browder spectra σub(T ), σlb(T ), and σb(T ) are stable under
commuting Riesz perturbations.

The following example shows that the assumption that the perturbation R
commutes with T in Theorem 3.8, and Corollary 3.9, cannot be dropped, even in
the case when R is finite-dimensional.

Example 3.10 Let H be a Hilbert space with an orthonormal basis (ek)∞k=−∞ and
consider the bilateral shift defined by T ek = ek+1. Let K be the one-dimensional
operator defined by Kx = (x, e0)e1. Then T − K has infinite descent, so 0 ∈
σlb(T −K), while 0 /∈ σlb(T ).

In the particular case of bounded below, or surjective, operators we can say
something more:

Theorem 3.11 Suppose that T ∈ L(X) and R ∈ L(X) is a Riesz operator
commuting with T . Then

(i) If T is bounded below then T + R ∈ B+(X). Moreover,

T (ker (T + R)n) = ker (T + R)n for all n ∈ N.

(ii) If T is onto then T + R ∈ B−(X). Moreover,

T −1((T + R)n(X)) = (T + R)n(X) for all n ∈ N.

Proof

(i) The first assertion is clear by Theorem 3.8, since T ∈ B+(X).
Define S := T + R. We have Sn ∈ �+(X) for every n ∈ N, so ker Sn is

finite-dimensional. If x ∈ ker Sn then T x ∈ ker Sn, since

(T + R)nT x = T (T + R)nx = 0,
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hence ker Sn is T -invariant. Furthermore, the restriction of T to ker Sn is
injective, since T is bounded below, so T maps ker Sn onto itself.

(ii) The first assertion is clear by Theorem 3.8, since T ∈ B−(X).
Let S := T + R. Then Sn ∈ �−(X) for every n ∈ N, so codimSn(X) =

dimX/Sn(X) < ∞. Consider the map T̂ : X/Sn(X) → X/Sn(X) induced by
T , defined by T̂ x̂ := T̂ x for all x̂ := x + Sn(X). Since T is onto, for every
y ∈ X there exists an element z ∈ X such that y = T z, and therefore, ŷ = T̂ ẑ.
Hence T̂ is onto. Since X/Sn(X) is finite-dimensional it then follows that T̂
is also injective, and this implies that T x ∈ Sn(X) if and only if x ∈ Sn(X).
Consequently, T −1(Sn(X)) = Sn(X). �

The class of essentially semi-regular operators, which properly contains the class
of semi-Browder operators, is also stable under Riesz commuting perturbations:

Theorem 3.12 Suppose that T ,R ∈ L(X) commutes. If T is essentially semi-
regular and R is a Riesz operator, then T + R is essentially semi-regular.

Proof We know, by Theorems 1.63 and 1.64, that the hyper-range T∞(X) is closed.
Set T̂ := T |T∞(X) and denote by T̃ : X/T∞(X) → X/T∞(X) the operator
induced by T . Observe that T R = RT entails that R(T∞(X)) ⊆ T∞(X),
so T∞(X) is both T -invariant and R-invariant. Since T has topological uniform
descent, by Corollary 1.83, it then follows, by Theorem 1.79, that T̂ is onto. The
restriction R̂ := R|T∞(X) is Riesz, and since T̂ R̂ = R̂T̂ , from Theorem 3.11
we deduce that T̂ + R̂ is lower semi-Browder. Now, let T̃ and R̃ denote the induced
mappings onX/T∞(X), by T andR, respectively. From Lemma 1.66 we know that
T̃ is upper semi-Browder, R̃ is Riesz and R̃T̃ = T̃ R̃, thus, by Theorem 3.8, T̃ + R̃
is upper semi-Browder. By Theorem 1.67, applied to T + R, we then conclude that
T + R is essentially semi-regular. �
Theorem 3.13 Let T ∈ L(X) be essentially semi-regular. Then there exists an ε >
0 such that T + S is essentially semi-regular for every S ∈ L(X) which commutes
with T having norm ‖S‖ < ε.
Proof If M := T∞(X), then M is closed and T (M) = M . By Lemma 1.66,
the induced operator T̃ : X/M → X/M is upper semi-Browder. Suppose that
S commutes with T and S has norm small enough. Then M is invariant under S,

(T + S)(M) = M and the operator induced ˜(T + S) = T̃ + S̃ is upper semi-
Browder, hence T + S is essentially semi-regular, by Theorem 1.67. �

Denote by

σes(T ) := {λ ∈ C : λI − T is not essentially semi-regular}

the essentially semi-regular spectrum. Obviously, σes(T ) is a subset of the semi-
regular spectrum σse(T ). Further, since every Fredholm operator is essentially semi-
regular, σes(T ) ⊆ σe(T ).
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Denote by K(X) and F(X) the two-sided ideals in L(X) of all compact operators
and all finite-dimensional continuous operators on the Banach spaceX, respectively.
If R(X) denotes the set of all Riesz operators we have

F(X) ⊆ K(X) ⊆ R(X).

It is well-known that K(X) is closed in L(X).

Theorem 3.14 Let T ∈ L(X).
(i) σes(T ) is a non-empty compact subset. In particular, σes(T ) contains the

boundary of the essential spectrum σe(T ).
(ii) If R ∈ L(X) is a commuting Riesz operator then σes(T ) is invariant under R,

i.e., σes(T ) = σes(T + R).
(iii) We have

σes(T ) =
⋂

F∈F(X),FT=T F
σse(T + F)

=
⋂

R∈R(X),RT=T R
σse(T + R).

Proof

(i) σes(T ) is closed, by Theorem 3.13. We show now that the boundary ∂σe(T )

is contained in σes(T ), from which it follows that σes(T ) is non-empty. Let
λ ∈ ∂σe(T ) and suppose that λ /∈ σes(T ). Then λI − T has closed range,
since λI − T is essentially semi-regular, and hence there exist two invariant
closed subspace M , N such that X = M ⊕ N , dimN < ∞, (λI − T )|M
is semi-regular and (λI − T )|N is nilpotent. Choose a sequence (λn) which
converges at λ and such that λn /∈ σe(T ) for all n ∈ N. Then λnI − T

is Fredholm and hence ker (λnI − T )|M is finite-dimensional, because it is
contained in ker(λnI−T ). Since (λI−T )|M is semi-regular we then have that
dim ker ((λI−T )|M) <∞, from which we conclude that dim ker (λI−T ) <
∞. In a similar way it is possible to prove that codim (λI − T ) < ∞, so
λI − T ∈ �(X), and hence λ /∈ σe(T ), a contradiction.

(ii) By Theorem 3.12 we have σes(T + R) ⊆ σes(T ) and by symmetry σes(T ) =
σes((T + R)− R) ⊆ σes(T + R).

(iii) We show first the inclusion

⋂
F∈F(X),FT=T F

σse(T + F) ⊆ σes(T ).

Let λ /∈ σes(T ). There is no harm if we suppose λ = 0. Then T is essentially
semi-regular, so there exists a decompositionX =M ⊕N such that dim N <
∞, T |M is semi-regular and T |N is nilpotent. Let F := 0⊕IN , IN the operator
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identity on N . Clearly, F ∈ F(X), T F = FT , and T + F(X) is closed. Since
T |N is nilpotent we have

ker (T + F) = ker T |M ⊆ (T |M)∞(M) ⊆ (T |M)∞(M)⊕N
= (T + F)∞(X),

thus T + F is semi-regular and hence

0 /∈
⋂

F∈F(X),FT=T F
σse(T + F),

and consequently

⋂
F∈F(X),FT=T F

σse(T + F) ⊆ σes(T ).

The inclusion

⋂
R∈R(X),RT=T R

σse(T + R) ⊆
⋂

F∈F(X),FT=T F
σse(T + R)

is evident. To conclude the proof, let

λ /∈
⋂

R∈R(X),RT=T R
σse(T + R).

Then there exists an R ∈ R(X), which commutes with T , such that λI −
(T + R) is semi-regular. Adding R, by Theorem 3.12 we then deduce that
λI − T = λI − (T + R) + R is essentially semi-regular, so λ /∈ σes(T ), and
the proof is complete. �

The stability result observed in Theorem 3.14 for σes(T ) does not hold for the
semi-regular spectrum. For instance, consider the identity I in a Hilbert space and
letK denote a one-dimensional orthogonal projection. Then 0 ∈ σse(I −K), while,
obviously, 0 /∈ σse(I).

As a simple consequence of Theorem 3.14 we obtain the following characteriza-
tion of Riesz operators:

Corollary 3.15 Let S ∈ L(X). Then the following statements are equivalent:
(i) S is a Riesz operator,

(ii) σes(T + S) = σes(T ) for all T ∈ L(X) such that T S = ST .
Proof (i) ⇒ (ii) has been proved in Theorem 3.14. To show (ii) ⇒ (i), take T = 0.
Then σes(S) = σes(0) = {0}. From part (i) of Theorem 3.14 we then have σe(S) =
{0}, thus S is a Riesz operator. �
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Essentially semi-regular operators having finite ascent, or finite descent, are also
stable under Riesz commuting perturbations:

Theorem 3.16 Let T ∈ L(X) be essentially semi-regular and R ∈ L(X) a Riesz
operator commuting with T . Then

(i) T has finite ascent if and only if T + R has finite ascent.
(ii) T has finite descent if and only if T + R has finite descent.

Proof (i) Suppose that T has finite ascent and R is a Riesz operator commuting
with T . We know, by Theorem 2.97, that the condition p(T ) <∞ entails that T has
the SVEP at 0. Hence T + R has the SVEP at 0, by Theorem 2.129. But T + R is
essentially semi-regular, by Theorem 3.12, and in particular has topological uniform
descent. The SVEP of T +R at 0 is then equivalent to saying that p(T + R) <∞,
by Theorem 2.97. The converse may be obtained by symmetry from the equality
p(T ) = p((T + R)− R) = p(T + R), since T + R commutes with R.

The proof of part (ii) is analogous: if T has finite descent and R is Riesz, then
T ∗ has the SVEP at 0, hence, by Theorem 2.129, T ∗ +R∗ has the SVEP at 0, since
R∗ is a Riesz operator, and R∗ commutes with T ∗. Now, T +R is essentially semi-
regular, again by Theorem 3.12, and hence T ∗ + R∗ is essentially semi-regular,
in particular it has topological uniform descent. The SVEP of T ∗ + R∗ at 0 then
implies, by Theorem 2.97, that q(T + R) < ∞. The converse may be obtained
again by symmetry. �

To show the invariance of the semi-Fredholm spectra and Weyl spectra under
Riesz commuting perturbations we shall use the Sadovskii/Buoni, Harte, Wickstead
construction, already introduced in Chap. 2.

Recall that if T̃ : X̃ → X̃ is defined by

T̃ (̃x +m(X)) := T∞x̃ +m(X) for all x̃ ∈ X̃,

then

T ∈ �+(X) ⇔ T̃ is injective ⇔ T̃ is bounded below;

while

T ∈ �−(X) ⇔ T̃ is onto;

and

T ∈ �(X) ⇔ T̃ is invertible.

Theorem 3.17 Let T ∈ L(X) and R be a Riesz operator such that T R = RT .
Then we have:

(i) T ∈ W(X) ⇔ T + R ∈ W+(X).
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(ii) T ∈ W+(X)⇔ T + R ∈ W+(X).
(iii) T ∈ W−(X)⇔ T + R ∈ W(X).

Analogous statements hold for the classes �+(X), �−(X) and�(X).

Proof (i) IfR is Riesz then λI−R ∈ B(X) for all λ �= 0, hence R̃ is quasi-nilpotent,

from (c) above. Let μ ∈ [0, 1]. Since T and μR commutes, we have ˜(T + μR) =
T̃ +μR̃. It then follows that T̃ and T̃ +μR̃ are quasi-nilpotent equivalent for allμ ∈
[0, 1], so, by Theorem 2.143, ˜(T + μR) is invertible if and only if T̃ is invertible.
Hence, T ∈ �(X) if and only if T + R ∈ �(X). The Fredholm index being a
continuous function, it then follows that T ∈ W(X) if and only if T + R ∈ W(X).
The other statements may be proved in a similar way. �
Corollary 3.18 The Weyl spectra σuw(T ), σlw(T ), σw(T ), the semi-Fredholm
spectra σusf(T ), σlsf(T ), and the essential spectrum σe(T ) are stable under Riesz
commuting perturbations.

We now consider some other perturbation results concerning the whole spectrum.
A well-known consequence of the Gelfand theory for commutative Banach algebras
is that:

σ(T + S) ⊆ σ(T )+ σ(S) for all T , S ∈ L(X) with T S = ST ,

see for instance Theorem 11.23 of Rudin [269]. The following simple example
shows that the spectrum in general is not stable under a commuting Riesz perturba-
tion K , even in the case when K is finite-dimensional.

Example 3.19 Let T := P ∈ L(X), X an infinite-dimensional Banach space and
P a non-zero projection with finite-dimensional range. Set K := 2P . Then both P
and I − P are not injective, so σ(T ) = {0, 1}. On the other hand, σ(T + K) =
σ(3P) = {0, 3} �= σ(T ).

The previous example shows that the isolated points of the two sets σ(T ) and
σ(T +K) may be different. This is not true for the sets of accumulation points.

Theorem 3.20 Suppose that T ,K ∈ L(X) commutes. If Kn is a finite rank
operator for some natural n ∈ N then accσ(T +K) = acc σ(T ).

Proof Suppose that λ0 /∈ acc σ(T ). Then there exists an ε > 0 such that μI − T
is invertible for all |μ − λ0| < ε. Denote by D(λ0, ε) the open disc centered at λ0
with radius ε. Let μ0 ∈ D(λ0, ε) \ {λ0} and assume that μ0 ∈ σ(T + K). Since
μ0I − T is invertible, there exists an operator S ∈ L(X) such that S(μ0I − T ) =
(μ0I − T ) = I . It is easily seen that μ0 is an eigenvalue of T + K . Indeed, if
α(μ0I − (T +K)) = 0 then μ0I − (T +K) is Weyl, since μ0I − T is invertible,
and hence

α(μ0I − (T +K)) = β(μ0I − (T +K)) = 0,

thus μ0 /∈ σ(T +K), a contradiction.
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Therefore, ker (μ0I − (T + K)) �= {0}. Let x �= 0 be an arbitrary eigenvector
relative a μ0, i.e., (μ0I − (T +K))x = 0. Then

0 = [S(μ0I − (T +K))]x = S(μ0I − T )x − SKx = x − SKx,

thus x = SKx. Since SK = KS it then follows that

x = SKSK = S2K2x = · · · = SnKnx.

If Z := SnKn(X) then x ∈ Z. It is well known that eigenvectors relative to distinct
eigenvalues are linearly independent. But Z is a finite-dimensional subspace, since
Kn(X) is finite-dimensional, and consequently only finite many points of σ(T +K)
may be contained inD(λ0, ε)\{λ0}, so λ0 /∈ acc σ(T +K). This prove the inclusion
accσ(T +K) ⊆ accσ(T ). Since T +K commutes with K , by symmetry, we have

accσ(T ) = accσ [(T +K)−K] ⊆ accσ(T ),

and hence the proof is complete. �
In Example 3.19 we have 3 ∈ iso σ(T + K) while 3 /∈ iso σ(T ). The next

corollary shows that isolated points of σ(T +K) which belong to σ(T ) are isolated
points of σ(T +K).
Corollary 3.21 Suppose that T ,K ∈ L(X) commutes, and Kn is a finite rank
operator for some n ∈ N. Then iso σ(T +K) ∩ σ(T ) ⊆ iso σ(T ).

Proof Let λ ∈ iso σ(T + K) ∩ σ(T ) and suppose that λ /∈ iso σ(T ). Then λ ∈
accσ(T ) = accσ(T +K), a contradiction. Hence λ ∈ iso σ(T ). �

Since for every operator T ∈ L(X) we have, trivially, σ(T ) = iso σ(T ) ∪
accσ(T ), from Theorem 3.20 we immediately have:

Corollary 3.22 Suppose that T ,K ∈ L(X) commutes, and Kn is a finite rank
operator for some n ∈ N. Then σ(T + K) = σ(T ) if and only if iso σ(T + K) =
iso σ(T ).

In order to give further information about the approximate point spectrum
of sums of operators we need to introduce the Berberian–Quisley extension for
operators on Banach spaces. Given a non-trivial complex Banach space X, denote
by c0(X) the subspace of all sequences of X which converge to 0. Denote by X
the quotient �∞(X)/c0(X), endowed with the quotient canonical norm. Then X
is a Banach space and X may be isometrically embedded into X. Every operator
T ∈ L(X) defines, by componentwise action, an operator on �∞(X) which has
as invariant subspace c0(X), and consequently T induces an operator T ∈ L(X).
It is evident that T is an extension of T , when X is regarded as a subspace
of X. Moreover, the mapping T ∈ L(X) → T ∈ L(X) is an isometric
algebra isomorphism. The Berberian–Quisley extension has an important property:
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it converts points of σap(T ) into eigenvalues of T, i.e.

σap(T ) = σap(T) = σp(T ) for all T ∈ L(X),

see Choi and Davis [93].

Theorem 3.23 Suppose that T , S ∈ L(X) commutes. Then

σap(T + S) ⊆ σap(T )+ σap(S) and σs(T + S) ⊆ σs(T )+ σs(S).

Proof Let λ ∈ σap(T + S) and set Z := ker(λI − (T + S)). Evidently, Z is non-
zero and TS = ST, so that Z is invariant under T and σap(T|Z) is non-empty and
S|Z = λ(I − T)|Z. Choosing μ ∈ σap(T|Z), we then obtain λ− μ ∈ σap(S|Z), and
hence

λ = μ+ (λ− μ) ∈ σap(T)+ σap(S) = σap(T )+ σap(S).

This proves the first inclusion, while the second one may be obtained by duality. �
Corollary 3.24 Suppose that T ∈ L(X) and Q is a quasi-nilpotent operator
commuting with T . Then σap(T ) = σap(T +Q) and σs(T ) = σs(T +Q).
Proof From Theorem 3.23 we know that

σap(T +Q) ⊆ σap(T )+ {0} = σap(T ).

The opposite inclusion is obtained by symmetry:

σap(T ) = σap(T +Q−Q) ⊆ σap(T +Q).

The equality σs(T ) = σs(T +Q) follows by duality. �
We now show that the semi-regular spectrum σse(T ) and the essentially semi-

regular spectrum σes(T ) are invariant under commuting quasi-nilpotent perturba-
tions. Recall that for every T ∈ L(X) the spectral radius formula r(T ) :=
limn→∞ ‖T n‖ 1

n holds.

Theorem 3.25 Suppose that T ∈ L(X) and Q is a quasi-nilpotent operator
commuting with T . Then

σse(T ) = σse(T +Q) and σes(T ) = σes(T +Q).

Proof Suppose that λ /∈ σse(T ). We may assume that λ = 0. Set M := T∞(X).
Since T and Q commute, Q(M) ⊆ M . Denote by T̃ : X|M → X/M and
Q̃ : X/M → X/M the operators induced by T and Q, respectively. From the
spectral radius formula we see that the restrictionQ|M is a quasi-nilpotent operator
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commuting with T |M , while Q̃ is a quasi-nilpotent operator which commutes with
T̃ . Now, by Theorem 1.45, T |M is onto and T̃ is bounded below. By Corollary 3.24,
then λ /∈ σs(T |M) = σs(T |M +Q|M), thus (T +Q)|M = T |M +Q|M is onto.
Again by Corollary 3.24, we have λ /∈ σap(T̃ ) = σap(T̃ + Q̃), so T̃ + Q̃ is bounded
below. Theorem 1.45 then yields that T+Q is semi-regular, i.e., λ /∈ σse(T+Q), and
hence σse(T + Q) ⊆ σse(T ). A symmetric argument shows the reverse inclusion,
thus the first equality is proved.

The second equality easily follows from Theorem 3.12.
�

The approximate point spectrum in general is not stable under finite-rank
perturbations commuting with T . The operator T considered in Example 3.19 shows
that the isolated points of σap(T ) and σap(T + K) can be different. Indeed, in this
case we have σap(T ) = σ(P ) = {0, 1}, while σap (T + K) = {0, 3}. By duality, it
then follows that σs(T ) is also not stable under finite-rank perturbations commuting
with T . However, we have:

Theorem 3.26 Suppose that T ,K ∈ L(X) commute, and Kn is a finite rank
operator for some n ∈ N. Then we have

(i) accσap(T ) = accσap(T +K).
(ii) accσs(T ) = accσs(T +K).
Proof Let λ0 /∈ accσap(T +K) and assume that λ0 ∈ acc σap(T ). Then there exists
a sequence (λj ) ⊆ σap(T ) which converges to λ0. We may assume that λi �= λj for
i �= j , and since λ0 /∈ accσap(T + K) we may also assume that λj I − (T + K)
is bounded below for all j ∈ N. Consequently, λj I − (T + K) − K = λj I − T
is upper semi-Browder, by Theorem 3.11, and hence has closed range. Note that
0 < α(λj I −T ) <∞, otherwise if α(λj I −T ) = 0 we would have that λj I −T is
bounded below, hence λj /∈ σap(T ). Denote now byKj the restrictionK| ker (λj I−
T ). The operatorKj is injective. Indeed, if Kjx = 0 with x ∈ ker (λj I − T ), then
(λj I − (T + K))x = 0 and this implies that x = 0, because λj I − (T + K) is
injective. Since ker (λj I − T ) is finite-dimensional it then follows that Kj is also
onto, i.e.,

ker (λj I − T ) = Kj (ker (λj I − T )) for every j ∈ N.

From this it easily follows that

ker (λj I − T ) = Kjn[ker (λj I − T )] for every j ∈ N.

In particular, ker (λj I − T ) is contained in the range of Kjn, and hence

ker (λj I − T ) ⊆ Kn(X) for all j ∈ N. (3.3)
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Let 0 �= xj ∈ ker (λj I − T ) with j ∈ N. From the inclusion (3.3) we see that all the
vectors xj belong to Kn(X) for every j ∈ N. Since eigenvectors relative to distinct
eigenvalues are linearly independent we then conclude that Kn(X) has infinite
dimension, a contradiction. Hence, λ0 /∈ accσap(T ). This proves the inclusion
accσap(T ) ⊆ accσap(T +K). By symmetry we then obtain

accσap(T +K) = acc σap[(T +K)−K] = acc σap(T ),

and hence accσap (T +K) = accσap (T ).
(ii) Since K∗n is finite-dimensional, by duality and part (i) we obtain

accσs(T ) = accσap(T
∗) = acc σap(T

∗ +K∗) = accσs(T +K),

so the proof is complete. �
Theorem 3.27 Suppose that T ,K ∈ L(X) commute, and Kn is a finite rank
operator for some n ∈ N. Then σap(T+K) = σap(T ) if and only if iso σap(T +K) =
iso σap(T ). In this case we also have σ(T +K) = σ(T ).
Proof Trivially, σap(T + K) = σap(T ) implies iso σap(T + K) = iso σap(T ).
Conversely, assume that iso σap(T + K) = iso σap(T ). Then, by Theorem 3.26,
we have

σap(T +K) = iso σap(T +K) ∪ accσap(T +K) = iso σap(T ) ∪ accσap(T )

= σap(T ).

To show that σ(T ) = σ(T + K), observe first that if λ ∈ iso σ(T ), then λ ∈
σap(T ) and hence, λ ∈ iso σap(T ) = iso σap(T +K). Therefore, taking into account
Theorem 3.20, we have

σ(T ) = iso σ(T ) ∪ accσ(T ) ⊆ iso σap(T ) ∪ accσ(T )

= iso σap(T +K) ∪ accσ(T +K) ⊆ σap(T +K) ∪ accσ(T +K)
⊆ σ(T +K).

Since K commutes with T +K , a symmetric argument shows that

σ(T +K) ⊆ σ((T +K)−K) = σ(T ).

Therefore, σ(T ) = σ(T +K).
�
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Every isolated point of σap(T + K) which belongs to σap(T ) is necessarily an
isolated point of σap(T ):

Corollary 3.28 Suppose that T ,K ∈ L(X) commute, and Kn is a finite rank
operator for some n ∈ N. Then iso σap(T +K) ∩ σap(T ) ⊆ iso σap(T ).

Proof Let λ ∈ iso σap(T + K) ∩ σap(T ) and suppose that λ /∈ iso σap(T ). Since
λ ∈ σap(T ) it then follows that λ ∈ accσap(T ) = accσap(T +K), a contradiction.
Hence λ ∈ iso σap(T ). �

The equality σap(T ) = σap(T +K) for a commuting finite-dimensional operator
K is satisfied in a very particular case:

Theorem 3.29 Let T ,K ∈ L(X) be commuting operators and suppose that
iso σap(T ) = ∅. If Kn is a finite rank operator for some n ∈ N, then σap(T ) =
σap(T +K).
Proof We have

σap(T ) = iso σap (T ) ∪ accσap (T ) = acc σap (T )

= acc σap (T +K) ⊆ σap(T +K).

Now σ(K), and hence also σap(K), is a finite set, for instance σap(K) =
{λ1, λ2, . . . λn}. Then we have, by using Theorem 3.23,

iso σap(T +K) ⊆ iso (σap(T )+ σap(K)) = iso (
n⋃
k=1

(λk + σap(T )) = ∅,

thus, since iso σap(T ) = ∅,

σap(T +K) = iso σap(T +K) ∪ accσap(T +K) = accσap(T +K)
= accσap(T ) ∪ iso σap(T ) = σap(T ).

�
The condition iso σap (T ) = ∅ is satisfied by every non-quasi-nilpotent unilateral

right shift T on �p(N), with 1 ≤ p <∞, see [216, Proposition 1.6.15].
We conclude this section by establishing some relationships between the cluster

points of σse(T ), and the essential spectrum σe(T ). We start with a preliminary
lemma.

Theorem 3.30 Let T ∈ L(X). Then we have:

σse(T ) ∪ ρe(T ) ⊆ σp(T ) ∪ σp(T
∗), (3.4)
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and

acc σse(T ) ⊆ σe(T ), (3.5)

and

∂σ(T ) \ σe(T ) ⊆ iso σ(T ). (3.6)

Furthermore,

(i) If T has the SVEP then acc σap(T ) ⊆ σe(T ).
(ii) If T ∗ has the SVEP then acc σs(T ) ⊆ σe(T ).

Proof Evidently, σap(T ) ∪ ρe(T ) ⊆ σp(T ), and hence

σs(T ) ∪ ρe(T ) = σap(T
∗) ∪ ρe(T

∗) ⊆ σp(T
∗).

Since σse(T ) ⊆ σap(T ) ∩ σs(T ), the inclusion (3.4) follows.
To show (3.4), let λ ∈ ρe(T ). Since every Fredholm operator is of Kato-type,

by Theorem 1.65 there exists an open disc D(λ, ε) for which σse(T ) ∩ D(λ, ε) ⊆
{λ}. This shows that every point of σse(T ) ∩ ρe(T ) is isolated in σse(T ), thus
the inclusion (3.5) holds. The assertions (i) and (ii) are now immediate from
Theorem 2.68, since the SVEP for T entails σap(T ) = σse(T ), while the SVEP
for T ∗ entails that σs(T ) = σse(T ). The inclusion (3.6) is clear: both T and T ∗ have
the SVEP at the points λ ∈ ∂σ(T ), so, if λI − T ∈ �(X), then, by Corollary 2.99,
0 is a pole and hence an isolated point of σ(T ). �

A simple consequence of Theorem 3.30 is the following result.

Corollary 3.31 If T ∈ L(X) has no eigenvalues then

σse(T ) = σσe(T ) = σap(T ), (3.7)

while

σ(T ) = σw(T ). (3.8)

Proof Immediate, since from Theorems 3.30 and 2.68, σp(T ) = ∅ and T has the
SVEP. �
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3.2 Representation Theorems for Weyl and Browder
Operators

This section addresses some characterizations of Weyl and Browder operators. The
first simple characterization describes the semi-Browder operators in terms of the
hyper-kernels or hyper-ranges.

Theorem 3.32 If T ∈ L(X) the following equivalences hold:
(i) T ∈ B+(X) if and only if T (X) is closed and dimN∞(T ) <∞.

(ii) T ∈ B−(X) if and only if codimT∞(X) <∞.
(i) T ∈ B(X) if and only if dimN∞(T ) <∞ and codimT∞(X) <∞.

Proof

(i) If T ∈ B+(X) then the ascent p := p(T ) < ∞ and T (X) is closed. Clearly,
N∞(T ) = ker T p, and since T n ∈ �+(X) for every n ∈ N, ker T p is
finite-dimensional. Conversely, if T (X) is closed and dimN∞(T ) < ∞ then
ker T is finite-dimensional, since ker T ⊆ N∞(T ), so T ∈ �+(X). From the
inclusions ker T n ⊆ ker T n+1 ⊆ N∞(T ), it then follows that p(T ) <∞.

(ii) If T ∈ B−(X) then the descent q := q(T ) < ∞ and T (X) is closed. Clearly,
T∞(X) = T q(X), and since T n ∈ �−(X) for every n ∈ N we then have
codimT q(X) < ∞. From the inclusion T∞(X) ⊆ T q(X) we conclude that
codimT∞(X) < ∞. Conversely, if codimT∞(X) < ∞ then T (X) has finite
codimension, since T∞(X) ⊆ T (X), so T ∈ �−(X) and trivially q(T ) <∞.

(iii) Clear. �
Lemma 3.33 If T ∈ B+(X) is semi-regular then T is bounded below. If T ∈
B−(X) is semi-regular then T is onto.

Proof To show the first assertion, assume that 0 �= x0 ∈ ker T . Since ker T ⊆ T (X)
there exists an x1 ∈ X such that x0 = T x1. Obviously, x1 ∈ ker T 2 ⊆ T (X), so
we can construct a sequence (xn) such that T xn = xn−1 for all n ∈ N. Such vectors
xn are linearly independent, and they all belong to N∞(X), so N∞(X) is infinite-
dimensional, contradicting Theorem 3.32. The second assertion follows by duality:
if T ∈ B−(X) is semi-regular then T ∗ ∈ B+(X∗). By the first part it then follows
that T ∗ is bounded below and hence T is onto. �
Theorem 3.34 Let T ∈ L(X). Then we have:
(i) T ∈ B+(X) if and only if there exist two closed invariant subspaces M , N of
X such that X = M ⊕ N , dimN < ∞, T |M is bounded below, and T |N is
nilpotent. In this case N = N∞(T ).

(ii) T ∈ B−(X) if and only if there exist two closed invariant subspaces M , N of
X such that X = M ⊕ N , dimN < ∞, T |M is onto, and T |N is nilpotent. In
this caseM = T∞(X).
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(i) T ∈ B(X) if and only if there exist two closed invariant subspacesM , N of X
such that X = M ⊕ N , dimN < ∞, T |M is invertible, and T |N is nilpotent.
In this case N = N∞(T ) <∞ andM = T∞(X).

Proof (i) If T ∈ B+(X) then T is essentially semi-regular, so there exists a Kato
decomposition X = M ⊕ N , with dimN < ∞, T |M is semi-regular, and T |N
is nilpotent. Evidently, α(T |M) < ∞ and since T |M has closed range, so T |M
is upper semi-Fredholm. It is easily seen that p(T |M) < ∞, T |M is upper semi-
Browder. By Lemma 3.33 it then follows that T |M is bounded below. Moreover,
N ⊆ N∞(T ). Suppose that x = x1 ⊕ x2 ∈ ker T n for some n. Then T nx2 = 0,
so x2 = 0. Therefore, ker T n ⊆ N for all n ∈ N, hence N = N∞(T ). On the
other hand, the direct sum T1 ⊕ T2 of a finite-dimensional nilpotent operator T1 and
a bounded below operator T2 is evidently upper semi-Browder.

Part (ii) and part (iii) can be obtained in a similar way. �
By a basic result of operator theory, every finite-dimensional operator T ∈ F(X)

may be represented in the form

T x =
n∑
k=1

fk(x)xk,

where the vectors x1, . . . , xn fromX and the vectors f1, . . . , fn fromX∗ are linearly
independent, see Heuser [179, p. 81]. Clearly, T (X) ⊆ Y , where Y is the subspace
generated by the vectors x1, . . . , xn.

Conversely, if y := λ1x1 + . . . + λnxn is an arbitrary element of Y we can
choose z1, . . . , zn in X such that fi(zj ) = δi,j , where δi,j denotes the Kronecker
delta (such a choice is always possible, see Heuser [179, Proposition 15.1]). Define
z :=∑n

k=1 λkzk , then

T z =
n∑
k=1

fk(z)xk =
n∑
k=1

fk

(
n∑
k=1

λkzk

)
xk =

n∑
k=1

λkxk = y,

thus the set {x1, . . . , xn} forms a basis for the subspace T (X).

Theorem 3.35 For a bounded operator T on a Banach space X, the following
assertions are equivalent:

(i) T is a Weyl operator;
(ii) There exist a K ∈ F(X) and an invertible operator S ∈ L(X) such that

T = S +K is invertible;
(iii) There exist a Riesz operator R ∈ R(X) and an invertible operator S ∈ L(X)

such that T = S + R is invertible.

Proof (i) ⇒ (ii) Assume that T ∈ W(X) and letm := α(T ) = β(T ). Let P ∈ L(X)
denote the projection of X onto the finite-dimensional space ker T . Obviously,
ker T ∩ ker P = {0} and we can represent the finite-dimensional operator P
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in the form

Px =
m∑
i=1

fi(x)xi,

where the vectors x1, . . . , xm from X and the vectors f1, · · · , fm from X∗, are
linearly independent. As observed before, the set {x1, . . . , xm} forms a basis of
P(X) and therefore Pxi = xi for every i = 1, . . . ,m, from which we obtain that
fi(xk) = δi,k .

Denote by Y the topological complement of the finite-codimensional subspace
T (X). Then dimY = m, so we can choose a basis {y1, . . . , ym} of Y . Define

Kx :=
m∑
i=1

fi(x)yi.

Clearly,K ∈ F(X), so from classical Fredholm theory we obtain that S := T +K ∈
�(X) and K(X) = Y .

Finally, consider an element x ∈ ker S. Then T x = Kx = 0, and this easily
implies that fi(x) = 0 for all i = 1, . . . ,m. Consequently, Px = 0 and therefore
x ∈ ker T ∩ ker P = {0}, so S is injective.

In order to show that S is onto, observe first that

fi(Px) = fi
(
m∑
k=1

fk(x)xk

)
= fi(x).

From this we obtain that

KPx =
m∑
i=1

fi(Px)yi =
m∑
i=1

fi(x)yi = Kx. (3.9)

Since X = T (X) ⊕ Y = T (X) ⊕ K(X), every z ∈ X may be represented in the
form z = T u + Kv, with u, v ∈ X. Set u1 := u − Pu and v1 := Pv. From (3.9),
and from the equality P(X) = kerT , it then follows that

Ku1 = 0, T v1 = 0, Kv1 = Kv and T u1 = T u.

Hence

S(u1 + v1) = (T +K)(u1 + v1) = T u+Kv = z,

so S is surjective. Therefore S = T +K is invertible.
(ii)⇒ (iii) Clear.
(iii)⇒ (i) Suppose T + R = U , where U is invertible and R is Riesz. Then U is

Weyl, and hence T = U − R is also Weyl, by Theorem 3.17. �
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A simple modification of the proof of Theorem 3.35 leads to the following
characterizations of upper and lower semi-Weyl operators:

Theorem 3.36 Let T ∈ L(X). Then we have
(i) T ∈ W+(X) if and only if there exist a K ∈ F(X) (or a Riesz operator) and a

bounded below operator S ∈ L(X) such that T = S +K .
(ii) T ∈ W−(X) if and only if there exist a K ∈ F(X) (or a Riesz operator) and a

surjective operator S such that T = S +K .

Proof To show part (i), take m := α(T ) and proceed as in the proof of Theo-
rem 3.35. The operator S = T + K is then injective and has closed range, since
T +K ∈ �+(X). To show part (ii), take m := β(T ) and proceed as in the proof of
Theorem 3.35. The operator S = T +K is then onto, since T +K ∈ �−(X). �

An immediate consequence of Theorems 3.35 and 3.36 is that the Weyl spectra
may be characterized as follows.

Corollary 3.37 Let T ∈ L(X), X a Banach space. Then the Weyl spectra σw(T ),
σuw(T ) and σlw(T ) are closed. Moreover,

σw(T ) =
⋂

K∈F(X)
σ (T +K) =

⋂
R∈R(X)

σ (T + R), (3.10)

σuw(T ) =
⋂

K∈F(X)
σap(T +K) =

⋂
R∈R(X)

σap(T + R), (3.11)

and

σlw(T ) =
⋂

K∈F(X)
σs(T +K) =

⋂
R∈R(X)

σs(T + R). (3.12)

Proof Let ρw(T ) := C \ σw(T ). The equality (3.10) may be restated, taking
complements, as follows

ρw(T ) =
⋃

K∈F(X)
ρ(T +K) =

⋃
R∈R(X)

ρ(T + R). (3.13)

The equalities (3.13) are now immediate from Theorem 3.35. The equalities (3.11)
and (3.12) are proved in a similar way, by using Theorem 3.36. Clearly, all Weyl
spectra are closed, since they are intersections of closed sets. �

Semi-Browder operators admit similar characterizations to those given above for
semi-Weyl operators. In this case the perturbations need to commute with T :
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Theorem 3.38 For an operator T ∈ L(X), X a Banach space, the following
statements are equivalent:

(i) T is essentially semi-regular and T has the SVEP at 0;
(ii) There exist an idempotentP ∈ F(X) and a bounded below operator S ∈ L(X)

such that T P = PT and T = S + P ;
(iii) There exist a Riesz operator R ∈ R(X) and a bounded below operator S ∈

L(X) such that T R = RT and T = S + R;
(iv) T ∈ B+(X).

Proof (i) ⇒ (ii) Suppose that T is essentially semi-regular and that T has the
SVEP at 0. Let (M,N) be a GKD for T , where T |N is nilpotent and N is finite-
dimensional. Let P denote the finite-dimensional projection of X onto N alongM .
Clearly P commutes with T , because N and M reduce T . Since T has the SVEP
at 0 it follows that T |M is injective, by Theorem 2.91. Furthermore, the restriction
(I − T )|N is bijective, since T |N is nilpotent and hence 1 /∈ σ(T |N). Therefore
(I − T )(N) = N and ker(I − T )|N = {0}. From this it follows that

ker (T − P) = ker (T − P)|M ⊕ ker (T − P)|N
= ker T |M ⊕ ker (I − T )|N = {0},

thus the operator T − P is injective. On the other hand, the equalities

(T − P)(X) = (T − P)(M)⊕ (T − P)(N)
= T (M)⊕ (T − I)(N) = T (M)⊕N

show that the subspace (T − P)(X) is closed, since it is the sum of the subspace
T (M), which is closed by semi-regularity, and the finite-dimensional subspace N .
Therefore, the operator T − P is bounded below.

(ii) ⇒ (iii) Clear.
(iii) ⇒ (iv) Suppose that there exists a commuting Riesz operator R such that

T +R is bounded below. By Theorem 3.11 it then follows that T = (T +R)−R ∈
B+(X).

The implication (iv) ⇒ (i) is clear, since every upper semi-Browder operator is
essentially semi-regular and T has the SVEP at 0, since p(T ) <∞. �

The next result is dual to that given in Theorem 3.38.

Theorem 3.39 Let T ∈ L(X), X a Banach space. Then the following properties
are equivalent:

(i) T is essentially semi-regular and T ∗ has the SVEP at 0;
(ii) There exist an idempotent P ∈ F(X) and a surjective operator S such that

T P = PT and T = S + P ;
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(iii) There exist a Riesz operator R ∈ R(X) and a surjective operator S such that
T R = RT and T = S + R;

(iv) T ∈ B−(X).

Proof (i) ⇒ (ii) Let T be essentially semi-regular and suppose that T ∗ has the
SVEP at 0. Let (M,N) be a GKD for T , where T |N is nilpotent and N is
finite-dimensional. Then (N⊥,M⊥) is a GKD for T ∗. In particular, T ∗|N⊥ is semi-
regular.

Let P denote the finite rank projection of X ontoN alongM . Then P commutes
with T , since N and M reduce T . Moreover, since T ∗|N⊥ has the SVEP at 0,
T ∗|N⊥ is injective and this implies that T |M is surjective, see Lemma 2.78. Since
T |N is nilpotent the restriction (T − I) |N is bijective, so we have

(T −P)(X) = (T −P)(M)⊕ (T −P)(N) = T (M)⊕ (T − I)(N) = M⊕N = X.

This shows that T + P is onto.
(ii) ⇒ (iii) Obvious.
(iii) ⇒ (iv) Suppose that there exists a commuting Riesz operatorR ∈ L(X) such

that T +R is onto. By Theorem 3.11 it then follows that T = (T +R)−R ∈ B−(X).
The implication (iv) ⇒ (i) is clear, since every lower semi-Bowder operator is

essentially semi-regular and the condition q(T ) < ∞ entails the SVEP for T ∗
at 0. �

Combining Theorems 3.38 and 3.39 we readily obtain the following characteri-
zations of Browder operators.

Theorem 3.40 Let T ∈ L(X), X a Banach space. Then the following properties
are equivalent:

(i) T is essentially semi-regular, both T and T ∗ have the SVEP at 0;
(ii) There exist an idempotent P ∈ F(X) and an invertible operator S such that

T P = PT and T = S + P ;
(iii) There exist a Riesz operator R ∈ R(X) and an invertible operator S such that

T R = RT and T = S + R;
(iv) T ∈ B(X).

The following corollary is an immediate consequence of Theorem 3.40, once we
observe that both the operators T and T ∗ have the SVEP at every λ ∈ ∂σ(T ), ∂σ(T )
the boundary of σ(T ).

Corollary 3.41 Let T ∈ L(X), X a Banach space, and suppose that λ0 ∈ ∂σ(T ).
Then λ0I − T is essentially semi-regular if and only if λ0I − T is semi-Fredholm,
and this is the case if and only if λ0I − T is Browder. �
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Corollary 3.42 Let T ∈ L(X). Then we have

σub(T ) =
⋂

K∈F(X),KT=TK
σap(T +K) =

⋂
R∈R(X),RT=T R

σap(T + R), (3.14)

σlb(T ) =
⋂

K∈F(X),KT=TK
σs(T +K) =

⋂
R∈R(X),RT=T R

σs(T + R), (3.15)

and

σb(T ) =
⋂

K∈F(X),KT=T K
σ(T +K) =

⋂
R∈R(X),RT=T R

σ(T + R). (3.16)

We now show that the Browder spectra may be obtained by adding to Weyl
spectra the cluster points of some parts of the spectrum.

Theorem 3.43 For a bounded operator T ∈ L(X) the following statements hold:
(i) σub(T ) = σuw(T ) ∪ accσap(T ).

(ii) σlb(T ) = σlw(T ) ∪ accσs(T ).

(iii) σb(T ) = σw(T ) ∪ acc σ(T ).

Proof (i) If λ /∈ σuw(T ) ∪ acc σap(T ) then λI − T ∈ �+(X) and σa(T ) does not
cluster at λ. Then T has the SVEP at λ, and hence, by Theorem 2.97, p(λI − T ) <
∞ from which we conclude that λ /∈ σub(T ). This shows the inclusion σub(T ) ⊆
σuw(T ) ∪ acc σap(T ).

Conversely, suppose that λ ∈ σuw(T ) ∪ accσap(T ). If λ ∈ σuw(T ) then λ ∈
σub(T ), since σuw(T ) ⊆ σub(T ). If λ ∈ acc σap(T ) then either λ ∈ σuw(T ) or
λ /∈ σuw(T ). In the first case λ ∈ σub(T ). In the second case, since λI−T ∈ W+(X),
the condition λ ∈ acc σap(T ) entails, by Theorem 2.97, that p(λI − T ) = ∞. From
this we conclude that λ ∈ σub(T ). Therefore the equality (i) is proved.

The proof of equality (ii) is similar. Equality (iii) follows combining (i) with (ii)
and taking into account the equality σ(T ) = σap(T ) ∪ σs(T ). �

If either T or T ∗ has the SVEP we can say more:

Theorem 3.44 Suppose that T ∈ L(X).
(i) If T has the SVEP then σlw(T ) = σw(T ) = σb(T ) = σlb(T ).

(ii) If T ∗ has the SVEP then σuw(T ) = σw(T ) = σub(T ) = σb(T ).

Proof

(i) We have σlw(T ) ⊆ σw(T ) ⊆ σb(T ) and σlw(T ) ⊆ σlb(T ) ⊆ σb(T ), so it
suffices to prove the inclusion σb(T ) ⊆ σlw(T ). Suppose that λ /∈ σlw(T ) then
λI − T ∈ W−(X), and the SVEP of T at λ ensures that p(λI − T ) < ∞, by
Theorem 2.97. By Theorem 1.22, part (i), we then have ind (λI − T ) ≤ 0 and
since λI−T ∈ W−(X) we also have ind (λI−T ) ≥ 0, hence ind (λI−T ) = 0.
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From part (iv) of Theorem 1.22 we then conclude that λI−T is Browder, hence
λ /∈ σb(T ).

(ii) The equalities may be shown from part (i) by duality. �

3.3 Semi B-Browder Spectra

It is natural to extend the concepts of Weyl and Browder operators in the context of
B-Fredholm theory. Recall that by Tn we denote the restriction T |T n(X).
Definition 3.45 A bounded operator T ∈ L(X) is said to be B-Weyl (respectively,
upper semi B-Weyl, lower semi B-Weyl) if for some integer n ≥ 0 T n(X) is closed
and Tn is Weyl (respectively, upper semi-Weyl, lower semi-Weyl). Analogously,
T ∈ L(X) is said to be B-Browder (respectively, upper semi B-Browder, lower
semi B-Browder) if for some integer n ≥ 0 T n(X) is closed and Tn is Browder
(respectively, upper semi-Browder, lower semi-Weyl).

The classes of operators previously defined generate the following spectra: the
B-Weyl spectrum, defined as

σbw(T ) := {λ ∈ C : λI − T is not B-Weyl},

the upper semi B-Weyl spectrum, defined as

σubw(T ) := {λ ∈ C : λI − T is not upper semi B-Weyl},

and the lower semi B-Weyl spectrum, defined as

σlbw(T ) := {λ ∈ C : λI − T is not lower semi B-Weyl}.

The B-Browder spectrum is defined as

σbb(T ) := {λ ∈ C : λI − T is not B-Browder},

the upper semi B-Browder spectrum is defined as

σubb(T ) := {λ ∈ C : λI − T is not upper semi B-Browder},

and the lower semi B-Browder spectrum is defined as

σlbb(T ) := {λ ∈ C : λI − T is not lower semi B-Browder}.

Obviously,

σbw(T ) ⊆ σw(T ) and σubw(T ) ⊆ σuw(T ),
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and the B-Fredholm spectrum, defined as

σbf(T ) := {λ ∈ C : λI − T is not B-Fredholm},

is a subset of the essential spectrum σe(T ).
These inclusions in general are proper. For instance, if X := �2(N)⊕ �2(N) and

T := 0 ⊕ R ∈ L(X), R the right shift, then σlbw(T ) = �, � the closed unit circle
of C, while σuw(T ) = � ∪ {0}. If V ∈ L(�2(N) is defined as

V (x1, x2, . . . ) :=
(

0,
x1

2
, 0, 0

)
for all (x1, x2, . . . ) ∈ �2(N),

then we have σbf(V ) = σbw(V ) = ∅, while σe(V ) = σw(V ) = {0}.
Given n ∈ N let us denote by T̂n : X/ ker T n → X/ ker T n the quotient map

defined canonically by T̂n x̂ := T̂ x for each x̂ ∈ X̂ := X/ ker T n, where x ∈ x̂.

Lemma 3.46 Suppose that T ∈ L(X) and T n(X) is closed for some n ∈ N. If
Tn is upper semi-Fredholm then T̂n is upper semi-Fredholm and ind T̂n = ind Tn.
Analogous statements hold if Tn is assumed to be lower semi-Fredholm, upper or
lower semi-Weyl, upper or lower semi-Browder, respectively. Moreover, if T has the
SVEP at 0 then T̂n also has the SVEP at 0.

Proof It is easily seen that the operator [T n] : X/ ker T n → T n(X) defined by

[T n]x̂ = T nx, where x ∈ x̂

is a bijection. Moreover,

[T n]T̂n = Tn[T n] for all n ∈ N, (3.17)

from which the statements easily follow.
If T has the SVEP at 0 then the restriction Tn = T |T n(X) has the SVEP at 0. By

Lemma 2.141 the equality (3.17) entails that T̂n also has the SVEP at 0. �
Every bounded below operator T ∈ L(X) is upper semi-Browder, while every

surjective operator T ∈ L(X) is lower semi-Browder, so, by Theorem 1.140,
every left Drazin invertible operator is upper semi B-Browder, while every right
Drazin invertible operator is lower semi B-Browder. Actually, we have the following
equivalences:

Theorem 3.47 If T ∈ L(X) then the following equivalences hold:
(i) T is upper semi B-Browder ⇔ T is left Drazin invertible.

(ii) T is lower semi B-Browder ⇔ T if T is right Drazin invertible.

Consequently, T is B-Browder if and only if T is Drazin invertible.
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Proof

(i) Suppose that T is upper semi B-Browder. By Lemma 3.46, T̂n is upper semi-
Browder for some n ∈ N and hence has uniform topological descent. By
Theorem 2.97 the condition p(T̂n) < ∞ is equivalent to saying that σap(T̂n)

does not cluster at 0. Let D(0, ε) be an open disc centered at 0 such that
D(0, ε) \ {0} does not contain points of σap(T̂n), so

ker (λI − T̂n) = {0} for all 0 < |λ| < ε. (3.18)

Since the restriction T | ker T n is nilpotent we also have that D(0, ε) \ {0} ⊆
ρ(T | ker T n), where ρ(T | ker T n) is the resolvent of T | ker T n, hence

(λI − T )(ker T n) = ker T n for all 0 < |λ| < ε. (3.19)

Since for all 0 < |λ| < ε we also have ker (λI −T )| kerT n = {0}, it then easily
follows that ker (λI − T ) = {0}, so λI − T is injective for all 0 < |λ| < ε.

We show now that (λI − T )(X) is closed for all 0 < |λ| < ε. Set X̂ :=
X/ ker T n and let w ∈ (λI − T )(X) be arbitrary. Then there exists an x ∈ X
such that w = (λI − T )x and hence

ŵ = (λI − T̂n)x̂ ∈ (λI − T̂n)(X̂).

Because λ /∈ σap(T̂n), (λI− T̂n)(X̂) is closed, and hence there exists a sequence
(wn) ⊂ X such that (λI − T̂n)ŵn → ŵ as n→ +∞, thus

(λI − T )wn −w → zn ∈ ker T n.

From (3.19) we know that there exists a yn ∈ ker T n such that zn = (λI−T )yn,
and hence

(λI − T )wn − (λI − T )yn = (λI − T )(wn − yn)→ w,

so (λI − T )(X) is closed. We have shown that λI − T is bounded below for all
0 < |λ| < ε and hence that 0 is an isolated point of σap(T ). By assumption T is
upper semi B-Fredholm, and hence has topological uniform descent. Moreover,
p(T ) < ∞, by Theorem 2.97. From Theorem 1.142 we then conclude that T
is left Drazin invertible.

(ii) Let T be lower semi B-Browder and let n ∈ N such that T n(X) is closed
and Tn is lower semi-Browder. By Lemma 3.46, T̂n is lower semi-Browder and
hence, by Theorem 2.98, the condition q(T̂n) < ∞ is equivalent to saying that
σs(T̂n) does not cluster at 0. Let D(0, ε) be an open ball centered at 0 such
that D(0, ε) \ {0} does not contain points of σs(T̂n). As in the proof of part
(i) we have (λI − T )(ker T n) = ker T n for all 0 < |λ| < ε. We show that
(λI − T )(X) = X for all 0 < |λ| < ε. Since λI − T̂n is onto, for each x ∈ X
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there exists a y ∈ X such that (λI − T̂n)ŷ = x̂ and hence

x − (λI − T )y ∈ ker T n = (λI − T )(ker T n).

Consequently, there exists a z ∈ ker T n such that

x − (λI − T )y = (λI − T )z,

from which it follows that

x = (λI − T )(z+ y) ∈ (λI − T )(X).

We have proved that λI − T is onto for all 0 < |λ| < ε, thus σs(T ) does
not cluster at 0 and consequently T ∗ has the SVEP at 0. Every lower semi
B-Browder operator has topological uniform descent, so, by Theorem 2.98, T
has finite descent q := q(T ). Consequently, T q(X) = T∞(X) is closed, by
Corollary 2.96, and hence T is right Drazin invertible. �

The left Drazin spectrum is defined as

σld(T ) := {λ ∈ C : λI − T is not left Drazin invertible},

the right Drazin spectrum is defined as

σrd(T ) := {λ ∈ C : λI − T is not right Drazin invertible}.

The Drazin spectrum is defined as

σd(T ) := {λ ∈ C : λI − T is not Drazin invertible}.

Obviously, σd(T ) = σld(T ) ∪ σrd(T ).

Remark 3.48 If T ∈ L(X) is meromorphic and the spectrum σ(T ) is an infinite set,
then σ(T ) clusters at 0, and T is not Drazin invertible. Therefore, σd(T ) = {0}. Note
that for the topological uniform descent spectrum we have σutd(T ) ⊆ σd(T ) for
every operator T ∈ L(X). On the other hand, if T is meromorphic with an infinite
spectrum, then the opposite inclusion σd(T ) ⊆ σtud(T ) is also true, so σtud(T ) =
{0}, and hence T does not have topological uniform descent.

From Theorem 1.144 we obtain σd(T ) = σd(T
∗) and

σld(T ) = σrd(T
∗) and σrd(T ) = σld(T

∗).

An easy consequence is that T ∈ L(X) is meromorphic if and only if T ∗ is
meromorphic. From Theorem 3.47 the next result immediately follows.
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Corollary 3.49 For every T ∈ L(X) we have

σubb(T ) = σld(T ), σlbb(T ) = σrd(T ), σbb(T ) = σd(T ).

The relationship between the B-Browder spectra and the B-Weyl spectra is
similar to that observed for the Browder spectra and Weyl spectra, established in
Theorem 3.43:

Theorem 3.50 If T ∈ L(X) then the following equalities hold:
(i) σld(T ) = σubw(T ) ∪ accσap(T ).

(ii) σrd(T ) = σlbw(T ) ∪ accσs(T ).
(iii) σd(T ) = σbw(T ) ∪ accσ(T ).

Proof

(i) The inclusion σubw(T ) ⊆ σubb(T ) = σld(T ) is clear from Corollary 3.49, so,
in order to show that σubw(T ) ∪ acc σap(T ) ⊆ σld(T ) it suffices to prove that
accσap(T ) ⊆ σld(T ). For this, let λ /∈ σld(T ). Then λI − T is left Drazin
invertible, and hence has topological uniform descent. Since p(λ0I − T ) <
∞ it then follows, from Corollary 1.92, that λI − T is bounded below in a
punctured disc centered at λ0, so λ /∈ accσap(T ).

To show the inclusion σubw(T ) ∪ accσap(T ) ⊇ σld(T ), consider λ /∈
σubw(T ) ∪ acc σap(T ). Since λ /∈ accσap(T ) then T has the SVEP at λ.
Moreover, since λI − T is upper semi B-Weyl, by Theorem 2.97, we have
that p(λI −T ) <∞, so λI −T is upper semi B-Browder, or equivalently, left
Drazin invertible, and hence λ /∈ σld(T ). Hence the equality (i) is proved.

(ii) The proof is similar to part (i). Indeed, by Corollary 3.49, we have σlbw(T ) ⊆
σlbb(T ) = σrd(T ). In order show the inclusion σrd(T ) ⊇ σlbw(T ) ∪ accσs(T )

we need only to prove that acc σs(T ) ⊆ σrd(T ). If λ /∈ σrd(T ) then λI − T is
right Drazin invertible, and hence λI−T is semi B-Fredholm with q(λI−T ) <
∞. By Corollary 1.92 it then follows that λI − T is onto in a punctured disc
centered at λ, thus λ /∈ acc σs(T ).

To show the opposite inclusion σrd(T ) ⊆ σlbw(T )∪ accσs(T ), suppose that
λ /∈ σlbw(T ) ∪ acc σs(T ). Since λ /∈ acc σs(T ), T ∗ has the SVEP at λ, and
since λI − T is lower semi B-Fredholm, it then follows by Theorem 2.98 that
λI − T is lower semi B-Browder, or equivalently, right Drazin invertible, i.e.
λ /∈ σrd(T ). Hence σrd(T ) ⊆ σlbw(T ) ∪ acc σs(T ).

(iii) Clear. �
Evidently, every upper semi-Browder operator is upper semi B-Browder, so, from

Corollary 3.49 we obtain that

σld(T ) = σubb(T ) ⊆ σub(T ),
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while

σd(T ) = σbb(T ) ⊆ σb(T ).

The next result shows that σub(T ) may be obtained by adding to σld(T ) the isolated
points of σub(T ), and analogous results hold for the other Browder spectra.

Theorem 3.51 For every T ∈ L(X) we have:
(i) accσub(T ) ⊆ σld(T ) and accσb(T ) ⊆ σd(T ).

(ii) iso σb(T ) ⊆ iso σub(T ) and iso σd(T ) ⊆ iso σld(T ).
(iii) σub(T ) = σld(T ) ∪ iso σub(T ) and σb(T ) = σd(T ) ∪ iso σb(T ).

Proof

(i) Let λ0 /∈ σld(T ). Then λ0I − T is left Drazin invertible, and hence upper semi
B-Browder, by Theorem 3.47. By Theorem 1.117 we see that there exists an
ε > 0 such that λI − T is upper semi-Browder in the open punctured disc
D(λ0, ε)\{λ0}, thus λ0 /∈ acc σub(T ). The second equality follows by a similar
argument.

(ii) Since σub(T ) is a subset of σb(T ) it suffices to prove that iso σb(T ) ⊆ σub(T ).
Let λ0 ∈ iso σb(T ) be arbitrary and suppose that λ0 /∈ σub(T ). We can suppose
that λ0 = 0. Then T ∈ B+(X), thus α(T ) < ∞, and, by the punctured
neighborhood theorem, there exists an ε > 0 such that λI − T is Browder
for all 0 < |λ| < ε. In particular, q(λI − T ) < ∞ for all 0 < |λ| < ε, so T ∗
has the SVEP at every point of the punctured disc D(0, ε) \ {0}. This implies
that T ∗ has the SVEP at 0 and hence q(T ) < ∞, by Theorem 2.98. Since
p(T ) <∞ we then have p(T ) = q(T ) and from Theorem 1.22 we obtain that
α(T ) = β(T ) <∞. Hence 0 /∈ σb(T ), a contradiction. Therefore, 0 ∈ σub(T ).
The second inclusion follows by a similar argument.

(iii) From part (i) we have

σub(T ) = accσub(T ) ∪ iso σub(T ) ⊆ σld(T ) ∪ iso σub(T ).

The opposite inclusion is always true, hence the first equality is proved. The
second equality follows by a similar argument. �

Corollary 3.52 If iso σub(T ) ⊆ σld(T ) then σub(T ) = σld(T ) and σb(T ) = σd(T ).

Proof The equality σub(T ) = σld(T ) is clear from the first equality of (iii) of
Theorem 3.51. Part (ii) of Theorem 3.51 entails that

iso σb(T ) ⊆ iso σub(T ) ⊆ σld(T ) ⊆ σd(T ),

thus σb(T ) = σd(T ), again by part (iii) of Theorem 3.51. �
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The following result shows that many of the spectra considered before coincide
whenever T or T ∗ has the SVEP.

Theorem 3.53 Suppose that T ∈ L(X). Then the following statements hold:
(i) If T has the SVEP then

σlbw(T ) = σrd(T ) = σd(T ) = σbw(T ), (3.20)

and

σubw(T ) = σld(T ). (3.21)

(ii) If T ∗ has the SVEP then

σubw(T ) = σld(T ) = σd(T ) = σbw(T ), (3.22)

and

σlbw(T ) = σrd(T ). (3.23)

(iii) If both T and T ∗ have the SVEP then

σubw(T ) = σlbw(T ) = σbw(T ) = σld(T ) = σrd(T ) = σd(T ). (3.24)

Proof

(i) By Corollary 3.49 and we have

σlbw(T ) ⊆ σlbb(T ) = σrd(T ) ⊆ σd(T ).

We show now that σd(T ) ⊆ σlbw(T ). Assume that λ /∈ σlbw(T ). We may
assume λ = 0. Then there exists an n ∈ N such that T n(X) is closed, Tn is
lower semi-Fredholm and indTn ≥ 0. Since T has the SVEP at 0 then, by
Theorem 2.97, we also have p(T ) < ∞ and hence, by Lemma 1.23, there
exists a k ∈ N such that Tk is bounded below, in particular ind Tk ≤ 0. Now,
if m = max{n, k}, then indTm = ind Tn = ind Tk = 0, and since ker Tj+1 ⊆
ker Tj for all j ∈ N, we also have p(Tm) = 0. By Theorem 1.22, it then
follows that q(Tm) = 0, so Tm is Browder and hence T is B-Browder. By
part (iii) of Theorem 3.47, T is Drazin invertible, so 0 /∈ σd(T ), as desired.
Thus, σlbw(T ) = σrd(T ) = σd(T ). Clearly, σbw(T ) ⊆ σbb(T ) = σd(T ), by
Corollary 3.49. Suppose that λ /∈ σbw(T ), i.e., there exists a k ∈ N such that
(λI−T )n(X) is closed and α(λI−Tn) = β(λI−Tn) <∞ for all n ≥ k. Since
T has the SVEP at λ, p := p(λI − T ) < ∞, by Theorem 2.97, hence, see
Remark 1.25, λI − Tn is injective for all n ≥ p. Therefore, by Theorem 1.22,
for n sufficiently large we have q(λI − Tn) = p(λI − Tn) = 0, so λI − Tn is
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invertible, hence Browder. Therefore, by Corollary 3.49, λ /∈ σd(T ) and hence
σd(T ) ⊆ σlbw(T ).

To conclude the proof we need only to show that σd(T ) = σbw(T ).
The inclusion σbw(T ) ⊆ σd(T ) follows from Theorem 1.141. Suppose that
λ /∈ σbw(T ). Then λI − T is B-Weyl and the SVEP for T at λ implies, by
Theorem 2.97, that p(λI −T ) <∞. From part (iii) of Theorem 1.143 we then
conclude that λ /∈ σd(T ), so σd(T ) ⊆ σbw(T ) and hence σd(T ) = σbw(T ).

To show the equalities (3.22), note first that the inclusion σubw(T ) ⊆ σld(T )

holds for every operator. Let λ /∈ σubw(T ). Then λI −T is upper semi B-Weyl
and from Theorem 2.97 the SVEP for T implies that λI − T is left Drazin
invertible. Hence, λ /∈ σld(T ), thus σld(T ) ⊆ σubw(T ).

(ii) The inclusion

σlbw(T ) ⊆ σlbb(T ) = σrd(T ) ⊆ σd(T )

holds for every T ∈ L(X), by Theorem 3.50 and Corollary 3.49.
We show that σd(T ) ⊆ σubw(T ). Suppose that λ /∈ σubw(T ) and assume

that λ = 0. Then there exists an n ∈ N such that Tn is upper semi-Fredholm
with ind Tn ≤ 0. Since T ∗ has the SVEP at 0, by Theorem 2.98 we have
q(T ) < ∞ and hence Tk is onto for some k ∈ N, by Lemma 1.24. Clearly,
ind Tk ≥ 0. For n sufficiently large we then have ind Tn = 0 and q(Tn) = 0. By
Theorem 1.22, it then follows that p(Tn) = 0, so that Tn is Browder and hence
T is B-Browder, or equivalentlyT is Drazin invertible. Therefore 0 /∈ σd(T ), as
desired. Also here, to finish the proof, we have to prove that σd(T ) = σbw(T ).
The inclusion σbw(T ) ⊆ σd(T ) follows from Theorem 1.141. Suppose that
λ /∈ σbw(T ). Then λI − T is B-Weyl and the SVEP for T ∗ at λ implies, by
Theorem 2.98, that q(λI −T ) <∞. From part (iii) of Theorem 1.143 we then
conclude that λ /∈ σd(T ), so σd(T ) = σbw(T ).

To show (3.23), note that σlbw(T ) ⊆ σrd(T ) holds for every operator. Let
λ /∈ σlbw(T ). Then λI − T is lower semi B-Weyl and from Theorem 2.98 the
SVEP for T ∗ implies that λI−T is right Drazin invertible. Hence, λ /∈ σrd(T ),
so σrd(T ) ⊆ σlbw(T ).

(iii) Clear from part (i) and part (ii). �
It makes sense to ask if the Drazin spectra, and the B-Weyl spectra are also

stable under commuting Riesz perturbations. The following example shows that
the answer in the case of Riesz operators is negative, even in the simple case of
a commuting quasi-nilpotent perturbation.

Example 3.54 Let X := �2(N) and {ei} the canonical basis of X. Denote by P the
orthogonal projection of X on the subspace generated by the set {e1 : 1 ≤ i ≤ n}
and let S be the quasi-nilpotent operator defined by

S(x1, x2, . . . ) :=
(x2

2
,
x3

3
, . . .

)
for all x = (x1, x2, . . . ) ∈ �2(N).
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If T := 0 ⊕ P ∈ L(X ⊕ X) then T has the SVEP, since P is finite-dimensional,
hence, from part (i) of Theorem 3.53 we have

σubw(T ) = σld(T ) = σd(T ) = σbw(T ) = ∅.

Consider the quasi-nilpotent operatorQ = S⊕0. Clearly,Q has infinite ascent, and
TQ = QT = 0. It is easily seen that

σubw(T +Q) = σld(T +Q) = σd(T +Q) = σbw(T +Q) = {0}.

We want show now that the stability of the Drazin spectra, as well as the B-Weyl
spectra, under Riesz commuting perturbations hold in some special cases. First we
need the following theorem.

Theorem 3.55 If T ∈ L(X) the following statements hold:
(i) σuw(T ) = σubw(T ) ∪ iso σuw(T ).

(ii) σw(T ) = σbw(T ) ∪ iso σw(T ).
(iii) σe(T ) = σbf(T ) ∪ iso σe(T ).

Proof (i) Let λ0 ∈ σuw(T ) \ σubw(T ). Then λ0I − T is upper semi B-Weyl, and
hence, by Theorem 1.117, there exists an ε > 0 such that λI − T is upper semi-
Weyl for all |λ − λ0| < ε. Therefore, λ0 ∈ iso σuw(T ), so the inclusion ⊆ holds in
(i). The opposite inclusion is always true, thus (i) is proved.

(ii) and (iii) Use a similar argument. �
The following corollary is an easy consequence of Theorem 3.55.

Corollary 3.56 If iso σuw(T ) ⊆ σubw(T ) then σuw(T ) = σubw(T ). Analogously, if
iso σw(T ) ⊆ σbw(T ) then σw(T ) = σbw(T ).

For an operator T ∈ L(X) set

ρ+
sf (T ) := {λ ∈ C : λI − T ∈ �±(X), ind (λI − T ) > 0},

and

ρ−
sf (T ) := {λ ∈ C : λI − T ∈ �±(X), ind (λI − T ) < 0}.

If, as usual, σsf(T ) denotes the semi-Fredholm spectrum of T we have:

Lemma 3.57 If T ∈ L(X) then
(i) σw(T ) = σsf(T ) ∪ ρ+

sf (T ) ∪ ρ−
sf (T ).

(ii) σuw(T ) = σsf(T ) ∪ ρ+
sf (T ).

(iii) σlw(T ) = σsf(T ) ∪ ρ−
sf (T ).
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Proof

(i) The inclusion (⊆) is evident. Conversely, if λ /∈ σw(T ), then λI − T ∈ W(X),
so λ /∈ σsf(T ) ∪ ρ+

sf (T ) ∪ ρ−
sf (T ).

(ii) The inclusion σsf(T ) ∪ ρ+
sf (T ) ⊆ σuw(T ) is clear. Conversely, suppose that

λ /∈ σsf(T ) ∪ ρ+
sf (T ). Then λI − T ∈ �±(X) and ind (λI − T ) ≤ 0, so

α(λI − T ) ≤ β(λI − T ), which obviously implies that λI − T ∈ �+(X) and
hence λ /∈ σuw(T ). Therefore, the equality (i) holds.

(iii) The proof is analogous to that of part (ii). �
The isolated points of the Weyl spectra are related as follows:

Theorem 3.58 If T ∈ L(X) we have
(i) iso σw(T ) ⊆ iso σuw(T ) ⊆ iso σsf(T ).

(ii) iso σw(T ) ⊆ iso σlw(T ) ⊆ iso σsf(T ).

Proof We prove only the inclusions (i). Let λ0 ∈ iso σw(T ). Then there exists an
ε > 0 such that λI − T ∈ W(X) for all 0 < |λ| < ε. This easily implies that
λ0 ∈ σsf(T ). In fact, if not, then λ0I − T ∈ �+(X). By the continuity of the index
function we then obtain ind (λ0I − T ) = 0, i.e. λ0 /∈ σw(T ), a contradiction. Since,
by Lemma 3.57, we have σuw(T ) = σsf(T )∪ρ+

sf (T ), then D(λ0, ε)∩σuw(T ) = {λ0},
so λ0 ∈ iso σuw(T ).

Now, choose an arbitrary μ0 ∈ iso σuw(T ). To show the second inclusion it
suffices to prove that μ0 ∈ σsf(T ). Assume that μ0 /∈ σsf(T ). Then μ0I − T ∈
�±(X), and, since �±(X) is an open subset of L(X), there exists a δ > 0 such
that μI − T ∈ �±(X) for all μ ∈ D(μ0, δ). Again by the continuity of the index
function, there exists an n ∈ Z ∪ {−∞,+∞} such that ind (μI − T ) = n for all
μ ∈ D(μ0, δ). Note that σuw(T ) = σsf(T ) ∪ ρ+

sf (T ), by Lemma 3.57. If n ≤ 0 then
μo /∈ σuw(T ), a contradiction. If n > 0 then D(μ0, δ) ⊆ ρuw(T ) = C \ σuw(T ),
and hence μ0 is an interior point of σuw(T ), again a contradiction. Therefore,
μ0 ∈ σsf(T ). �

We now consider the case when the T is perturbed by a commuting Riesz
operator.

Theorem 3.59 Let T ∈ L(X) and let R ∈ L(X) be a Riesz operator which
commutes with T . Then we have:

(i) If iso σw(T ) = ∅ then

σbw(T + R) = σbw(T ).

(ii) If iso σuw(T ) = ∅ then

σubw(T + R) = σubw(T ) and σbw(T + R) = σbw(T ).
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(iii) If iso σe(T ) = ∅ then

σbf(T + R) = σbf(T ).

(iv) If iso σb(T ) = ∅ then

σd(T + R) = σd(T ).

(v) If iso σub(T ) = ∅ then

σld(T + R) = σld(T ).

Proof (i) By Corollary 3.18 we have σw(T + R) = σw(T ) and hence iso σw(T ) =
iso σw(T+R) = ∅. From Corollary 3.56 we then obtain σbw(T+R) = σw(T+R) =
σw(T ) = σbw(T ).

The proofs of (ii), (iii), (iv) and (v) are similar to that of part (i). Clearly,
the equality σbw(T + R) = σbw(T ) in (ii) is a consequence of Theorem 3.58,
part (i). �
Corollary 3.60 Suppose that T ∈ L(X) has the SVEP, R ∈ L(X) is a Riesz
operator which commutes with T and iso σb(T ) = ∅. Then

σd(T ) = σd(T + R) = σld(T ) = σld(T + R) = σubw(T )

= σubw(T + R) = σbw(T ) = σbw(T + R).

Proof By Corollary 3.9 we have iso σb(T + R) = σb(T ) = ∅, and T + R has
the SVEP, by Theorem 2.129. The equalities then follow from Theorems 3.53
and 3.59. �

3.4 Meromorphic Operators

An operator T ∈ L(X) is meromorphic if all the non-zero spectral points are
poles of the resolvent. Evidently, an operator T ∈ L(X) is meromorphic if and
only if σd(T ) ⊆ {0}. An obvious consequence is that every meromorphic operator
possesses at most countably many spectral points, which can cluster only at 0.
Obviously, Riesz operators, and in particular compact operators, are meromorphic.
Moreover,

T is meromorphic ⇔ T ∗ is meromorphic.

Note that, in contrast with Riesz operators, the sum of commuting meromorphic
operators may not be meromorphic. For instance, the identity I and a quasi-nilpotent
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operator are trivially meromorphic and commute, while I +Q is not meromorphic.
The product of two commuting operators, one of which is meromorphic, may not be
meromorphic. For instance, the operators I and I +Q above commute and I +Q =
I (I +Q) is not meromorphic.

Theorem 3.61 If T ∈ L(X) then the following statements are equivalent:
(i) T is meromorphic;

(ii) λI − T is left Drazin invertible for all λ �= 0;
(iii) λI − T is right Drazin invertible for all λ �= 0;
(iv) λI − T is upper semi B-Fredholm for all λ �= 0;
(v) λI − T is lower semi B-Fredholm for all λ �= 0;

(vi) λI − T is quasi-Fredholm for all λ �= 0;
(vii) λI − T has topological uniform descent for all λ �= 0.

Proof If T is meromorphic then λI − T is Drazin invertible, and hence left Drazin
invertible, for all λ �= 0. Hence (i) ⇒ (ii). Clearly, (ii) ⇒ (iv) since every left Drazin
invertible operator is upper semi B-Fredholm, and (iv) ⇒ (vi) ⇒ (vii), since every
upper semi B-Fredholm is quasi-Fredholm and has topological uniform descent.
Analogously, (i) ⇒ (iii) ⇒ (vi) ⇒ (vii).

(vii) ⇒ (i) If λI − T has topological uniform descent for all λ �= 0 then C \ {0}
is contained in a component of the topological uniform descent resolvent which
intersects the resolvent. By Corollary 2.125, λI − T is Drazin invertible for all
λ �= 0. �
Corollary 3.62 If T ∈ L(X) is meromorphic andK ∈ L(X) is a finite-dimensional
operator then T +K is meromorphic.

Proof If T is meromorphic, λI − T is quasi-Fredholm for every λ �= 0, hence
λI −(T +K) is quasi-Fredholm, by Theorem 1.110, and this is equivalent to saying
that T +K is meromorphic, by Theorem 3.61. �

As before, if M is a closed subspace invariant under T ∈ L(X), we denote by
T̂M the quotient operator induced by T on X/M defined by T̂Mx̂ = T̂ x for every
x̂ ∈ X̂ := X/M . The spectra of the three operators T , T |M and T̂M are related as
follows:

Theorem 3.63 If T ∈ L(X) then we have:
(i) σ(T ) ⊆ σ(T |M) ∪ σ(T̂M).

(ii) σ(T |M) ⊆ σ(T ) ∪ σ(T̂M).
(iii) σ(T̂M) ⊆ σ(T ) ∪ σ(T |M).
Proof

(i) Suppose that λ /∈ σ(T |M) ∪ σ(T̂M). We may assume λ = 0. Then T |M and
T̂M are invertible. First we show that T is onto. Let y ∈ X. Then there exists
an x ∈ X such that T̂Mx̂ = ŷ, thus y − T x ∈ M . Since T |M is surjective,
there exists w ∈ M such that T w = y − T x, hence T (w + x) = y, so T
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is surjective. Next, to show that T is injective, assume that T x = 0. Then
T̂Mx̂ = 0̂, so x ∈ M . Since T |M is invertible and T |Mx = 0, we then have
x = 0. Hence 0 /∈ σ(T ), thus the inclusion (i) is proved.

(ii) Suppose that λ /∈ σ(T )∪σ(T̂M). We may suppose λ = 0. Then T is invertible,
so T |M is bounded below. Let y ∈ M be arbitrary. Then there exists an x ∈ X
such that y = T x. Clearly, T̂Mx̂ = T̂ x = Ŷ , and since y ∈ M we then have
ŷ = 0̂, i.e., y ∈ M . Hence y = T |Mx, so T |M is onto and consequently,
0 /∈ σ(T |M).

(iii) Let π : X → X/M denote the quotient homomorphism. Evidently, πT =
T̂Mπ . Let λ /∈ σ(T ) ∪ σ(T |M) be arbitrary. Also here we can assume λ = 0.
Then T̂M is onto, since both π and T are onto. If x ∈ X satisfies T̂Mx̂ =
T̂Mπx = 0, then T x ∈ M , hence x ∈ M , because 0 /∈ σ(T |M). Therefore,
T̂M is invertible, i.e. 0 /∈ σ(T̂M). �

Corollary 3.64 If T ∈ L(X) then:
(i) σ(T |M) ∪ σ(T̂M) = σ(T ) ∪ {σ(T |M) ∩ σ(T̂M)}.

(ii) σ(T ) ∪ σ(T̂M) = σ(T |M) ∪ {σ(T ) ∩ σ(T̂M)}.
(iii) σ(T ) ∪ σ(T |M) = σ(T̂M) ∪ {σ(T ) ∩ σ(T |M)}.

Consequently, if λ is an isolated point in the spectra of any two of the operators
T , T |M , T̂M , then λ is an isolated point of the spectrum of the third one or is not in
its spectrum.

It is meaningful to find necessary or sufficient conditions under which the
spectrum of T coincides with the union of the spectra of T |M and T̂M . Clearly,
the equality σ(T ) = σ(T |M) ∪ σ(T̂M) holds if σ(T |M) ∩ σ(T̂M) = ∅, or
σ(T |M) ⊆ σ(T ), or σ(T̂M) ⊆ σ(T ). Another important condition which entails
this equality is given in the following theorem.

Theorem 3.65 Let T ∈ L(X) andM be a closed T -invariant subspace of X. Then
we have:

(i) T |M and T̂M are invertible if and only if T is invertible and M is invariant
under T −1.

(ii) IfM is a closed subspace ofX hyperinvariant under T then σ(T ) = σ(T |M)∪
σ(T̂M).

Proof

(i) By part (i) of Theorem 3.63, if T |M and T̂M are invertible then T is invertible.
Suppose that w ∈ M . Then there exists an x ∈ M such that T |M x = w, thus
T −1(M) ⊆ M . Conversely, assume that T is invertible and T −1(M) ⊆ M .
Clearly the restriction T −1|M is the inverse of T |M and the quotient operator

T̂ −1
M , induced by T −1 on X/M , is the inverse of T̂M .

(ii) Clear, from part (i). �
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In [115] S.V. Djordjević and B.P. Duggal showed that this equality σ(T ) =
σ(T |M) ∪ σ(T̂M) also holds if we assume that (T |M)∗ or T̂M has the SVEP. We
mention that similar results to those of Theorem 3.63 and Corollary 3.64 hold for
the essential spectra and the Browder spectra of T , T |M and T̂M , see [115].

It is easily seen that the ascent and descent of the three operators are related as
follows:

p(T |M) ≤ p(T ) ≤ p(T |M)+ p(T̂M), (3.25)

and

q(T̂M) ≤ q(T ) ≤ q(T |M)+ q(T̂M). (3.26)

The next theorem shows that the property of being meromorphic for T , T |M and
T̂M are strongly related.

Theorem 3.66 Let T ∈ L(X). Then we have:
(i) If T := ⊕nk=1Tk . Then T is meromorphic if and only if Tk is meromorphic for

all 1 ≤ k ≤ n.
(ii) T is meromorphic if and only if the restriction T |M and T̂M are both

meromorphic.

Proof

(i) We have σ(T ) = ∪nk=1σ(Tk). For all 1 ≤ j ≤ n and λ ∈ C we have

p(λIj − Tj ) ≤ p(λI − T ) ≤
n∑
k=1

p(λkIk − Tk)

and

q(λIj − Ij ) ≤ q(λI − T ) ≤
n∑
k=1

q(λkIk − Tk),

see [291, Exercise 7, p. 293], so the statement follows.
(ii) The implication (⇐) is clear from the inequalities (3.25) and (3.26). Suppose

that T is meromorphic. We show first that (λI −T )(M) = M for all λ ∈ ρ(T ).
The inclusion (λI−T )(M) ⊆M is clear. Let |λ| > r(T ). If Rλ := (λI−T )−1,
from the well-known representation

Rλ =
∞∑
n=0

T n/λn+1
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it easily follows that Rλ(M) ⊆ M . For every x ′ ∈ M⊥ and x ∈ M let us
consider the analytic function λ ∈ ρ(T ) → x ′(Rλx). This function vanishes
outside the spectral disc of T , so, since ρ(T ) is connected, we infer from the
identity theorem for analytic functions that x ′(Rλx) = 0 for all λ ∈ ρ(T ).
Therefore Rλx ∈ M⊥⊥ = M and consequently

x = (λI − T )Rλx ∈ (λI − T )(M).
This shows that M ⊆ (λI − T )(M), and hence (λI − T )(M) = M for all
λ ∈ ρ(T ).

Now, λI − T is injective for all λ ∈ ρ(T ), so ρ(T ) ⊆ ρ(T |M) and hence

σap(T |M) = σ(T |M) ⊆ σ(T ) = σap(T ).

Now, let 0 �= λ ∈ σ(T |M). Then λ is isolated in σ(T ) and hence isolated in
σ(T |M) and p(λI − T |M) ≤ p(λI − T ) < ∞. Observe that λ is isolated in
σ(T ) and σ(T |M) forces λ to be isolated in σ(T̂M). Thus, since q(λI − T̂M) ≤
q(λI−T ) <∞, λI − T̂M is Drazin invertible (trivially, if λ ∈ σ(T̂M), λI − T̂M
is invertible). This forces λI−T |M to be Drazin invertible. Consequently, T |M
is meromorphic.

To show that T̂M is meromorphic, observe that λI − T ∗ is Drazin invertible
for every λ �= 0, and an argument similar to the above implies that the
restriction of T ∗ to the annihilatorM⊥ has spectrum σ(T ∗|M⊥) ⊆ σ(T ∗) and
λI − T ∗|M⊥ is Drazin invertible for all 0 �= λ ∈ σ(T ∗|M⊥). Identifying the
dual of T̂M with T ∗|M⊥ it follows that σ(T̂M) = σ(T̂M)∗ ⊆ σ(T ∗) and (T̂M)∗
is meromorphic, which implies that the bidual of T̂M is also meromorphic.
Finally, identifying T̂M with the restriction of the bidual of T̂M on X/M (X/M
is a closed subspace of (X/M)∗∗) under (T̂M)∗∗ it then follows that T̂M is
meromorphic. �

3.5 Algebraic Operators

In this section we study in more detail the class of algebraic operators, i.e.,
those operators T ∈ L(X) for which there exists a nontrivial polynomial h such
that h(T ) = 0. The algebraic operators find many applications in applied linear
algebra and they have been investigated by several mathematicians, see for instance
Aupetit [53].

We shall need the following lemma.

Lemma 3.67 Let T ∈ L(X) and let {λ1, · · · , λk} be a finite subset of C such that
λi �= λj for i �= j . Assume that {n1, · · · , nk} ⊂ N and set p(λ) :=∏ki=1(λi −λ)ni .
Then

ker p(T ) =
k⊕
i=1

ker (λiI − T )ni (3.27)
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and

p(T )(X) =
k⋂
i=1

(λiI − T )ni (X). (3.28)

Proof We shall show (3.27) for k = 2 and the general case then follows by
induction. Clearly ker (λiI − T )ni ⊆ ker p(T ) for i = 1, 2, so that if pi(T ) :=
(λiI − T )ni then

ker p1(T )+ ker p2(T ) ⊆ ker p(T ).

In order to show the converse inclusion, observe first that p1, p2 are relatively prime,
hence, by Lemma 1.13, there exist two polynomials q1, q2 such that

q1(T )p1(T )+ q2(T )p2(T ) = I.

Consequently, every x ∈ X admits the decomposition

x = q1(T )p1(T )x + q2(T )p2(T )x. (3.29)

Now if x ∈ ker p(T ) then

0 = p(T )x = p1(T )p2(T )x = p2(T )p1(T )x = p(T )x,

from which we deduce that p2(T )x ∈ ker p1(T ) and p1(T )x ∈ ker p2(T ).
Moreover, since every polynomial in T maps the subspaces ker (λiI − T )ni into
themselves, we have

x1 := q2(T )p2(T )x ∈ ker p1(T )

while

x2 := q1(T )p1(T )x ∈ ker p2(T ).

From the equality (3.29) we have x = x1 + x2, so

ker p(T ) ⊆ ker p1(T )+ ker p2(T ).

Therefore ker p(T ) = ker p1(T ) + ker p2(T ). It only remains to prove
that ker p1(T ) ∩ ker p2(T ) = {0}. This is an immediate consequence of the
identity (3.29).

As before we prove (3.27) only for n = 2. Evidently,

p(T )(X) = p1(T )p2(T )(X) = p2(T )p1(T )(X)
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is a subset of p1(T )(X), as well as a subset of p2(T )(X).
Conversely, suppose that x ∈ p1(T )(X) ∩ p2(T )(X) and let y ∈ X such that

x = p2(T )y. Then

p1(T )x = p(T )y ∈ p(T )(X).

Analogously p2(T )x ∈ p(T )(X). Let q1, q2 be two polynomials for which the
equality (3.29) holds. Then we have

x = q1(T )p1(T )x + q2(T )p2(T )x ∈ q1(T )p(T )(X)+ q2(T )p(T )(X)

= p(T )q1(T )(X)+ p(T )q2(T )(X) ⊆ p(T )(X)+ p(T )(X) ⊆ p(T )(X).

Hence

p1(T )(X) ∩ p2(T )(X) ⊆ p(T )(X),

and this completes the proof. �
Algebraic operators may be characterized in several ways:

Theorem 3.68 If T ∈ L(X) the following assertions are equivalent:
(i) λI − T is essentially right Drazin invertible for all λ ∈ C;

(ii) λI − T has finite descent for all λ ∈ C;
(iii) λI−T has finite descent for all λwhich belong to the boundary of the spectrum

∂σ(T );
(iv) The spectrum is a finite set of poles;
(v) T is algebraic.

Proof (i) ⇒ (ii) By duality we know that λI∗ − T ∗ is essentially left Drazin
invertible, hence upper semi B-Fredholm, for all λ ∈ C. Therefore, in the denotation
of Theorem 2.116, the setu(T ∗) has a unique component and consequently T ∗ has
the SVEP. Since λI − T is quasi-Fredholm, hence has topological uniform descent,
it then follows, by Theorem 2.98 that the descent q(λI − T ) is finite for all λ ∈ C.

(ii)⇒ (iii) is obvious.
(iii) ⇒ (iv) Observe first that T has the SVEP at every λ ∈ ∂σ(T ), so, by

Theorem 2.109, p(λI − T ) < ∞ for every λ ∈ ∂σ(T ), so λ is a pole, hence an
isolated point of σ(T ). This implies that σ(T ) = ∂σ(T ), hence σ(T ) is a finite set
of poles.

(iv) ⇒ (i) It suffices to prove that λI − T is semi B-Fredholm for all λ ∈ σ(T ).
Suppose that σ(T ) is a finite set of poles of R(λ, T ). If λ ∈ σ(T ), let P be the
spectral projection associated with the singleton {λ}. Then X = M ⊕ N , where
M := K(λI − T ) = ker P and N := H0(λI − T ), by Theorem 2.45. Since
I − T has positive finite ascent and descent, if p := p(λ0I − T ) = q(λI − T )
then N = ker(λI − T )p. From the classical Riesz functional calculus we know that
σ(T |M) = σ(T ) \ {λ}, so that (λI − T )|M is bijective, while (λI − T |N)p = 0.



256 3 Essential Spectra Under Perturbations

Therefore, by Theorem 1.119 λI − T is B-Fredholm for every λ ∈ C. In particular,
λI − T is upper semi B-Fredholm for every λ ∈ C, or equivalently, is essentially
left Drazin invertible for every λ ∈ C.

Therefore the statements (i)–(iv) are equivalent.
(iv) ⇒ (v) Assume that σ(T ) is a finite set of poles {λ1, . . . , λn}, where for every

i = 1, . . . , nwith pi we denote the order of λi . Let h(λ) := (λ1−λ)p1 . . . (λn−λ)pn .
Then by Lemma 3.67

h(T )(X) =
n⋂
i=1

(λiI − T )pi (X) =
n⋂
i=1

K(λiI − T ),

where the last equality follows from Theorem 2.98 since T has the SVEP. But the
last intersection is {0}, because if x ∈ K(λiI − T ) ∩ K(λj I − T ), with λi �= λj ,
then σT (x) ⊆ {λi} ∩ {λj } = ∅, and hence x = 0, since T has the SVEP. Therefore
h(T ) = 0.

(v) ⇒ (i) Let h be a polynomial such that h(T ) = 0. From the spectral
mapping theorem we easily deduce that σ(T ) is a finite set {λ1, . . . , λn}. The points
λ1, . . . , λn are zeros of finite multiplicities of h, say k1, · · · , kn, respectively, so that

h(λ) = (λ1 − λ)k1 . . . (λn − λ)kn ,

and hence, by Lemma 3.67,

X = kerh(T ) =
n⊕
i=1

ker(λiI − T )ki .

Now suppose that λ = λj for some j and define

h0(λ) :=
∏
i �=j
(λi − λ)ki .

We have

M := kerh0(T ) =
⊕
i �=j

ker(λiI − T )ki ,

and ifN := ker(λj I−T )kj thenX = M⊕N andM,N are invariant under λj I−T .
From the inclusion ker(λj I−T ) ⊆ ker(λj I−T )kj = N we infer that the restriction
of λj I − T onM is injective. It is easily seen that

(λj I − T )(ker(λiI − T )ki ) = ker(λiI − T )ki , i �= j,
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so (λj I −T )(M) =M . Therefore, the restriction of λj I−T onM is also surjective
and hence bijective. Obviously (λj I − T )|N)kj = 0, so, by Theorem 1.119, λI −
T is B-Fredholm when λ belongs to the spectrum, in particular is upper semi B-
Fredholm, or equivalently essentially left Drazin invertible. �

From Theorem 3.68 it immediately follows that:

Corollary 3.69 Every algebraic operator is meromorphic.

Evidently, every nilpotent operator is algebraic. A less trivial example of an
algebraic operator is provided by an operator K ∈ L(X) for which a power Kn

is finite-dimensional:

Corollary 3.70 Let K ∈ L(X) be such that Kn is finite-dimensional for some n ∈
N. Then K is algebraic.

Proof Kn is a Riesz operator and henceK is also a Riesz operator, by Theorem 3.7,
part (iv). Therefore, q(λI − T ) <∞ for all λ �= 0. On the other hand,Kn+1(X) ⊆
Kn(X) for all n ∈ N, and since Kn(X) is finite-dimensional it follows that q(K) <
∞. Therefore, by Theorem 3.68,K is algebraic. �

Now, we want to characterize the operators having a finite-dimensional power
among the class of all algebraic operators. We first need a preliminary lemma.

Lemma 3.71 Let T ∈ L(X) and let p1 and p2 be two relatively prime polynomials.
Then kerp1(T ) ⊆ p2(T )(X).

Proof Since p1 and p2 are two relatively prime polynomials there exist two
polynomial q1, q2 such that p1(λ)q1(λ) + p2(λ)q2(λ) = 1, so p1(T )q1(T ) +
p2(T )q2(T ) = I . Let x ∈ kerp1(T ). Then

x = q2(T )p2(T )x = p2(T )q2(T )x ∈ p2(T )(X).

�
Let P denote the set of all polynomials h(λ) := a0 + a1λ + · · · anλn with

an = 1. Operators which have a finite-dimensional power may be characterized in
the following way.

Theorem 3.72 Let T ∈ L(X). Then T has a finite-dimensional power if and only
if T is algebraic and dim ker h(T ) <∞ for all h ∈ P.

Proof Suppose that dimT n(X) < ∞ and set T̃ := T |T n(X). Let ν be the
characteristic polynomial of T̃ , so ν(T̃ ) = 0 and set ν0(λ) = λn ν0(λ). Then

ν0(T )x = T n ν(T )x = ν(T̃ ) T nx = 0 for all x ∈ X.

From Lemma 3.71, we have ker h(T ) ⊆ T n(X) for all h ∈ P. Moreover, T is
algebraic, by Corollary 3.70.
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Conversely, if dim ker h(T ) < ∞ for all h ∈ P and T is algebraic, then
ker h(T )n is finite-dimensional for all n ∈ N. �

The operators K for which a power is finite-dimensional may be characterized
among Riesz operators in the following way:

Theorem 3.73 Let K ∈ L(X). The following statements are equivalent:
(i) Kn is finite-dimensional for some n ∈ N;

(ii) K is Riesz and Drazin invertible;
(iii) K is Riesz and left Drazin invertible;
(iv) K is Riesz and right Drazin invertible;
(v) K is Riesz and essentially left Drazin invertible;

(vi) K is Riesz and essentially right Drazin invertible;
(vii) K is Riesz and q(K) <∞;

(viii) K is Riesz and has essential descent qe(K) <∞;
(viii) K is Riesz and has topological uniform descent.

Proof (i) ⇒ (ii) K is algebraic, by Corollary 3.70. The implications (ii) ⇒ (iii) ⇒
(v) are clear. We show (v) ⇒ (i). Suppose thatK is Riesz and essentially left Drazin
invertible. As observed in Remark 1.146, then the restriction Kn := K|Kn(X) is
upper semi-Fredholm. But K is a Riesz operator, so the restrictionKn is also Riesz,
by Theorem 3.7, so λI − Kn is upper semi-Fredholm for all λ ∈ C. This implies,
by Theorem 2.126, that Kn(X) is finite-dimensional.

Clearly, (ii) ⇒ (iv) ⇒ (vi) ⇒ (viii), and (ii) ⇒ (iv) ⇒ (vii) ⇒ (viii).
We show now the implication (viii) ⇒ (ix). Suppose thatK is Riesz and qe(K) <

∞ and set q := qe(K). ThenK(X)+ker Kq has finite-codimension inX, and since
the sequence {K(X)+ker Kn} is increasing, we infer that there exists a d ≥ q such
that K(X)+ ker Kn+1 = K(X)+ ker Kn for all n ≥ d . Note that the quantity

dim
Kd(X)

Kn(X)
= dim

Kd(X)

Kn+1(X)
+ dim

Kd+1(X)

Kd+2(X)
· · · + dim

Kn−1(X)

Kn(X)

is finite for all n d . Note that Kn(X) can be viewed as the operator range of the
restriction Kn−d |Kd(X) : Kd(X) → Kd(X), where Kd(X) is provided with the
range topology. From Corollary 1.7 it then follows that Kn(X) is closed in the
operator range topology of Kd(X) for all n > d . Therefore, K has topological
uniform descent.

(ix) ⇒ (i) Suppose that K is Riesz and has topological uniform descent. Then
K∗ is a Riesz operator, soK∗ has the SVEP at every λ ∈ C, in particularK∗ has the
SVEP at 0. By Theorem 2.98 then K has descent q := q(T ) < ∞. Consequently,
the dimension of the quotient space X

K(X)+ker Kn is zero and hence the induced

operator K̂ on X/ ker Kn, defined by

K̂(x + ker Kn) := Kx + ker Kn,
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is onto, and hence lower semi-Fredholm. Since K is Riesz, then K̂ is also Riesz, by
Theorem 3.7, hence λI − K̂ is lower semi-Fredholm for all λ ∈ C. Since the upper
semi-Fredholm spectrum of an operator acting on an infinite-dimensional space is
non-empty, see Theorem 2.126,X/Kn(X) is finite-dimensional, and, consequently,
Kn(X) has finite-dimension. �

Finite-dimensional Banach spaces may be characterized as follows:

Theorem 3.74 Let X be a Banach space. The following assertions are equiva-
lent:

(i) dimX <∞;
(ii) Every T ∈ L(X) has finite ascent;

(iii) Every T ∈ L(X) has finite essential descent.
Proof The implications (i) ⇒ (ii) ⇒ (iii) are obvious. Suppose that X has infinite
dimension and take an infinite sequence (xn) of linearly independent vectors of X
and suppose that (fn) is a sequence in X∗ such that fj (ei) = δij for all i, j ∈ N.
Define

T :=
∞∑
k=1

λkf2k ⊗ ek,

where (λk) is sequence of non-zero scalars such that the sum

∞∑
k=1

|λk|‖f2k‖‖ek‖ <∞.

The sequence (e2m+1k+2k ) consists of linearly independent vectors of the difference
ker T m+1 \ kerT m, hence T has infinite essential ascent. �
Lemma 3.75 Let T ∈ L(X) be essentially left Drazin invertible. Then the operator
T̃ induced by T on the quotient X/ ker T ν is both semi-regular and upper semi-
Fredholm.

Proof Clearly, ker T̃ has finite dimension and

T̃ (X/ ker T ν) = (T (X)+ ker T ν)/ ker T ν = (T −ν(T ν+1(X))/ ker T ν

is closed, so T̃ is upper semi-Fredholm. Now, since ker T ∩ T ν(X) = ker T ∩
T ν+n(X) for all n ∈ N, it is easy to see that ker T ν+1 ⊆ T n(X) + kerT ν

for all n ∈ N. Therefore ker T̃ is contained in the hyper-range of T̃ , thus T̃ is
semi-regular. �
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Theorem 3.76 Suppose that T ,K ∈ L(X) commutes and that Kn is finite-
dimensional for some n ∈ N. Then we have

(i) If T has finite essential ascent then T +K also has finite essential ascent.
(ii) If T is essentially left Drazin invertible then T + K is essentially left Drazin

invertible.

Proof

(i) Suppose that pe(T ) < ∞ and let ν := ν(T ). Given k ≥ n + ν, since T n+k
maps ker (T +K)k into Kn(X) it is clear that

dim ker(T +K)k/(ker(T +K)k ∩ kerT n+k) <∞.

Moreover, from

dim ker(T +K)k/(kerT ν) <∞,

we deduce that

dim ker(T +K)k/(ker(T +K)k ∩ kerT ν) <∞.

We also have

ker T n ∩ ker T ν ⊆ ker(T +K)k ∩ kerT ν ⊆ kerT ν

and, since Kn is finite-dimensional, we conclude that

dim kerT ν/(kerKn ∩ kerT ν) <∞.

From this we obtain

dim ker(T +K)k/(kerKn ∩ kerT ν) <∞,

which implies that pe(T +K) ≤ n+ ν.
(ii) By part (i) we have only to prove that if T pe(T )+1(X) is closed then (T +

K)pe(T+K)+1(X) is closed. From the equality (3.31) it suffices to prove that
(T +K)k(X) is closed for some k > n+ ν. Denote by T̃ and K̃ the operators
induced by T and K on X/T ν(X), respectively. By Lemma 3.75 we know that
T̃ is upper semi-Fredholm and since K is Riesz then K̃ is Riesz, so T̃ + K̃
is upper semi-Fredholm. Consequently, (T + K)k(X) + ker T ν is closed. To
conclude the proof, by Lemma 1.6 it suffices to prove that (T+K)k(X)∩ker T ν

is closed. Note that since (T +K)k maps ker T ν into Kn(X) we have that

dim ker T ν/(ker (T +K)k ∩ ker T ν) <∞.
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Therefore,

dim (T +K)k(X) ∩ ker T ν)/((T +K)k(X) ∩ ker (T +K)k ∩ ker T ν) <∞.

Since pe(T +K) <∞ it then follows that (T +K)k(X)∩ker (T +K)k is finite-
dimensional, consequently (T +K)k(X)∩ker T ν is also finite-dimensional, in
particular a closed subspace of X. �

Corollary 3.77 Suppose that T ,K ∈ L(X) commutes and that Kn is finite-
dimensional for some n ∈ N.

(i) If T is upper semi B-Fredholm then T +K is also upper semi B-Fredholm.
(ii) If T is lower semi B-Fredholm then T +K is also lower semi B-Fredholm.

Proof

(i) As noted in Remark 1.146, T is upper semi B-Fredholm if and only if T is
essentially left Drazin invertible, so this statement has already been proved in
Theorem 3.76.

(ii) Observe that (K∗)n is finite-dimensional. Indeed, Kn(X) is finite-dimensional
and hence a closed subspace of X, so, by the annihilator theorem

dim (K∗)n(X∗) = dim (ker Kn)⊥ = dimKn(X).

Obviously K∗T ∗ = T ∗K∗. Now, if T is lower semi B-Fredholm then T is
essentially right Drazin invertible, hence T ∗ is essentially left Drazin invertible,
so T ∗ + K∗ is essentially left Drazin invertible, by Theorem 3.76, and this
implies that T +K is lower semi B-Fredholm. �

A consequence of Corollary 3.77 is that the essential left Drazin spectrum and
the essential right Drazin spectrum are invariant under commuting perturbationsK
for which Kn is finite-dimensional for some n ∈ N. We show now that this is also
true for the Drazin spectra.

Theorem 3.78 The Drazin spectra σld(T ), σrd(T ), and σd(T ) are stable under
commuting perturbationsK for whichKn is finite-dimensional for some n ∈ N.

Proof Suppose that λ /∈ σld(T ). Then λI − T is left Drazin invertible, or
equivalently, upper semi B-Browder, in particular λ− T is upper semi B-Fredholm.
By Corollary 3.77 it then follows that λI − T +K is also lower semi B-Fredholm,
and hence quasi-Fredholm. Now, K is a Riesz operator, since Kn is Riesz. From
p(λI − T ) < ∞ we know that T has the SVEP at λ, and hence T + K has the
SVEP at λ, by Theorem 2.129. Since every quasi-Fredholm operator has topological
uniform descent, then, by Theorem 2.97, the SVEP of T + K at λ entails that
p(λI − (T +K)) <∞. By Theorem 1.142 we then conclude that λI − (T +K) is
left Drazin invertible, i.e., λ /∈ σld(T +K). Hence, σld(T +K) ⊆ σld(T ).
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By symmetry, the same argument shows that

σld(T ) = σld((T +K)−K) ⊆ σld(T +K).

Therefore, σld(T +K) = σld(T ).
The stability for the other spectra σrd(T ), and σd(T ) may be proved in a similar

way. �
Corollary 3.79 If T ∈ L(X) is meromorphic,K ∈ L(X) commutes with T andKn

is finite-dimensional for some n ∈ N, then T +K is meromorphic.

The descent spectrum σdesc(T ) (defined as the set of all λ ∈ C for which
q(λI − T ) is infinite) is also invariant under commuting perturbationsK for which
there exists a finite-dimensional power, see Kaashoek and Lay [194]. This property
characterizes those operators, i.e., Kn is finite-dimensional for some natural n
precisely when σdesc(T ) = σdesc(T + K) for all T ∈ L(X) which commutes with
K , see Burgos et al. [85]. Bel Hadj Fredj [149] has shown that this characterization
may be extended to the essential descent spectrum, i.e. Kn is finite-dimensional for
some natural n if and only if the essential descent spectra of T and of T+K coincide
for all T ∈ L(X) which commutes with K . Analogously, Kn is finite-dimensional
for some natural n if and only if the essential left Drazin spectra of T and of T +K
coincide for all T ∈ L(X) which commute with K , or, equivalently, the left Drazin
spectra of T and of T +K coincide for all T ∈ L(X) which commute with K , see
[150]. By duality, the same statement holds for the right Drazin spectrum.

It should be noted that the spectra σbw(T ), σbf(T ), σubw(T ) and σlbw(T ) are also
stable under commuting perturbations K for which Kn is finite-dimensional for
some n ∈ N. The proof of this is omitted, see [304].

We know that if λI−T has finite ascent then T has the SVEP at λ. The following
example reveals that this is not true for the essential ascent.

Example 3.80 It has been noted in Remark 2.64 that the left shift L on �2(N) fails
the SVEP at 0. It is easily seen that λI − L has essential finite ascent for all λ ∈ C,
since ker(λI − L) = {0} for |λ| ≥ 1, and ker (λI − T ) has dimension 1 for all
|λ| < 1.

We conclude this section by mentioning some recent results on the perturbation
class of algebraic operators due to Oudghiri and Souilah [254]. Denote by A(X) the
set of all algebraic operators on X.

Lemma 3.81 If K ∈ L(X) is algebraic and N ∈ L(X) is nilpotent and commutes
with K , then T +N is algebraic.

Proof Since K is algebraic we can write X = X1 ⊕ · · · ⊕ Xn, where Xj =
ker (λj I − K)mj , where the scalars λj are distinct. All the restrictions Kj :=
(λj I − K)|Xj are nilpotent, and K = (λ1 + K1) ⊕ · · · (λnI + Kn). Moreover,
every Xj is invariant under N . With respect the same decomposition of X we can
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write N = N1 ⊕ · · · ⊕Nn. Since every Nj is nilpotent and KjNj = NjKj it then
follows that Tj + Nj is nilpotent for every 1 ≤ j ≤ n, so K +N is algebraic. �

Let us consider the class of operators Pc(A(X)) of all T ∈ L(X) such that
T + S ∈ A(X) for all S ∈ A(X) which commute with T .

Theorem 3.82 We have

Pc(A(X)) = A(X).

Proof Evidently, Pc(A(X)) ⊆ A(X). To show the reverse inclusion suppose that
K,S ∈ A(X) and SK = KS. Then X = X1 ⊕ · · · ⊕ Xn, where Xj = ker(λj I −
K)mj and λj are distinct. The restriction KJ := (λj I − K)|Xj are nilpotent for
every j = 1, . . . n, and K = ⊕n

j=1(λj I + Kj). Since SK = KS, Xj is invariant
under S, and with respect to the decomposition above we can write S = S1 ⊕ · · · ⊕
Sn. From this one can easily see that every Kj + Sj is algebraic, thus K + S is
algebraic. �

The class A(X) of nilpotent operators is not stable under small perturbations:

Lemma 3.83 Let N ∈ L(X) be nilpotent. Then, for every ε > 0 there exists a
T ∈ L(X) for which ‖T ‖ < ε and T /∈ A(X).

Proof Since N is nilpotent then ker N is infinite-dimensional. Let 0 �= x0 ∈ ker N
and writeX = span {x0}⊕X0. Evidently,X0 is a closed subspace. Choose f0 ∈ X∗
such that f0(x0) = 1 and f0 ≡ 0 on X0. Let 0 �= x1 ∈ ker N ∩ X0 and write
X0 = span {x1} ⊕ X1. In particular, the vectors x0 and x1 are linearly independent,
and X = span {x0, x1} ⊕ X1. Hence there exists a linear form f1 ∈ X∗ which
satisfies

f1(xi) = δi1 for i = 0, 1 and f1(x) = 0 for x ∈ X1.

Note that f0(x1) = 0. Repeating this argument we then obtain two linearly
independent sets {xn} and {fn} such that fi(xj ) = δij for all i, j ≥ 0. Let ε > 0 and
define

T :=
∞∑
n=0

μnxn+1 ⊗ fn,

where the scalars μn satisfy

∞∑
n=0

|μn| ‖xn+1 ⊗ fn‖ < ε.
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We have

(T +K)nx0 = μ0 μ1 · · ·μn−1xn for every n ≥ 1,

so the set {T +K)jx0} for 0 ≤ j ≤ n is a linearly independent set, and this implies
that T +K is non-algebraic. �

The previous result has a remarkable consequence.

Corollary 3.84 If X is a Banach space then X is infinite-dimensional if and only if
L(X) contains a non-algebraic operator.

The class of all algebraic operators is not stable under small perturbations:

Theorem 3.85 Let K ∈ A(X). Then, for every ε > 0 there exists a T ∈ L(X) for
which ‖T ‖ < ε and T /∈ A(X). Consequently, the interior ofA(X) is empty.

Proof Let K ∈ A(X) and ε > 0. Write X = X1 ⊕ · · ·Xn, where Xj = ker(λj I −
K)mj , j = 1, . . . , n and λj �= λi for j �= i. The operatorsNj = (λj I −K)|Xj are
nilpotent and K = ⊕n

j=1(λj I + Nj ). Without loss of generality we may assume
dimX1 = ∞. Let P ∈ L(X) be the idempotent operator defined as P := I⊕0⊕0⊕
· · ·⊕0, with respect to the above decomposition ofX. By Lemma 3.83 there exists a
bounded operator T1 onX1 such that ‖T1‖ < ε‖P‖−1 and T1 +N1 is non-algebraic.
If we set T := T1 ⊕ 0 ⊕ · · · 0, we then have ‖T ‖ < ε and T /∈ A(X). �

Now, let us consider the perturbation class of A(X) defined as

P(S(X)) := {T ∈ L(X) : T + S ∈ A(X) for all S ∈ A(X)}.

In the case of Hilbert space operators we have:

Theorem 3.86 ([254, Theorem 2.1]) If H is an infinite-dimensional complex
Hilbert space, then

P(A(H)) = CI + F(H),

where F(H) is the ideal of finite-dimensional operators.

A natural question arises from the previous result: Does the result of Theo-
rem 3.86 hold for Banach spaces?

Theorem 3.87 ([254, Theorem 2.1]) If H is an infinite-dimensional complex
Hilbert space, then

P(A(H)) = CI + F(H),

where F(H) is the ideal of finite-dimensional operators.
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3.6 Essentially Left and Right Drazin Invertible Operators

In this section we will give further results concerning the Drazin spectra. To do this
we first need some preliminary results on essentially left and right Drazin invertible
operators, which have been defined in Chap. 1.

Define, as we have done in Chap. 1,

cn(T ) := dim
T n(X)

T n+1(X)
and c′n(T ) := dim

ker T n+1

ker T n
.

If the essential ascent pe(T ) is finite let us denote by ν(T ) the smallest positive
integer k with c′n(T ) = c′k(T ) for all n ≥ k. Clearly, pe(T ) ≤ ν(T ). Analogously if
the essential descent qe(T ) is finite, let μ(T ) denote the smallest positive integer k
with cn(T ) = ck(T ) for all n ≥ k. Clearly, qe(T ) ≤ μ(T ).
Lemma 3.88 Let T ∈ L(X) be semi-regular.
(i) If ker T finite-dimensional then dim kerT n = n dim kerT for all n ∈ N.

(ii) If T (X) has finite codimension then codimT n(X) = n codimT (X) for all n ∈
N.

Proof

(i) Let n ∈ N. Since ker T n−1 ⊆ T (X), T is a surjection from ker T n to ker T n−1,
hence dim ker T n = dim kerT + dim kerT n−1. The statement then follows by
induction.

(ii) Let n ≥ 2 and let S : X → X/T n(X) be the operator defined by

Sx := T n−1x + T n(X).

Since T is semi-regular we have

ker S = T (X)+ ker T n−1 = T (X),

consequently the quotient X/T (X) is isomorphic to T n−1(X)/T n(X). On the
other hand, we know that X/T n−1(X) × T n−1(X)/T n(X) is isomorphic to
X/T n(X), so X/T n−1(X)×X/T (X) is isomorphic to X/T n(X). Hence

codimT n(X) = codimT n−1(X)+ codimT (X),

and a successive repetition of this argument easily leads to the equality
codimT n(X) = n codimT (X) for all n ∈ N. �

Theorem 3.89 Let T ∈ L(X) be essentially left Drazin invertible. Then there exists
a δ > 0 such that λI − T is semi-regular for every 0 < |λ| < δ. Moreover,

(i) dim ker (λI − T )n = n dim ker T ν+1/ ker T ν for all n ∈ N.
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(ii) codim(λI − T )n(X) = n dimT ν(X)/T ν+1(X) for all n ∈ N.
Analogously, if T has finite essential descent then there exists a δ > 0 such

that λI − T is semi-regular for every 0 < |λ| < δ. Moreover,
(iii) dim ker (λI − T )n = n dim ker T μ+1/ ker T μ for all n ∈ N.
(iv) codim(λI − T )n(X) = n dimT μ(X)/T μ+1(X) for all n ∈ N.

Proof Suppose first that T is essentially left Drazin invertible. By Lemma 3.75 the
operator T̃ induced by T on Y := X/ ker T ν is both semi-regular and upper semi-
Fredholm. From part (iii) of Theorem 1.44, and from the punctured neighborhood
theorem for semi-Fredholm operators, we then have that there exists a δ > 0 such
that λĨ − T̃ is semi-regular and upper semi-Fredholm with

dim ker (λĨ − T̃ ) = dim ker T̃ for all |λ| < δ.

Fix λ ∈ C such that |λ| < δ. We have

ker (λĨ − T̃ )n = ker ((λI − T )nT ν)/ ker T ν = (ker (λI − T )n ⊕ ker T ν)/ ker T ν,
(3.30)

and

(λĨ−T̃ )(Y ) = ((λI−T )(X)+ker T ν)/ ker T ν = (λI−T )(X)/ ker T ν. (3.31)

Consequently, (λI − T )(X) is closed and contains the finite-dimensional subspace
ker (λI−T ) for all n ∈ N. From this it then follows that λI−T is both semi-regular
and upper semi-Fredholm. Moreover, by (3.30) and Lemma 3.88, we have

dim (λI − T )n(X) = dim (λĨ − T̃ )n(Y ) = n dim ker (λĨ − T̃ )
= n dim ker T̃ = n dim ker T ν+1/ ker T ν.

From the continuity of the index we then deduce that

codim (λI − T )n(X) = codim(λI − T )n(X)/ ker T ν = codim(λĨ − T̃ )n(Y )
= dim ker (λĨ − T̃ )n − ind (λĨ − T̃ )n
= n dim ker T̃ − ind (λĨ − T̃ )
= n dim ker T̃ − ind (T̃ ) = n codimT̃ (Y )

= n dimX/(T (X)+ ker T ν) = n dimT ν(X)/T ν+1(X),

for all n ∈ N.
Assume the other case that T has finite essential descent qe(T ). Define on T μ(X)

a new norm

|y| := ‖y‖ + inf {‖x‖ : y = T nx} for all y ∈ T μ(X).
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Then the space Y := T μ(X) equipped with this norm is a Banach space and
the restriction T0 := T (Y ) is semi-Fredholm, since the range of T0 is T μ+1(X)

which has finite codimension in Y = Tμ(X). Moreover, since qe(T ) < ∞, by
Theorem 1.74 we have

ker T ∩ T μ(X) = ker T ∩ T μ+n(X) for all n ∈ N,

and so

ker T0 = ker T ∩ T μ(X) = ker T ∩ T μ+n(X) ⊆ T μ+n(X) = T n0 (Y ),

which shows that T0 is also semi-regular. According to Theorem 1.44, let δ > 0 be
such that λI − T0 is both semi-Fredholm and semi-regular for |λ| < δ. We show
now that, without any restriction on T , we have

X = (λI − T )n + T μ(X) for all n ∈ N λ �= 0. (3.32)

Indeed, the two polynomials h(z) := (z − λ)n and k(z) := zμ have no common
divisors, so, by Lemma 1.13, there exist two polynomials u, v such that

I = h(T )u(T )+ k(T )v(T ),

from which we obtain the equality (3.32). Consequently, by Lemma 3.88, for each
0 < |λ| < δ we have

codim (λI − T )n(X) = dimX/(λI − T )n(X)
= dim ((T μ(X)+ (λI − T )n(X))/(λI − T )n(X))
= dim (T μ(X)/(T μ(X) ∩ (λI − T )n(X)))
= codim (λI − T0)

n(Y ) = n codim (λI − T0)(Y )

= n dimT μ(X)/T μ+1(X).

In particular, λI − T is semi-Fredholm. Moreover, for all k ∈ N we have

ker(λI − T ) = T μ(X) ∩ ker (λI − T ) = ker(λI − T0)

⊆ (λI − T0)
k(Y ) ⊆ (λI − T )k(X),

so λI − T is semi-regular. It remains to show part (iii). We have

dim ker (λI − T )n = ker(λI − T0) = ind (λI − T0)
n + codim (λI − T0)

n(Y )

= n [ind (λI − T0)+ codim (λI − T0)(Y )]
= n [ind T0 + codimT0(Y )] = n dim kerT0

= n dim (T μ(X) ∩ kerT ).
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Since T μ induces an isomorphism from ker T μ+1/ ker T μ onto T μ(X) ∩ kerT , it
then follows that

dim ker(λI − T )n = n dim (T μ(X) ∩ kerT ) = n dim (ker T μ+1/ ker T μ),

so the proof is complete. �
Taking into account the continuity of the index, from Theorem 3.89 we easily

deduce that a semi-Fredholm operator T has finite essential ascent if and only if
T ∈ �+(X). Note that, if T has a finite essential descent, then there exists a finite-
dimensional subspace M of X for which X = (λI − T )(X) ⊕M for every λ �= 0
sufficiently small. Indeed, arguing as in the second part of proof of Theorem 3.89,
since T0 is semi-regular and its range has finite codimension, there exists a δ > 0
and a finite-dimensional subspaceM for which

T μ(X) = (λ− T0)(Y )⊕M for all |λ| < δ.

Hence,

X = (λI − T )(X)+ T μ(X) = (λI − T )(X)⊕M for 0 < |λ| < δ.

Corollary 3.90 Suppose that T ∈ L(X) has finite ascent p := p(T ) and that
T p+1(X) is closed. Then there exists a δ > 0 such that for every 0 < |λ| < δ the
following assertions hold:

(i) λI − T is bounded below.
(ii) codim(λI − T )n(X) = n dim T p(X)/T p+1(X) for all n ∈ N.

Analogously, if T ∈ L(X) has finite descent q := q(T ) then there exists a δ > 0
such that for every 0 < |λ| < δ the following assertions hold:
(i) λI − T is onto.

(ii) dim ker (λI − T )n = n dim ker T q+1/ ker T p for all n ∈ N.

The essential left Drazin spectrum σeld(T ) of T ∈ L(X) is defined as the
complement of the essential resolvent ascent ρeld(T ), defined as the set of all λ ∈ C

such that λI − T is essentially left Drazin invertible. In a similar way the essential
right Drazin spectrum σerd(T ) of T ∈ L(X) is defined as the complement of the set
ρerd(T ), defined as the set of all λ ∈ C such that λI − T is essentially right Drazin
invertible. Clearly, σeld(T ) is a subset of σld(T ), while σerd(T ) is a subset of σrd(T ).

Corollary 3.91 The essential left Drazin spectrum, the essential right Drazin
spectrum, the left Drazin spectrum and the right Drazin spectrum are compact
subsets of C.

Denote by �(T ) the set of poles of T and by ρld(T ) the set of all λ ∈ C such
that λI − T is left Drazin invertible.
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Lemma 3.92 If T ∈ L(X) then

ρeld(T ) ∩ ∂σ(T ) = ρld(T ) ∩ ∂σ(T ) = �(T ),

and

ρerd(T ) ∩ ∂σ(T ) = ρrd(T ) ∩ ∂σ(T ) = �(T ).

Proof The inclusion

�(T ) ⊆ ρld(T ) ∩ ∂σ(T ) = ρeld(T ) ∩ ∂σ(T )

is clear. Now, let λ0 ∈ ρeld(T ) ∩ ∂σ(T ) be arbitrary and let ν := ν(T ) be defined as
before. By Theorem 3.89 there exists a punctured neighborhoodU of λ0 such that

dim ker(λI − T ) = dim ker(λ0I − T )ν+1/ ker(λ0I − T )ν,

and

codim (λI − T )(X) = dim (λ0I − T )ν(X)/(λ0I − T )ν+1(X)

for all λ ∈ U . Since U \ σ(T ) is non-empty, we then have

dim ker(λ0I−T )ν+1/ ker(λ0I−T )ν = dim (λ0I−T )ν(X)/(λ0I−T )ν+1(X) = 0,

thus λ0I − T has finite ascent and descent, i.e., λ0 is a pole of the resolvent of T .
The proof concerning essentially right Drazin invertible operators is analogous. �

Algebraic operators may be characterized in the following way.

Theorem 3.93 If T ∈ L(X) then the following statements are equivalent:
(i) T is algebraic;

(ii) σld(T ) = ∅;
(iii) σeld(T ) = ∅;
(iv) ∂σ(T ) ∩ σeld(T ) = ∅;
(v) σrd(T ) = ∅.
Proof If T is algebraic then σ(T ) is a finite set of poles, so λI − T is left Drazin
invertible for all λ ∈ C. Hence the implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) hold.
Assume (iv). By Lemma 3.92 we have ∂σ(T ) = �(T ), and this implies that σ(T ) =
∂σ(T ), so σ(T ) is a finite set of poles and hence, by Theorem 3.68, T is algebraic.
Therefore, the statements (i)–(iv) are equivalent.

(i) ⇔ (v) T is algebraic if and only if T ∗ is algebraic. From the first part of the
proof, T ∗ is algebraic if and only if σld(T

∗) = ∅. The equivalence then follows from
the equality σrd(T ) = σld(T

∗). �
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As in Chap. 2, set

�(T ) := {λ ∈ C : T fails to have the SVEP at λ} .

The next result shows that the left Drazin spectrum and the essential left Drazin
spectrum coincide if T has the SVEP.

Theorem 3.94 For every T ∈ L(X) we have σld(T ) = σeld(T )∪�(T ). If T has the
SVEP then σld(T ) = σeld(T ) ⊆ σeld(T ∗).

Proof Clearly, σeld(T )∪�(T ) ⊆ σld(T ). The opposite inclusion easily follows from
Corollary 2.99. Hence if T has the SVEP then σld(T ) = σeld(T ). Let λ0 /∈ σeld(T ∗)
be arbitrary, and suppose that T has the SVEP. Let ν := ν(λ0I − T ∗), according to
the definition before Lemma 3.75. From Theorem 3.89 we know that for all λ which
belong to a small punctured open disc centered at λ0, λI − T ∗, and hence λI − T ,
is semi-Fredholm with

dim ker(λI − T ) = codim (λI − T ∗)(X∗)

= dim (λ0I − T ∗)ν(X∗)/(λ0I − T ∗)ν+1(X∗)

= dim ker(λ0I − T ) ∩ (λ0I − T )ν(X)
= dim (ker(λ0I − T )ν+1/ ker(λ0I − T )ν).

Since T has the SVEP the index of λI − T is less than or equal to 0, by
Corollary 2.106. This implies that

dim ker(λI − T ) = dim (ker(λ0I − T )ν+1/ ker(λ0I − T )ν) <∞,

thus λ0 /∈ σeld(T ). �
In the sequel we will give further results for the productsRT and T R of operators

T ,R ∈ L(X). First we need some preliminary results.

Theorem 3.95 Let T ,R ∈ L(X) and λ �= 0. Then we have:

(i) p(λI − T R) = p(λI − RT ).
(ii) q(λI − TR) = q(λI − RT ).

(iii) If n ∈ N then (λI −T R)n(X) is closed if and only if (λI −RT )n(X) is closed.
Proof

(i) Let x ∈ ker (λI − RT )n but x /∈ ker (λI − RT )n−1. We show that T x ∈
ker (λI − T R)n, but T x /∈ ker (λI − TR)n−1. Notice that

(λI − RT )nx = 0 = T (λI − RT )nx = (λI − TR)nT x,

and consequently that T x ∈ ker (λI − TR)n.
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Assume now that T x ∈ ker (λI − TR)n−1. We have

(λI − T R)n−1T x = 0 = T (λI − RT )n−1x,

where (λI − RT )n−1x �= 0. Hence,

(λI − RT )(λI − RT )n−1x = 0 = RT (λI − RT )n−1x − λ(λI − RT )n−1x

= λ(λI − RT )n−1x.

Since λ �= 0, this contradicts the fact that (λI − RT )n−1x �= 0. Therefore,
T x /∈ ker (λI − TR)n−1 and hence, p(λI − T R) ≤ p(λI −RT ). In a similar
fashion we obtain the reverse inequality, so (i) is proved.

(ii) Suppose that y ∈ (λI − T R)n−1(X) and y /∈ (λI − TR)n(X). We show that
Ry ∈ (λI − RT )n−1(X) and Ry /∈ (λI − RT )n(X). There exists an x ∈ X
such that (λI − TR)n−1x = y, so

(λI − RT )n−1Rx = Ry,

and

Ry ∈ (λI − RT )n−1(X).

Assume that Ry ∈ (λI − RT )n(X). Then there exists a z ∈ X with

(λI − T R)y = T (λI − RT )nz− λy.

Since y ∈ (λI − TR)n−1(X) we have (λI − TR)y ∈ (λI − T R)n(X), hence

y = 1

λ
[(λI − T R)T z− (λI − TR)y] ∈ (λI − TR)n(X),

and this is a contradiction. Thus Ry /∈ (λI − RT )n(X) and consequently,
q(λI − T R) ≤ q(λI −RT ). Similarly, q(λI −RT ) ≤ q(λI − T R), so (ii) is
proved.

(iii) Assume that (λI − TR)n(X) is closed for some n ∈ N. Let y ∈ X such
that (λI − RT )nxk → y as k → ∞. Since (λI − RT )nT xk → Ty and
(λI − T R)n(X) is closed, there exists a z ∈ X such that Ty = (λI − T R)nz.
Now,

λy = (λI − RT )y + RTy = (λI − RT )y + R(λI − T R)nz
= (λI − RT )y + (λI − RT )nRz,
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thus, y ∈ (λI − RT )(X) and there exists a u ∈ X such that y = (λI − RT )u.
From this we obtain

λy = (λI − RT )y + RTy = (λI − RT )2u+ (λI − RT )nRz,

and y ∈ (λI − RT )2(X). By continuing this argument, it then follows that
y ∈ (λI − RT )n(X), so (λI − RT )n(X) is closed. The converse follows by
symmetry. �

We now consider the case where λ = 0.

Lemma 3.96 If T ,R ∈ L(X) then:
(i) p(T R)− 1 ≤ p(RT ) ≤ p(T R)+ 1.

(ii) q(T R)− 1 ≤ q(RT ) ≤ q(T R)+ 1.

Proof

(i) Suppose that p(RT ) := p < ∞. We show first that p(T R) − 1 ≤ p. Suppose
that this is not true, i.e., p(T R) > p + 1. Then there exists a y ∈ ker (T R)p+2

such that y /∈ ker (T R)p+1. We have

(RT )p+2Ry = R(T R)p+1TRy = R(T R)p+2y = 0,

and from

T (RT )pRy = (T R)p+1 �= 0

we obtain that (RT )pRy �= 0. Thus, Ry ∈ ker (RT )p+2 but Ry /∈ ker (R)Sp ,
a contradiction.

To show that p(RT ) ≤ p(T R) + 1, let p(T R) := p < ∞ and suppose
that p(RT ) > p + 1. Then there exists an x ∈ ker (RT )p+2 such that x /∈
ker (RT )p+1. We have

(T R)p+2T x = T (RT )p+2x = 0,

and from

R(T R)pT x = R(T R)pT x = (RT )p+1x �= 0

we deduce that (T R)pT x �= 0. Thus T x ∈ ker (T R)p+2 and T x /∈ ker (T R)p ,
which is impossible. Therefore, p(RT ) ≤ p(T R)+ 1.

(ii) Let q := q(RT ) <∞. To show q(RT ) ≤ q + 1, suppose that q(RT ) > q + 1.
Then there exists a y ∈ (T R)q+1(X) such that y /∈ (T R)q+2(X). Now, let
z ∈ X be such that

y = (T R)q+1z = T (RT )qRz,
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and consider the element

u := (RT )qRz ∈ (RT )q(X) = (RT )q+2(X).

Then y = T u, so there exists a w ∈ X such that

y = T (RT )q+2w = (T R)q+2T w ∈ (T R)q+2(X)

and this is impossible. Therefore, p(RT ) ≤ p(T R)+ 1 is proved.
To complete the proof, suppose that q := q(T R) < ∞ and that q(RT ) >

q + 1. Then there exists an x ∈ (RT )q+1(X) such that x /∈ (RT )q+2(X). Let
v ∈ X such that

x = (RT )q+1v = R(T R)qT v,

and set

t := (T R)qT v ∈ (T R)q(X) = (T R)q+2(X).

Then there exists an s ∈ X such that

x = (R(T R)q+2s = (RT )q+2Rs ∈ (RT )q+2(X),

and this is impossible. Therefore, q(RT ) ≤ q + 1. �
Example 3.97 An elementary example shows that we may have p(T R) �= p(RT )

and q(T R) �= q(RT ). Let us consider the 2 × 2 matrices

T :=
(

0 1
0 0

)
and R :=

(
0 0
0 1

)
.

Then

T R =
(

0 1
0 0

)
and RT =

(
0 0
0 0

)
,

and it is easy to check that p(T R) = q(T R) = 2, while p(RT ) = q(RT ) = 1.

Theorem 3.98 Let T ,R ∈ L(X). Then the nonzero points of the Weyl spectra,
or the nonzero points of the Browder spectra, of T R and RT are the same.
Furthermore,

σd(T R) = σd(RT ), σld(T R) = σld(RT ), σld(T R) = σld(RT ).
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Proof The assertion concerning Weyl spectra is a consequence of Theorem 2.149.
The assertion concerning Browder spectra is a consequence of Theorem 3.95. The
assertion concerning the Drazin spectra is a consequence of Theorem 3.95 and
Lemma 3.96. �

From Theorem 3.68 we know that T ∈ L(X) is algebraic if and only if σd(T ) =
∅, while T is meromorphic if σd(T ) ⊆ {0}. An easy consequence of Theorem 3.98
is the following corollary:

Corollary 3.99 Let T ,R ∈ L(X). Then we have:
(i) T R is meromorphic if and only if RT is meromorphic.

(ii) T R is algebraic if and only if RT is algebraic.

Lemma 3.100 Let T ,R ∈ L(X) and λ �= 0. Then T (ker (I−RT )) = ker (I−TR).
Proof Let x ∈ ker (I−RT ), so RT x = x. Then TRT x = T x, and thus, T (ker (I−
RT )) ⊆ ker (I − T R). To verify the opposite inclusion, suppose that y ∈ ker (I −
TR). Arguing as above then

R(ker (I − TR)) ⊆ ker (I − RT ).

Therefore, Ry ∈ ker (I − RT ), and hence y = T Ry ∈ T (ker (I − RT )). �
Also the non-zero points of the essential Drazin spectra of RS and SR,

respectively, are the same:

Theorem 3.101 If T ,R ∈ L(X) then

σeld(T R) \ {0} = σeld(RT ) \ {0} and σerd(T R) \ {0} = σerd(RT ) \ {0}.

Proof By part (iii) of Theorem 3.95 we have only to show that the essential ascent,
or the essential descent, of λI − RT and λI − T R, with λ �= 0, are equal. We can
take λ = 1. Observe that if for every integer n ≥ 0 we set

Un :=
n+1∑
k=1

(−1)k−1
(
n+ 1

k

)
R(T R)k−1,

then by direct computation we obtain.

(I − T R)n+1 = I − TUn and (I − RT )n+1 = I − UnT .

Now, by Lemma 3.100 we have

T (ker (I − UnT )) = ker (I − TUn) for all n ∈ N,
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so the operator S̃ induced by T from ker (I−Un+1T )

ker(I−UnT ) to ker (I−T Un+1)

ker(I−T Un) is onto. Because

kerT ∩ ker(I − Un+1) = {0}, it then follows that S̃ is an isomorphism, so the
essential ascent of pe(I − RT ) and pe(I − T R) coincide.

The assertion concerning the essential right Drazin spectrum is obtained by
duality. �

Recall that, by Theorem 1.125, if F(X) is the ideal of all finite-dimensional
operators in L(X) and π : L(X) → L = L(X)/F(X) is the quotient mapping, then
T ∈ L(X) is B-Fredholm if and only if π(T ) is a Drazin invertible element of the
algebra L.

Theorem 3.102 Let T ,R ∈ L(X). Then T R is B-Fredholm if and only if RT is
B-Fredholm. In this case, ind (T R) = ind (RT ). Moreover, T R is B-Weyl if and
only if RT is B-Weyl.

Proof If TR is B-Fredholm then π(T R) = π(T )π(R) is Drazin invertible in L. By
Theorem 1.124 then π(RT ) = π(R)π(T ) is Drazin invertible in L, or equivalently,
by Theorem 1.125, TR is B-Fredholm. To show that the indexes of T R and RT are
the same, recall that, since T R and RT are B-Fredholm, by Theorem 1.117 we have
that 1

n
I − T R and 1

n
I − RT are both Fredholm, for n sufficiently large. Moreover,

ind (T R) = ind

(
1

n
I − T R

)
and ind (RT ) = ind

(
1

n
I − RT

)
.

An obvious consequence of Theorem 2.150 is that

ind (T R) = ind

(
1

n
I − TR

)
= ind

(
1

n
I − RT

)
= ind (RT ).

�

3.7 Regularities

It is well known that the spectral mapping theorem holds for T , see [179,
Theorem 48.2], i.e.,

σ(f (T )) = f (σ(T )) for all f ∈ H(σ (T )).

It is natural to ask whether the spectral theorem holds for all, or for some,
of the spectra previously defined. A straightforward consequence of the Atkinson
characterization of Fredholm operators shows that the spectral mapping theorem
holds for the essential spectrum σe(T ), i.e.

f (σe(T )) = σe(f (T )) for all f ∈ H(σ (T )).
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We have

σb(T )) = σe(T ) ∪ acc σ(T ).

Indeed, σe(T ) ⊆ σb(T ), and accσ(T ) ⊆ σb(T ), since every λ /∈ σb(T ) is an
isolated point of the spectrum. Conversely, if λ ∈ σe(T ) ∪ accσ(T ), then either
λI − T /∈ �(X), or λ /∈ iso σ(T ), and in both cases λI − T cannot be Browder.
An analogous argument shows the following two equalities, just take into account
Theorem 2.101:

σub(T )) = σusf(T ) ∪ accσap(T ) and σlb(T )) = σlsf(T ) ∪ acc σs(T ).

From the analyticity of the function f ∈ H(σ (T )), it is easily seen that
f (acc σ(T )) = acc (f (σ (T )). Therefore,

f (σb(T )) = f (σe(T ) ∪ accσ(T )) = f (σe(T )) ∪ f (acc σ(T ))

= σe(f (T )) ∪ acc (f (σ (T )) = σb(f (T )),

so the spectral mapping theorem also holds for the Browder spectrum.
The following example shows that the spectral theorem in general does not hold

for the Weyl spectrum σw(T ).

Example 3.103 Let T := R ⊕ (R∗ + 2I), where R is the right unilateral shift in
�2(N). Then R∗ is the left unilateral shift in �2(N). Set f (λ) := (λ(λ− 2). Then

f (T ) = T (T − 2I) = [R ⊕ (R∗ + 2I)][R − 2I ] ⊕ R∗.

Since ind (R) = −1, and both R∗ + 2I , R − 2I) are invertible, it then follows that
T as well as T − 2I are Fredholm, ind(T ) = −1 and ind (T − 2I) = 1. We have

ind f (T ) = ind(T )+ ind (T − 2I) = 0,

so f (T ) is Weyl, hence 0 /∈ σw(f (T )), whereas 0 = f (0) ∈ f (σw(T )).

The last example shows that the notion of Weyl spectrum does not derive from
the notion of invertibility in some algebras, since in this case the spectral mapping
theorem holds for all polynomials, see Dieudonné [110].

However, we show now that the spectral mapping theorem holds for many other
kinds of spectra which originate from Fredholm theory. To do this, we briefly outline
an axiomatic theory of the spectrum, in particular we introduce the concept of
regularity. This concept may be introduced in the more general context of Banach
algebras.

Let A be a unital Banach algebra with unit u, and let us denote by invA the set
of all invertible elements.
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Definition 3.104 A non-empty subset R of A is said to be a regularity if the
following conditions are satisfied:

(i) a ∈ R ⇔ an ∈ R for all n ∈ N.
(ii) If a, b, c, d are mutually commuting elements of A and ac+ bd = u then

ab ∈ R ⇔ a ∈ R and b ∈ R.

Denote by invA the set of all invertible elements of A. It is easily seen that if R
is a regularity then u ∈ R and invA ⊆ R. Moreover, if a, b ∈ A, ab = ba, and
a ∈ invA, then

ab ∈ R ⇔ b ∈ R. (3.33)

In fact a a−1 + b 0 = u, so property (ii) above applies.
It is easy to verify the following criterion.

Theorem 3.105 Let R �= ∅ be a subset of A. Suppose that for all commuting
elements a, b ∈ A we have

ab ∈ R ⇔ a ∈ R and b ∈ R. (3.34)

Then R is a regularity.

Denote by

σR(a) := {λ ∈ C : λu− a /∈ R}

the spectrum corresponding to the regularity R. Obviously, invA is a regularity
by Theorem 3.105, and the corresponding spectrum is the ordinary spectrum. Note
that σR(a) may be empty. For instance, if A := L(X) and R = L(X), or if T ∈
L(X) is algebraic and R is the set of all Drazin invertible operators (see below).
Indeed, σd(T ) is empty since the spectrum is a finite set of poles, by Theorem 3.68.
In particular, σd(N) = ∅ for every nilpotent operator N , since N is algebraic. In
general, σR(a) is not compact, and σR(a) ⊆ σ(a) for every regularity R and a ∈ A.
The proof of the following result is immediate.

Theorem 3.106 The intersection R of a family (Rα)α of regularities is again a
regularity. Moreover,

σR(a) =
⋃
α

σRα (a), a ∈ A.

The union R of a directed system of regularities (Rα)α is again a regularity.
Moreover,

σR(a) =
⋂
α

σRα (a), a ∈ A.
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Let Hnc(σ (a)) denote the set of all analytic functions, defined on an open
neighborhood of σ(a), such that f is non-constant on each of the components of
its domain.

Theorem 3.107 Suppose that R is a regularity in a Banach algebra A with unit u.
Then σR(f (a)) = f (σR(a)) for every a ∈ A and every f ∈ Hnc(σ (a)).

Proof It is sufficient to prove that

μ /∈ σR(f (a))⇔ μ /∈ f (σR(a)). (3.35)

Since f (λ) − μ has only a finite number of zeros λ1, . . . , λn in the compact set
σ(a), we can write

f (λ)− μ = (λ− λ1)
ν1 · · · (λ− λn)νn · g(λ),

where g is an analytic function defined on an open set containing σ(a) and g(λ) �= 0
for λ ∈ σ(a). Then

f (a)− μu = (a − λ1u)
ν1 · · · (a − λnu)νn · g(a),

with g(a) invertible by the spectral mapping theorem for the ordinary spectrum.
Therefore, (3.35) is equivalent to

f (a)− μu ∈ R ⇔ a − λku ∈ R for all k = 1, . . . n. (3.36)

But g(a) is invertible, so, by (3.33) and by the definition of a regularity, the
equivalence (3.36) holds if and only if

(a−λ1u)
ν1 · · · (a−λnu)νn ∈ R ⇔ (a−λk)νk ∈ R for all k = 1, . . . n. (3.37)

To show (3.37) observe first that for all relatively prime polynomials p, q there exist
polynomials p1, q1 such that pp1 +qq1 = 1 and we have p(a)p1(a)+q(a)q1(a) =
u. Applying property (ii) of Definition 3.104 we then obtain, by induction, that the
equivalence (3.37) holds. �

In the assumptions of Theorem 3.107 the condition that f is non-constant on
each component cannot dropped. In fact, the spectral mapping theorem for constant
functions cannot be true if σR(a) = ∅ for some a ∈ A and 0 /∈ R.

Now we give, in the case ofA = L(X), a criterion which ensures that the spectral
mapping theorem holds for all analytic functions f ∈ H(σ (T )), defined on an open
neighborhood of σ(a). Let us consider a regularity R(X) ⊆ L(X) and let X1, X2
be a pair of closed subspaces of X for which X = X1 ⊕X2. Define

R1 := {T1 ∈ L(X1) : T1 ⊕ IX2 ∈ R}
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and

R2 := {T2 ∈ L(X2) : IX1 ⊕ T2 ∈ R}.

It is easy to see that if X1 �= 0, both R1 and R2 are regularities in L(X1) and L(X2),
respectively. Now, assume that a regularity R satisfies the following condition:

σR1(T1) �= ∅ for all T1 ∈ L(X1) and R1 �= L(X1). (3.38)

It is easily seen that if R satisfies the condition (3.38) then we have

σR(T ) = σR1(T1) ∪ σR2(T2). (3.39)

The proof of the following result may be found in [243, Chapter 6].

Theorem 3.108 Let R be a regularity in L(X), and suppose that for all closed
subspaces X1 and X2, X = X1 ⊕ X2, such that the regularity R1 �= L(X1) and
σR1(T1) �= ∅ for all T1 ∈ L(X1). Then

σR(f (T )) = f (σR(T ))

for every T ∈ L(X) and every f ∈ H(σ (T )).

In many situations a regularity decomposes as required in Theorem 3.108. For
instance, if R := {T ∈ L(X) : T is onto} and X = X1 ⊕ X2 then Ri = {Ti ∈
L(Xi) : Ti is onto}, i = 1, 2, and T1 ⊕T2 is onto if and only if T1, T2 are onto. Thus
the spectral mapping theorem for all f ∈ H(σ (T )) is reduced, by Theorem 3.108,
to the question of the non-emptiness of the spectrum.

The axioms of regularity are usually rather easy to verify and there are many
classes of operators in Fredholm theory satisfying them. An excellent survey
concerning the regularity of various classes of bounded linear operators in Banach
spaces may be found in Mbekhta and Müller [235].

In the sequel we just list some of these classes. Let us consider the following
sets:

(1) R1 := {T ∈ L(X) : T is bounded below}. In this case σR1(T ) = σap(T ).
(2) R2 := {T ∈ L(X) : T is onto}. In this case σR2(T ) = σs(T ).
(3) R3 := {T ∈ L(X) : T ∈ �(X)}. In this case σR3(T ) = σe(T ) is the essential

spectrum.
(4) R4 := �+(X). The corresponding spectrum is the upper semi-Fredholm

spectrum σusf(T ), also known in the literature as the essential approximate
point spectrum.

(5) R5 := �−(X). The corresponding spectrum is the lower semi-Fredholm
spectrum σlsf(T ), also known in the literature as the essential surjective
spectrum.
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(6) R6 := B+(X). The corresponding spectrum is the upper semi-Browder
spectrum σub(T ).

(7) R7 := B−(X). The corresponding spectrum is the lower semi-Browder
spectrum σlb(T ).

(8) R8 := B(X). The corresponding spectrum is the Browder spectrum σb(T ).
(9) R9 := {T ∈ L(X) : T is semi-regular}. In this case σR9(T ) is the semi-regular

spectrum, also known as the Kato spectrum.
(10) R10 := {T ∈ L(X) : T is essentially semi-regular}. In this case σR9(T ) is the

essentially semi-regular spectrum.
(11) The complemented version of semi-regular operators is given by Saphar

operators. A bounded operator T ∈ L(X) is said to be Saphar if T is both
semi-regular and relatively regular (i.e. there exists an S ∈ L(X) such that
T ST = T ), see for details [274] or [245, Chapter II]. Obviously, in a Hilbert
space, since every closed subspace is complemented, T ∈ L(H) is Saphar if
and only if T is semi-regular. If

R11 := {T ∈ L(X) : T is Saphar},

the corresponding spectrum σR11(T ) is called the Saphar spectrum.
(12) R12 := {T ∈ L(X) : T is Drazin invertible}. In this case σR12(T ) is the Drazin

spectrum.
(13) R13 := {T ∈ L(X) : T is left Drazin invertible}. In this case σR13(T ) is the

left Drazin spectrum.
(13) R14 := {T ∈ L(X) : T is right Drazin invertible}. In this case σR14(T ) is the

right Drazin spectrum.
(14) R15 := {T ∈ L(X) : T is essentially right Drazin invertible}. In this case σR15

is the essential right Drazin spectrum.
(15) R16 := {T ∈ L(X) : T is essentially left Drazin invertible}. In this case σR16

is the essential left Drazin spectrum.
(16) R17 := {T ∈ L(X) : T is quasi-Fredholm}. In this case the spectrum σR17 is

the quasi-Fredholm spectrum σqf (T ).
(17) R18 := {T ∈ L(X) : T has topological uniform descent}.

All the sets Ri , i = 1, 2, . . . , 18 are regularities.

Theorem 3.109 If T ∈ L(X) and f ∈ H(σ (T )) then

σRi(f (T )) = f (σRi(T )) for all i = 1, 2, . . . , 10.

Moreover, if the function f is non-constant on each component of its domain of
definition then

σRi(f (T )) = f (σRi(T )) for all i = 11, . . . , 18.

Proof All the regularities Ri satisfy the conditions of Theorem 3.108, see Chap-
ter III of [243]. �
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The spectral mapping theorem for the Drazin spectrum entails the following
result:

Corollary 3.110 If T ∈ L(X) is meromorphic and f ∈ Hnc(σ (T )) such that
f (0) = 0 then f (T ) is meromorphic. The converse is true whenever f vanishes
only at 0.

Proof If T is meromorphic then σd(T ) ⊆ {0}, so σd(f (T )) = f (σd(T )) ⊆
f ({0}) ⊆ {0}, hence f (T ) is meromorphic. Conversely, assume that f (T ) is
meromorphic and that f vanishes only at 0. Then f (σd(T )) = σd(f (T )) ⊆ {0},
from which we obtain σd(T ) ⊆ {0}. �

We have already seen that, for some i, for the products TR and RT we have
σRi(T R)\ {0} = σRi(T R). This may be extended to every regularity Ri for 1 ≤ i ≤
16. More precisely, we have;

Theorem 3.111 Let T ,R ∈ L(X). Then σRi(T R) \ {0} = σRi(T R) \ {0} for every
1 ≤ i ≤ 18. Furthermore, for the B-Fredholm spectrum and the B-Weyl spectrum
we have

σbf(T R) = σbf(RT ) and σbw(T R) = σbw(RT ). (3.40)

For a proof, see Zeng and Zhong [303] and [301]. The equalities (3.40) are clear
from Theorem 3.102.

We have already observed that the spectral mapping theorem does not hold for
the Weyl spectrum. In order to give some sufficient conditions for which the spectral
mapping theorem holds for the Weyl spectra we introduce the abstract concept of a
�-semigroup.

Let A be a complex Banach algebra with identity u and J a closed two-sided
ideal of A. Let φ be the canonical homomorphism of A onto Â := A/J . Let us
denote by Ĝ the group of all invertible elements in Â.

Definition 3.112 An open semigroup S of A is said to be a �-semigroup if the
following properties hold:

(i) If a, b ∈ A and ab = ba ∈ S then a ∈ S and b ∈ S;
(ii) There exists a closed two-sided ideal J and an open semi-group R̂ in Â =

A/J such that Ĝ ⊆ R̂, R̂ \ Ĝ is open and S = φ−1(R̂).

Evidently, any�-semi-groupS contains all invertible elements ofA and S+J ⊆
S.

For every a ∈ S let us denote by Sa the component of S containing a. If b ∈ J
and

� := {a + tb : 0 ≤ t ≤ 1}
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is a path joining the two elements a and a+b then the inclusion S +J ⊆ S implies
that� ⊆ S. From this it follows that a+J ⊆ Sa . This also implies that S = S1∪S2,
where S1 and S2 are open disjoint subsets of S, so Si + J ⊆ Si for i = 1, 2.

The index on a �-semigroup S is defined as a locally constant homomorphism
of J into N. Evidently, if i : S → N is an index, then

i(a + b) = i(a) for all a ∈ S, b ∈ J .

The sets�(X), �+(X) and�−(X) satisfy condition (i) of Definition 3.112. The
Atkinson characterization of Fredholm operators establishes that �(X) = φ−1(Ĝ),
where Ĝ is the set of all invertible elements of Â := L(X)/K(X), so �(X)
also satisfies condition (ii) and hence is a �-semigroup of A = L(X). Since the
canonical homomorphism φ is an open mapping, it follows that�+(X) and�−(X)
are also �-semigroups of A := L(X)/K(X).

For every a ∈ A and a �-semigroup S of A let us consider the spectrum
generated by S:

σS (a) := {λ ∈ C : λu− a /∈ S}.

The following result establishes an abstract spectral mapping theorem for spectra
generated by �-semigroups. A proof of it may be found in [1, Theorem 3.60].

Theorem 3.113 Let A be a Banach algebra with identity u and S any �-
semigroup. Suppose that i : S → N is an index such that i(b) = 0 for all b ∈ invA.
If f is an analytic function on an open domainD containing σ(a), then the following
statements hold:

(i) f (a) ∈ S if and only if f (λ) �= 0 for all λ ∈ σS (a);
(ii) σS (f (a)) = f (σS (a)).

An immediate consequence of Theorem 3.113 is that the spectral mapping
theorem holds for the Fredholm spectrum σf(T ), for the upper semi-Fredholm
spectrum σuf(T ), and for the lower semi-Fredholm spectrum σuf(T ), since �(X),
�+(X) and �−(X) are �-semigroups.

Let a ∈ A and S be a �-semigroup of A with an index i. For every n ∈ N let us
define

�n := {λ ∈ σ(T ) : i(λu− a) = n}.

A proof of the following may be found in [1, Lemma 3.62].

Lemma 3.114 Suppose that f (a) ∈ S and let αn be the number of zeros of f on
�n, counted according to their multiplicities, ignoring components of �n where f
is identically 0. Then

i(f (a)) =
∑
n

nαn. (3.41)
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For the Weyl spectra we have, in general, only the following inclusion:

Theorem 3.115 Let T ∈ L(X) be a bounded operator on the Banach space X. If
f ∈ H(σ (T )), then the following inclusions hold:

(i) f (σsf(T )) ⊆ σsf(f (T ));
(ii) σw(f (T )) ⊆ f (σw(T ));

(iii) σuw(f (T )) ⊆ f (σuw(T ));
(iv) σlw(f (T )) ⊆ f (σlw(T )).

Proof

(i) We have

σsf(f (T )) = σuf(f (T )) ∩ σuf(f (T )) = gf (σuf(T )) ∩ f (σlf(T ))

⊇ f [σuf(T ) ∩ (σlf(T )] = f (σsf(T )).

(ii) For every n ∈ N define

�n(X) := {T ∈ �(X) : ind T = n},

and

�n := {λ ∈ C : λI − T ∈ �n(X)}.

Evidently

σw(T ) = σf(T ) ∪
⎛
⎝⋃
n�=0

�n

⎞
⎠ . (3.42)

Now, let μ /∈ f (σw(T )) be arbitrary given. Then μ − f (λ) has no zeros on
σw(T ), and in particular has no zero on σf(T ). From part (i) of Theorem 3.113,
applied to the �-semigroup �(X), we then conclude that μ − f (T ) ∈ �(X)
and

ind (μI − f (T )) =
∑
n�=0

nαn,

where αn is the number of isolated zeros ofμ−f (λ) on�n, counted according
to their multiplicities. From the equality (3.42) we deduce that αn = 0 for every
n �= 0. Therefore, ind (μI − f (T )) = 0 and hence μ /∈ σw(f (T )).

(iii) We consider first the case when f is non-constant on each of the components
of the domain of f . Let λ ∈ σuw(f (T )). Write

λI − f (T ) = �ni=1(μiI − T )ki h(T ),
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where the scalars μi are different and h(T ) is invertible. Then for some j ,
1 ≤ j ≤ n, we have μj ∈ σuw(T ). Hence λ = f (μj ) ∈ f (σuw(T )), so (iii) is
proved in this case.

Suppose now that f ∈ H(σ (T )) is arbitrarily given, and let λ ∈ σuwf ((T )).
If g(z) := λ− f (z) then g is defined on an open set U = U1 ∪U2, with U1 and
U2 open, U1 ∩ U2 = ∅, with

σ1 := σ(T ) ∩ U1 �= ∅, σ1 := σ(T ) ∩ U1 �= ∅,

and g ≡ 0 on U1, g|U2 non-constant on an open set containing σ2. Let P
be the spectral projection associated with σ2, and set T1 := T | ker P and
T2 := T |P(X). From the spectral canonical decomposition we then have
X = ker P ⊕ P(X) and σ(Ti) = σi , i = 1, 2.

Assume that λ /∈ f (σuw(T )). Then λ /∈ f (σuf(T )) = σuf(f (T )), since the
spectral mapping theorem holds for the upper semi-Fredholm spectrum and
σuf(T ) ⊆ σuw(T ). Hence λI−f (T ) ∈ �+(X), and according to Lemma 3.114
we have

ind g(T ) =
∑
n�=0

nαn,

where αn is the number of zeros of g on �n. Since

σuw(T ) = σuf(T ) ∪ {
⋃
n>0

�n},

and λ /∈ f (σuw(T )) it then follows that

ind (g(T ) =
∑
n<0

nαn < 0.

Hence λ /∈ σuw(f (T )), so (iii) is proved.
(iv) Proceed by duality. �

It is already noted that the equality σw(f (T )) = f (σw(T )) in general does not
hold. The following example shows that also in (i) of Theorem 3.115, the equality,
in general, is not satisfied.

Example 3.116 Let us consider an operator T ∈ L(X),X a Banach space, for which
(I + T )(X) is closed and that is such that

α(I + T ) <∞, β(I + T ) = ∞, α(I − T ) = ∞, β(I − T ) <∞.

Clearly I + T ∈ �+(X) and I − T ∈ �−(X), so {1,−1} ⊆ σsf(T ). Define

g(λ) := (1 + λ)(1 − λ).
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Then α(g(T )) = β(g(T )) = ∞, thus 0 ∈ σsf(g(T )). On the other hand, it is clear
that 0 /∈ g(σsf(T )). This shows that the equality (i) of Theorem 3.115 does not hold.

Let ρ∗(T ) denote one of the following resolvent sets ρf(T ) := C \ σf(T ),
ρuf(T ) := C \ σuf(T ), ρbf(T ) := C \ σbf(T ), and ρubf(T ) := C \ σubf(T ).

Definition 3.117 Let T ∈ L(X). We say that T has stable sign index on ρ∗(T ) if
for every λ,μ ∈ ρ∗(T ) the sign of ind(λI − T ) and the sign of ind(μI − T ) are the
same.

Remark 3.118 Recall that, by the index theorem (see Appendix A) if T , S ∈ �(X)
then T S ∈ �(X) with ind T S = ind T + ind S. Hence if T , S are Weyl operators
then T S is Weyl. Moreover, if T S = ST then T S ∈ �(X) if and only if T and S
are Fredholm. Analogously, if T , S ∈ �+(X) then ST ∈ �+(X). If T S = ST and
ST ∈ �+(X) then both T and S belong to �+(X).

Theorem 3.119 Let T ∈ L(X). Then the spectral mapping theorem holds for
σw(T ) if and only if T is of stable sign index on the Fredholm region ρf(T ).
Analogously, the spectral mapping theorem holds for σuw(T ) if and only if T is
of stable sign index on the upper semi-Fredholm region ρuf(T ).

Proof To prove the first assertion, suppose that T is of stable sign on ρf(T ). To show
that the spectral mapping theorem holds for σw(T ) we have only to prove, by part
(i) of Theorem 3.115, the inclusion

f (σw(T )) ⊆ σw(f (T )). (3.43)

Assume first that f is not identically zero in any component of its domain. Let
g(z) := λ − f (z) and write g(z) = u(z)h(z), where h has no zeros in σ(T ) and
p(z) := �ni=1(λi − λ)ki , ki the multiplicity of λi . Then g(T ) = λI − f (T ) =
p(T )h(T ), where h(T ) invertible. Suppose that λ /∈ σw(f (T )). Then p(T ) is
Weyl and hence all λiI − T are Fredholm operators for all i = 1, . . . , n. Clearly,
indh(T ) = 0, so we have

0 = ind g(T ) = indp(T )+ indh(T ) =
n∑
i=1

ki ind (λiI − T ).

Since T is of stable sign on ρf(T ), ind (λiI − T ) = 0 for every i = 1, . . . , n, so
λi /∈ σw(T ), and consequently λ /∈ f (σuw(T )). Therefore the inclusion (3.43) is
shown in this case.

In the general case, g is defined on an open set U = U1 ∪ U2, where U1 and
U2 are two disjoint open sets, g ≡ 0 on U1 and g is not identically zero in any
component of U2. Thus σ(T ) is the union of two disjoint compact sets σi ⊆ Ui ,
i = 1, 2. If P is the spectral projection associated with σ2 and we set X1 := ker P ,
X2 := P(X), Ti := T |Xi , by the spectral decomposition theorem we have X =
X1 ⊕ X2 and σ(Ti) = σi , i = 1, 2. But g ≡ 0 on σ1, so g(T1) = 0, thus g(T ) =
0 ⊕ g(T2) and g(T ) = g(T )P = Pg(T ). Further, P is a Weyl operator if and only
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if dimX1 < ∞ and this is equivalent to saying that σ1 is a finite set consisting of
eigenvalues of T of finite multiplicity. Hence, P is Weyl if and only if σw(T ) ∩
U1 = ∅. Since codimP(X) = dim ker P , and taking into account Remark 3.118,
we then conclude that g(T ) is a Weyl operator if and only if both P and g(T2)

are Weyl operators. These arguments then show that λ ∈ f (σw(T ) precisely when
λ ∈ σw(f (T )). Therefore, the inclusion (3.43) is proved for every f ∈ H(σ (T )).

Assume now that the spectral mapping theorem holds for σw(T ) and that T is not
of stable sign on ρf(T ), i.e., there are λ1, λ2 ∈ ρf(T ) such that λ1I −T and λ2I −T
are Fredholm operators with ind (λ1I − T ) > 0 and ind (λ2I − T ) < 0. Put

m1 := ind (λ1I − T ),

and

m2 := −ind (λ2I − T ).

Let us consider the polynomial p(λ) := (λ1 − λ)m2(λ2 − λ)m1 . Then u(T ) is
Fredholm, with

indp(T ) = m1m2 +m2(−m1) = 0,

thus 0 /∈ σw(p(T ). Because λ1 ∈ σw(T ) we have 0 = p(λ1) ∈ p(σw(T )) =
σw(p(T )) since, by assumption, the spectral mapping theorem holds in the particu-
lar case of polynomials. This is a contradiction, so the proof of the first assertion is
complete.

The proof of the second assertion is similar and it is omitted. �
A closer look at the proof of Theorem 3.119 shows that T is of stable sign index

in ρf(T ) if and only if σw(f (T )) ⊇ f (σw(T )), and, similarly, T is of stable sign
index in ρuf(T ) if and only if σuw(f (T )) ⊇ f (σuw(T )).

By Corollary 2.106, if T or T ∗ has the SVEP then T is of stable sign index on
ρf(T ) and ρuf(T ).

Corollary 3.120 Let T ∈ L(X) be such that either T or T ∗ has the SVEP. Then
the spectral mapping theorem holds for the Weyl spectrum σw(T ) and the semi-Weyl
spectra σuw(T ), σlw(T ).

The spectral mapping theorem for the Weyl spectra also holds if the function
f ∈ H(σ (T )) is injective:

Theorem 3.121 Let T ∈ L(X) and suppose that f ∈ H(σ (T )) is injective on
σw(T ). Then σw(f (T )) = f (σw(T )). �
Proof By part (ii) of Theorem 3.115 we need only to prove the inclusion
σw(f (T )) ⊆ f (σw(T )). Suppose that μ0 ∈ f (σw(T )) and let λ0 ∈ σw(T )
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such that μ0 = f (λ0). Define g ∈ H(σ (T )) in the same domain of F as

g(λ) :=
⎧⎨
⎩
f (λ)− f (λ0)

λ− λ0
if λ �= λ0,

f ′(λ0) if λ = λ0.

Since f is injective on σw(T ), the function g does not vanish on σw(T ), hence
0 /∈ g(σw(T ))). By part (ii) of Theorem 3.115 we then have that 0 /∈ σw(g(T ))) so
g(T ) is a Weyl operator. Since g(T )(λ0I − T ) = μ0I − f (T ) and λ0I − T is not
a Weyl operator, it then follows, see Remark 3.118, that μ0I − f (T ) is not Weyl.
Thus μ0 ∈ f (σw(T )). �

Analogous results to those established in Theorems 3.115 and 3.119 may be
established for B-Weyl spectra. The arguments for proving these results are rather
similar to those used in Theorems 3.115 and 3.119. In the following theorem we
only enunciate these results.

Theorem 3.122 Let T ∈ L(X) and f ∈ H(σ (T )). Then we have

(i) σbw(f (T )) ⊆ f (σbw(T )).
(ii) σubw(f (T )) ⊆ f (σubw(T )).

Moreover, T is of stable sign index on ρbf(T ) if and only if the spectral mapping
theorem holds for σbw(T ) for every f ∈ Hnc(σ (T )). Analogously, T is of stable
sign index on ρubf(T ) if and only if the spectral mapping theorem holds for σubw(T )

for every f ∈ Hnc(σ (T )).

Again by Corollary 2.106, if T or T ∗ has the SVEP then T is of stable sign index
on ρbf(T ) and ρubf(T ), so we have:

Corollary 3.123 Let T ∈ L(X) be such that either T or T ∗ has the SVEP. Then the
spectral mapping theorem holds for the Weyl spectrum σbw(T ) and the semi-Weyl
spectrum σubw(T ) for every f ∈ Hnc(σ (T )).

The following examples of operators show that the condition f ∈ Hnc(σ (T ))
cannot be dropped in Corollary 3.123.

Example 3.124 Let R denote the unilateral right shift on �2(N) and f ≡ 0.
Since R has the SVEP, R has stable sign index on ρbw(R). We have σbw(R) =
σ(R) = D(0, 1), σ(f (R)) = {0}, σbw(f (R)) = ∅ while f (σbw(R)) = {0}. Hence,
σbw(f (R)) does not contain f (σbw(R)).

Let L be the unilateral left shift on �2(N) and f ≡ 0. Then L = R′ and R
has stable sign index on ρbw(L). We have σbw(L) = σubw(L) = σ(L) = D(0, 1),
σ(f (L)) = {0} while σubw(f (L)) ⊆ σbw(f (L)) = ∅. Since f (σubw(L)) = {0},
σubw(f (L)) does not contain f (σubw(L)).
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3.8 Spectral Properties of the Drazin Inverse

An obvious consequence of Theorem 3.109 is that if T ∈ L(X) is invertible and R
is a regularity then

σR(T
−1) =

{
1

λ
: λ ∈ σR(T )

}
. (3.44)

Indeed, if T ∈ L(X) is invertible then 0 /∈ σ(T ). Consider the function f (λ) =
1
λ

defined on an open neighborhood U of σ(T ) which does not contain 0. Then
f (T ) = T −1, so, by Theorem 3.109, the equality (3.44) follows.

A similar relation of reciprocity holds for the Drazin inverse.

Theorem 3.125 Let R be a regularity in L(X) which satisfies the condition (3.38).
Let R ∈ L(X) be a Drazin invertible operator with Drazin inverse S. If R is not
invertible or nilpotent, then

σR(S) \ 0 = {1/λ : λ ∈ σR(R) \ {0}}.

Proof Let R be Drazin invertible, with Drazin inverse S. Suppose that 0 ∈ σ(R)
(and hence 0 ∈ σ(S)) and that R is not nilpotent. Then in the decomposition X =
Y⊕Z, R1 = R|Y , R2 = R|Z, with R1 nilpotent andR2 invertible, we have Y �= {0}
and Z �= {0}. If R is a regularity in L(X), let R1 and R2 be as in (3.38). Since R1
is nilpotent and, by assumption, σR1(R1) �= ∅, σR1(R1) = {0}, while 0 /∈ σR2(R2),
since 0 /∈ σ(R2). Therefore, from the equality (3.39) we have

σR(R) = σR1(R1) ∪ σR2(R2) = {0} ∪ σR2(R2),

and hence σR(R) \ {0} = σR2(R2). Analogously, σR(S) \ {0} = σR2(S2). In view of
the equality (3.44), we then have

σR(S) \ {0} = σR2(S2) =
{

1

λ
: λ ∈ σR2(R2)

}

=
{

1

λ
: λ ∈ σR(R) \ {0}

}
,

as desired. �
Theorem 3.126 Suppose that R ∈ L(X) is Drazin invertible with Drazin inverse
S. Then we have

(i) R is Browder if and only if S is Browder.
(ii) σb(S) \ {0} = { 1

λ
: λ ∈ σb(R) \ {0}}.

(iii) σub(S) \ {0} = { 1
λ

: λ ∈ σub(R) \ {0}}.
(iv) σlb(S) \ {0} = { 1

λ
: λ ∈ σlb(R) \ {0}}.
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Proof

(i) If 0 /∈ σ(R) then R is invertible and the Drazin inverse is S = R−1 so the
assertion is trivial in this case. Suppose that 0 ∈ σ(R) and that R is Browder.
Then 0 is a pole of the resolvent of R and is also a pole (of the first order) of
the resolvent of S. Let X = Y ⊕ Z such that R = R1 ⊕ R2, R1 = R|Y is
nilpotent and R2 = R|Z is invertible. Observe that

ker R = ker R1 ⊕ kerR2 = kerR1 ⊕ {0}, (3.45)

and, analogously, since S = 0 ⊕ S2 with S2 = R2
−1, we have

ker S = ker 0 ⊕ kerS2 = Y ⊕ {0}. (3.46)

Since R is Browder we have α(R) = dim ker R < ∞, and since ker R1 ⊆
ker R it then follows that α(R1) < ∞. Consequently, α(Rn1 ) < ∞ for all
n ∈ N. Let Rν1 = 0. Since Y = ker Rν1 we then conclude that the subspace
Y is finite-dimensional and hence ker S = Y ⊕ {0} is finite-dimensional, i.e.
α(S) < ∞. Now, S is Drazin invertible, so p(S) = q(S) < ∞ and hence, by
Theorem 1.22, α(S) = β(S) <∞. Hence S is Browder.

Conversely, suppose that S is Browder. Then α(S) <∞ and hence by (3.46)
the subspace Y is finite-dimensional from which it follows that ker R1 =
ker R|Y is also finite-dimensional. From (3.45) we then have that α(R) < ∞
and since p(R) = q(R) < ∞ we then conclude that α(R) = β(R), again by
Theorem 1.22. Hence R is a Browder operator.

(ii) The class of Browder operators is a regularity and the spectrum σb(T ) is non-
empty for all T ∈ L(X). Hence from Theorem 3.125 we have:

σb(S) \ {0} =
{

1

λ
: λ ∈ σb(S) \ {0}

}
.

(iii) Also the class of upper semi-Browder operators is a regularity and the spectrum
σub(T ) is non-empty for all T ∈ L(X). Again from Theorem 3.125 we have

σub(S) \ {0} =
{

1

λ
: λ ∈ σub(S) \ {0}

}
.

(iv) Proceed by duality. �
Corollary 3.127 If a Drazin invertible operatorR ∈ L(X) is a Riesz operator then
its Drazin inverse is also Riesz.

Proof Since X is infinite-dimensional and R is Riesz, σb(R) = {0}. Suppose that
the Drazin inverse S is not Riesz. Then there exists a 0 �= λ such that λ ∈ σb(S).
From part (ii) of Theorem 3.126 then 1

λ
∈ σb(R), a contradiction. �
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Theorem 3.128 Let λ �= 0.

(i) If T ∈ L(X) is invertible then

(λI − T )k(X) =
(

1

λ
I − T −1

)k
(X) for all k ∈ N.

(ii) If R is Drazin invertible with Drazin inverse S then

ker (λI − S)k = ker

(
1

λ
I − R

)k
for all k ∈ N.

(iii) If R is Drazin invertible with Drazin inverse S then

(λI − S)k(X) =
(

1

λ
I − R

)k
(X) for all k ∈ N.

(iv) If R is Drazin invertible with Drazin inverse S, then λ is a pole of the resolvent
of R if and only if 1

λ
is a pole of the resolvent of S.

(v) If R is Drazin invertible with Drazin inverse S, then

H0(λI − S) = H0

(
1

λ
I − R

)
.

Proof

(i) Let y = (λI − T )kx. Then

(
1

λ
I − T −1

)k
T kx =

(
1

λ
T k − I

)k
x =

(
− 1

λ

)k
y,

so (λI − T )k(X) ⊆ ( 1
λ
I − T −1)k(X). The reverse inclusion follows by

symmetry.
(ii) It suffices to show that ker (λI−T )k ⊆ ker( 1

λ
I−T −1)k . Let x ∈ ker (λI−T )k .

Then (λI − T )kx = 0, so

0 = (T −1)k(λI − T )kx = (λ T −1 − I)kx,

and hence x ∈ ker( 1
λ
I − T −1)k .

(iii) Let X = Y ⊕ Z, R = R1 ⊕ R2 and S = 0 ⊕ S2 with S2 = R−1
2 . Since R1 is

nilpotent then 1
λ
I − R1 is invertible, and hence ( 1

λ
I − R1)

k(Y ) = Y . Hence

(
1

λ
I − R

)k
(X) =

(
1

λ
I − R1

)k
(Y )⊕

(
1

λ
I − R2

)k
(Z) = Y ⊕

(
1

λ
I − R2

)k
(Z),
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and analogously

(λI − S)k(X) = Y ⊕ (λI − S2)
k(Z).

From part (i) we have (λI − S2)
k(Z) = ( 1

λ
I − R2)

k(Z), so

(
1

λ
I − R

)k
(X) = Y ⊕ (λI − S2)

k(Z) = (λI − S)k(X).

(iv) From part (ii) and part (iii) we have p(λI −R) = p( 1
λ
I −S) and q(λI −R) =

q( 1
λ
I − S).

(v) We have, for every n ∈ N and λ �= 0,

‖(λI − R1)
nx‖ ≤ |λ|n‖R1‖n

∥∥∥∥
(

1

λ
I − S1

)n
x

∥∥∥∥ ,

and
∥∥∥∥
(

1

λ
I − S1

)n
x

∥∥∥∥ ≤ |λ|−n|‖S1‖n‖(λI − R1)
nx‖,

from which the equality H0(λI − S) = H0(
1
λ
I − R) follows. �

Recall that if T is algebraic then, by Theorem 3.68, the spectrum of T is a
finite set of poles of the resolvent. Obviously, every algebraic operator T is Drazin
invertible.

Corollary 3.129 If T ∈ L(X) is algebraic then its Drazin inverse is also algebraic.
Proof Let S be the Drazin inverse of T . Since σ(T ) is a finite set it then follows that
σ(S) is also a finite set. We show that every point of σ(S) is a pole of the resolvent.
If 0 ∈ σ(S) then, since S is Drazin invertible, 0 is a pole (of the first order) of the
resolvent of S. Let 0 �= λ ∈ σ(S). Then 1

λ
∈ σ(T ) and hence 1

λ
is a pole of the

resolvent of T . From part (iv) of Theorem 3.128 it then follows that λ is a pole of
the resolvent of S. �

The class of Weyl operators is not a regularity, and as observed before, the
spectral theorem may fail for the Weyl spectrum σw(T ). Note that if T ∈ L(X)

is invertible then 0 /∈ σw(T ) and 0 /∈ σw(T
−1). Although the spectral mapping

theorem does not hold for σw(T ), we show that for a Drazin invertible operator
R the relationship of reciprocity between the nonzero parts of the σw(R), and the
Weyl spectrum of its Drazin inverse σw(S), remains true. We first need the following
lemma.
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Lemma 3.130 Suppose that T ∈ L(X) is invertible. Then

σw(T
−1) =

{
1

λ
: λ ∈ σw(T )

}
,

and

σuw(T
−1) =

{
1

λ
: λ ∈ σuw(T )

}
.

Proof Consider the analytic function f (λ) := 1
λ

defined on a open neighborhoodU
containing the spectrum of T and such that 0 /∈ U . Then T −1 = f (T ), and since f
is injective the statements follow from Theorem 3.121. �
Theorem 3.131 Let R ∈ L(X) be Drazin invertible with Drazin inverse S. Then
we have

(i) σw(S) \ {0} = { 1
λ

: λ ∈ σw(R) \ {0}}.
(ii) σuw(S) \ {0} = { 1

λ
: λ ∈ σuw(R) \ {0}}, and

σlw(S) \ {0} =
{

1

λ
: λ ∈ σlw(R) \ {0}

}
.

Proof With respect to the decomposition R = R1 ⊕ R2 and S = 0 ⊕ S2, with
S2 = R2

−1, we have

σw(R) = σw(R1) ∪ σw(R2) = {0} ∪ σw(R2)

and

σw(S) = σw(0) ∪ σw(R2) = {0} ∪ σw(S2).

Observe that R2 and S2 are invertible, so 0 /∈ σw(R2) and 0 /∈ σw(S2). Hence,
σw(R) \ {0} = σw(R2) and σw(S) \ {0} = σw(S2). By Lemma 3.130, the points of
σw(R2) and σw(S2) are reciprocal, hence

σw(S) \ {0} = σw(S2) =
{

1

λ
: λ ∈ σw(R2)

}
=
{

1

λ
: λ ∈ σw(R) \ {0}

}
,

so the first equality is proved.
(ii) Let 0 �= λ and suppose that 1

λ
/∈ σuw(R), i.e., 1

λ
I − R is upper semi-Weyl.

Then 1
λ
I−R ∈ �+(X) and ind ( 1

λ
I−R) ≤ 0. By Theorem 3.128 we have ker ( 1

λ
I−

R) = ker (λI − S), so α(λI − S) <∞. Moreover,

(λI − S)(X) = (λI − 0)(Y )⊕ (λI − S2)(Z) = Y ⊕ (λI − S2)(Z).
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Now, R1 is nilpotent so 1
λ
I − R1 is invertible, and hence ( 1

λ
I −R1)(Y ) = Y , while

( 1
λ
I − R2)(Z) = (λI − S2)(Z), by part (i) of Theorem 3.128. Therefore,

(
1

λ
I − R

)
(X) =

(
1

λ
I − R1

)
(Y )⊕

(
1

λ
I − R2

)
(Z) = Y ⊕ (λI − S2)(Z)

= (λI − S)(X),

so (λI − S)(X) is closed, because ( 1
λ
I − R)(X) is closed by assumption, and this

shows that λI − S ∈ �+(X). It remains only to prove that ind (λI − S) ≤ 0.
Clearly, β( 1

λ
I −R) = β(λI − S) and α( 1

λ
I −R) = α(λI − S), by Theorem 3.128,

so ind (λI − S) = ind ( 1
λ
I − R) ≤ 0. Therefore, λI − S is upper semi-Weyl and

hence λ /∈ σuw(S).
Conversely, suppose that λ /∈ σuw(S), i.e. λI − S is upper semi-Weyl. From the

equalities ker ( 1
λ
I − R) = ker (λI − S) and ( 1

λ
− R)(X) = (λI − S)(X) we then

obtain that 1
λ
I − R ∈ �+(X). As above, ind ( 1

λ
I − R) = ind (λI − S) ≤ 0, so

1
λ
I − R is upper semi-Weyl, and hence 1

λ
/∈ σuw(R).

The equality for the lower semi-Weyl spectrum may be obtained by duality. �

3.9 Comments

The invariance of the Browder spectra under commuting Riesz perturbations is a
classical result of Rakočević [265], but the proof given of Theorem 3.8, based on
the stability of the localized SVEP under commuting Riesz perturbations, is taken
from Aiena and Müller [20]. The proof of Theorem 3.11 is taken from Aiena and
Triolo [26] and extends a previous result obtained by Grabiner [160] in the case of
semi-Fredholm operators and compact commuting perturbations.

The stability of the essentially semi-regular spectrum under Riesz commuting
perturbations established in Corollary 3.15 was observed by Kordula and Müller
[204], while Theorem 3.16 is modeled after [26] and extends a previous result,
proved by Grabiner [160], in the case of semi-Fredholm operators and compact
commuting perturbations. The stability of Weyl operators under Riesz commuting
perturbations given in Theorem 3.17 is a classical result due to Schechter and
Whitley [271], but the proof given here is modeled after Duggal et al. [136].

Theorems 3.20 and 3.26 extend results of Djordjević [111], which proved that
the approximate point spectra of T and T +K have the same accumulation points,
whereK is a commuting finite rank operator.

Semi-Browder operators have been treated extensively in the books by Harte
[170], Müller [245], and Aiena [1]. These classes of operators have also been
investigated by several other authors, see Rakočević [265], Kordula et al. [205],
and Laursen [213]. The characterizations of semi-Browder operators given in
Theorems 3.38, 3.39 and 3.40 is modeled after Aiena and Carpintero [12], while the
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material of Theorems 3.43 and 3.44 is modeled after Aiena and Biondi [10]. The
fact that the classes of upper and lower semi-B-Browder operators coincide with
the classes of left Drazin invertible operators and right Drazin invertible operators,
respectively, was observed by Berkani [63, Theorem 3.6], but the proof given here
is from [36].

Theorems 3.55 and 3.59 is modeled after Berkani and Zariouh [77], while
Theorem 3.53 is taken from [36]. The stability of essentially Drazin spectra under
a commuting perturbation K having a finite-dimensional power is taken from the
works by Burgos et al. [85], Bel Hadj Fredj [149], and [150], see also [304],
but the proof of Theorem 3.78, using the localized SVEP, is modeled after Aiena
and Triolo [26]. The section concerning meromorphic operators is inspired to the
work of Barnes [58], Djordjević and Duggal [115, 116]. Theorems 3.83 and 3.85
have been taken from Oudghiri and Souilah [254]. The notion of regularity and
the corresponding axiomatic spectral theory was studied by Kordula and Müller
[203]. Further developments are given in Kordula, Mbekhta and Müller [206, 244],
Mbektha and Müller [235]. A good treatment of the concept of regularity may
be found in the monograph by Müller [245]. The material concerning spectra
generated by �-semigroups is modeled after Gramsch and Lay [164], while the
results concerning the spectral theorem for Weyl spectra is taken from Schmoeger
[276]. The relationship of reciprocity between the Browder spectra and the Weyl
spectra of the Drazin inverse R and its Drazin inverse S was observed in Aiena and
Triolo [28].



Chapter 4
Polaroid-Type Operators

In this chapter we introduce the classes of polaroid-type operators, i.e., those
operators T ∈ L(X) for which the isolated points of the spectrum σ(T ) are poles
of the resolvent, or the isolated points of the approximate point spectrum σap(T )

are left poles of the resolvent. We also consider the class of all hereditarily polaroid
operators, i.e., those operators T ∈ L(X) for which all the restrictions to closed
invariant subspaces are polaroid. The class of polaroid operators, as well as the class
of hereditarily polaroid operators, is very large. We shall see that every generalized
scalar operator is hereditarily polaroid, and this implies that many classes of
operators acting on Hilbert spaces, obtained by relaxing the condition of normality,
are hereditarily polaroid. Multipliers of commutative semi-simple Banach algebras,
and in particular every convolution operators Tμ, defined in the group algebras
L1(G), where G is a locally compact abelian group, are also hereditarily polaroid.

We also introduce some other classes of operators: the class of paranormal
operators on Banach spaces, and more generally, the larger class of quasi totally
hereditarily normaloid operators. These operators are also hereditarily polaroid.

The remaining part of the chapter is devoted to several other examples of polaroid
operators. In particular, the fifth section is devoted to the spectral properties of
isometries, invertible or non-invertible, while the sixth section regards spectral
theory and the local spectral theory of weighted unilateral shifts, as well as bilateral
weighted shifts. The seventh section is devoted to the important class of Toeplitz
operators on Hardy spaces H 2(T), where T denotes the unit circle in C.

The last section is devoted to the topic of spectral inclusions. We are mainly
interested in some spectral consequences of the intertwining condition SA = AT

considered in Chap. 2, in particular we study the preservation of the polaroid
properties under quasi-affinities.
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4.1 Left and Right Polaroid Operators

The concept of pole may be sectioned as follows:

Definition 4.1 Let T ∈ L(X), X a Banach space. If λI −T is left Drazin invertible
and λ ∈ σap(T ) then λ is said to be a left pole. A left pole λ is said to have finite
rank if α(λI −T ) <∞. If λI −T is right Drazin invertible and λ ∈ σs(T ) then λ is
said to be a right pole. A right pole λ is said to have finite rank if β(λI − T ) <∞.

Clearly, λ is pole of the resolvent if and only if λ is both a right pole and a left
pole.

Theorem 4.2 For every T ∈ L(X) the following equivalences hold:
(i) λ is a left pole of the resolvent of T if and only if λ is a right pole of the

resolvent of T ∗.
(ii) λ is a right pole of the resolvent of T if and only if λ is a left pole of the

resolvent of T ∗.
(iii) λ is a pole of the resolvent of T if and only if λ is a pole of the resolvent of T ∗.

Proof The proof for the dual T ∗ is immediate from Theorem 6.4, taking into
account that σap(T ) = σs(T

∗) and σs(T ) = σap(T
∗). �

In the sequel H(�, Y ), Y any Banach space, denotes the Fréchet space of all
analytic functions from the open set � ⊆ C to Y . We have proved in Theorem 2.55
that if λ ∈ iso σap(T ) thenH0(λI − T ) is closed. If λ is a left pole we can say much
more:

Theorem 4.3 Let T ∈ L(X), X a Banach space.

(i) If λ is a left pole of T ∈ L(X) then λ is an isolated point of σap(T ) and there
exists a ν ∈ N such that

H0(λI − T ) = ker (λI − T )ν.

Moreover, λ is a left pole of finite rank then H0(λI − T ) is finite-dimensional.
(ii) If λ is a right pole of T ∈ L(X) then λ is an isolated point of σs(T ), and there

exists a ν ∈ N such that

K(λI − T ) = (λI − T )ν(X).

Moreover, if λ is a right pole of finite rank then K(λI − T ) has finite
codimension in X.

Proof There is no loss of generality if we assume λ = 0.

(i) If 0 is a left pole then T is left Drazin invertible, or equivalently, by Theo-
rem 3.47, T is upper semi B-Browder. The condition p(T ) < ∞ also entails
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that T has the SVEP at 0, and this is equivalent, by Theorem 2.97, to saying
that σap(T ) does not cluster at 0.

To show the equality H0(T ) = ker T ν for some ν ∈ N, observe first since
Tn is upper semi-Browder for some n ∈ N, by Lemma 3.46, the canonical map
T̂n : X/ ker T n → X/ ker T n is upper semi-Browder, and hence has the SVEP
at 0. Since every semi-Fredholm operator has topological uniform descent then,
by Theorem 2.97,H0(T̂n) = ker(T̂n)k , where k is the ascent of T̂n.

Let x ∈ H0(T ). We show that x̂ ∈ H0(T̂n). We know, since H0(T ) =
XT ({0}) by definition, that there exists a g ∈ H(C \ {0},X) such that

x = (μI − T )g(μ) for all μ ∈ C \ {0}.

If γ : X → X̂ := X/ ker T n denotes the canonical quotient map, then ĝ :=
γ ◦ g ∈ H(C \ {0}, X̂), and for all μ ∈ C \ {0} we have

x̂ = (μI − T̂n)ĝ(μ) = (μI − T̂n)ĝ(μ).

Therefore,

x̂ ∈ X̂T̂n ({0}) = H0(T̂n) = ker(T̂n)k,

and hence

T̂ kn x̂ = T̂ kx = 0̂.

Consequently, T kx ∈ kerT n and this implies that H0(T ) ⊆ ker T k+n. The
opposite inclusion is true for every operator, hence we have H0(T ) = ker T ν ,
where ν := k + n.

Finally, suppose that 0 is a left pole of finite rank. Then ker T is finite-
dimensional and this implies that H0(T ) = ker T ν is finite-dimensional.

(ii) If 0 is a right pole then T is right Drazin invertible and hence lower semi B-
Browder, by Theorem 3.47. The condition q(T ) < ∞ also entails that T ∗ has
the SVEP at 0, and this is equivalent, by Theorem 2.98, to saying that σs(T )

does not cluster at 0. Since every right Drazin invertible is quasi-Fredholm, we
have, by Corollary 2.96,K(T ) = T∞(X) = T q(X).

Finally, if 0 is a right pole of finite rank thenK(T ) has finite codimension.�
Remark 4.4 It should be noted that a left pole, as well as a right pole, need not be an
isolated point of σ(T ). For instance, let R ∈ �2(N) be the classical unilateral right
shift and

U(x1, x2, . . . ) := (0, x2, x3, · · · ) for all (xn) ∈ �2(N).

Define T := R ⊕ U . Then σ(T ) = D(0, 1), D(0, 1) the closed unit disc of C.
Moreover, σap(T ) = � ∪ {0}, � the unit circle, and T is upper semi-Browder, in
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particular left Drazin invertible. Hence 0 is a left pole (of finite rank, since α(T ) =
1) but 0 /∈ iso σ(T ) = ∅. Note that 0 is a right pole of the dual T ∗, but is not an
isolated point of σ(T ∗) = σ(T ) = D(0, 1).

In the case of Hilbert space operators we have much more.

Theorem 4.5 Let T ∈ L(H), H a Hilbert space.

(i) λ ∈ σap(T ) is a left pole if and only if there exist two T -invariant closed
subspaces M , N such that H = M ⊕ N , λI − T |M is bounded below, and
λI − T |N is nilpotent. In this case N = H0(λI − T ).

(ii) If λ ∈ σs(T ) then λ is a right pole if and only if there exist two T -invariant
closed subspacesM ,N such thatH =M⊕N , λI−T |M is onto, and λI−T |N
is nilpotent. In this case,M = K(λI − T ).

Proof We may assume that λ = 0.

(i) If 0 is a left pole then T is left Drazin invertible and hence quasi-Fredholm. By
Theorem 1.107, T is of Kato-type, so there exist two T -invariant subspacesM ,
N such that H = M ⊕ N , T |M is semi-regular, and T |N is nilpotent. Since
p(T ) < ∞, T has the SVEP at 0, and hence T |M has the SVEP at 0. By
Theorem 2.91 it then follows that T |M is bounded below.

Conversely, suppose that there exist two T -invariant subspaces M , N such
that H = M ⊕ N , T |M is bounded below, T |N is nilpotent. Then T n(H) is
closed and Tn is bounded below for some n ∈ N, so T is left Drazin invertible
by Theorem 1.140. By assumption 0 ∈ σap(T ), thus 0 is a left pole.

To complete the proof, observe first that since the restriction T |N is quasi-
nilpotent then N = H0(T |N). Moreover, since T |M is bounded below, hence
semi-regular, by Theorem 2.37

H0(T |M) =
∞⋃
n=1

ker (T |M)n = {0}.

Therefore,

H0(T ) = H0(T |M)⊕H0(T )|N = {0} ⊕N = N.

(ii) If 0 is a right pole of T then 0 is a left pole of the adjoint T ′, so T ′ is left Drazin
invertible. By part (i) there exist two closed subspaces U , V of H such that
H = U⊕V , T ′|U is bounded below, T ′|V is nilpotent. Consider the orthogonal
sets M := U⊥ and N := V⊥. Proceeding as in the proof of Lemma 2.78,
just adapting the arguments to the Hilbert adjoint, it is easy to see that T |M is
bounded below, while T |N is nilpotent.

Conversely, suppose that there exist two T -invariant subspaces M , N such
that H = M ⊕ N , T |M is onto, and T |N is nilpotent. Then T n(H) = M is
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closed and Tn is onto for some n ∈ N, hence T is right Drazin invertible by
Theorem 1.140. By assumption λ ∈ σs(T ), thus λ is a right pole.

To prove the last assertion, observe that for n ∈ N sufficiently large we have

T n(H) = (T |M)n(M)⊕ (T |N)n(N) = M ⊕ {0} = M.

Therefore,

T∞(H) =
∞⋂
n=1

T n(H) = M,

and, by Theorem 2.95, we conclude thatM = T∞(H) = K(T ). �
Corollary 4.6 If T ∈ L(H),H a Hilbert space, then λ is a left pole of finite rank if
and only if there exist two closed T -invariant subspacesM,N such that X = M ⊕
N , N is finite-dimensional, λI −T |M is bounded below and λI −T |N is nilpotent.
Analogously, λ is a right pole of finite rank if and only if there exist two closed
T -invariant subspaces M,N such that X = M ⊕ N , M is finite-codimensional,
λI − T |M is onto and λI − T |N is nilpotent

Definition 4.7 A bounded operator T ∈ L(X) is said to be left polaroid if every
λ ∈ iso σap(T ) is a left pole of the resolvent of T . T ∈ L(X) is said to be right
polaroid if every λ ∈ iso σs(T ) is a right pole of the resolvent of T . T ∈ L(X) is
said to be polaroid if every λ ∈ iso σ(T ) is a pole of the resolvent of T .

An immediate consequence of Theorem 4.2 is that the concepts of left and right
polaroid are dual each other:

Theorem 4.8 T ∈ L(X) is left polaroid (respectively, right polaroid, polaroid) if
and only if T ∗ is right polaroid (respectively, left polaroid, polaroid). Analogously,
a Hilbert space operator T ∈ L(H) is left polaroid (respectively, right polaroid,
polaroid) if and only if its adjoint T ′ is right polaroid (respectively, left polaroid,
polaroid).

Proof The assertions concerning the dual T ∗ follow from Theorem 4.2.
To show the statement for Hilbert space operators, suppose that T is a left

polaroid and λ ∈ iso σs(T
′). Then λ ∈ iso σs(T

∗) = iso σap(T ), so λ is a left
pole of T , hence p := p(λI − T ) < ∞ and (λI − T )p+1(H) is closed. From the
closed range theorem, see Appendix A, we have ker (λI − T )p = ker (λI − T )p+1,
thus

(λI − T ′)p(H) = [ker (λI − T )p]⊥ = [ker (λI − T )p+1]⊥ = (λI − T ′)p+1(H),

where, as usual, by N⊥ we denote the orthogonal of N ⊆ H . Therefore q :=
q(λI−T ′) ≤ p <∞ and consequently (λI −T ′)q(H) = (λI −T ′)p(H) is closed,
by Lemma 1.100. Thus λ is a right pole of T ′.



300 4 Polaroid-Type Operators

Conversely, suppose that T ′ is right polaroid and let λ ∈ iso σap(T ). Then λ ∈
iso σs(T

∗) = iso σs(T ′), thus λ is a right pole of T ′. Consequently, q := q(λI −
T ′) <∞ and (λI − T ′)q(H) = (λI − T ′)q+1(H) is closed. Since

ker(λI − T )q+1 = [(λI − T ′)q+1(H)]⊥ = [(λI − T ′)q(H)]⊥ = ker(λI − T )q

it then follows that p := p(λI − T ) ≤ q < ∞. By Lemma 1.100, we have that
(λI − T )p+1(H) is closed, so λ is a left pole of T .

Part (ii) and part (iii) for Hilbert space operators may be proved in a similar
way. �
Definition 4.9 A bounded operator T ∈ L(X) is said to be a-polaroid if every
λ ∈ iso σap(T ) is a pole of the resolvent of T .

Note that if T is a-polaroid then iso σap(T ) = iso σ(T ). Indeed, if λ ∈ iso σap(T )

then λ is a pole of the resolvent, hence an isolated point of σ(T ). Conversely, if
λ ∈ iso σ(T ) then λ ∈ σap(T ), by part (ii) of Theorem 1.12, so λ is an isolated point
of σap(T ).

Trivially,

T a-polaroid ⇒ T left polaroid. (4.1)

The following example provides an operator that is left polaroid but not a-
polaroid.

Example 4.10 Let R ∈ �2(N) be the unilateral right shift defined as

R(x1, x2, . . . ) := (0, x1, x2, · · · ) for all (xn) ∈ �2(N),

and

U(x1, x2, . . . ) := (0, x2, x3, · · · ) for all (xn) ∈ �2(N).

If T := R⊕U then σ(T ) = D(0, 1), so iso σ(T ) = ∅. Moreover, σap(T ) = �∪{0},
where � is the unit circle, so iso σap(T ) = {0}. Since R is injective and p(U) = 1 it
then follows that p(T ) = p(R) + p(U) = 1. Furthermore, T ∈ �+(X) and hence
T 2 ∈ �+(X), so that T 2(X) is closed. Therefore 0 is a left pole and hence T is left
polaroid. On the other hand q(R) = ∞, so that q(T ) = q(R)+ q(U) = ∞, so T is
not a-polaroid. Note that T is also polaroid.

Theorem 4.11 Let T ,R ∈ L(X). Then T R is polaroid (respectively, left polaroid,
right polaroid, a-polaroid) if and only if RT is polaroid (respectively, left polaroid,
right polaroid, a-polaroid)

Proof Suppose that TR is polaroid and λ ∈ iso σ(RT ). Suppose first that λ =
0. Since 0 is a pole of the resolvent of T R then, by Lemma 3.96, 0 is a pole of
the resolvent of RT . Suppose the other case, λ �= 0. Then λ ∈ iso σ(T R), by
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Corollary 2.150, and hence λ is a pole of the resolvent of T R. By Theorem 3.95 it
then follows that λ is a pole of the resolvent of RT . The other assertions may be
proved in a similar way. �

The condition of being polaroid may be characterized by means of the quasi-
nilpotent part as follows:

Theorem 4.12 If T ∈ L(X) the following statements hold:
(i) T is polaroid if and only if there exists a p := p(λI − T ) ∈ N such that

H0(λI − T ) = ker (λI − T )p for all λ ∈ iso σ(T ). (4.2)

(ii) If T is left polaroid then there exists a p := p(λI − T ) ∈ N such that

H0(λI − T ) = ker (λI − T )p for all λ ∈ iso σap(T ). (4.3)

Proof Suppose T satisfies (4.2) and that λ is an isolated point of σ(T ). Since λ is
isolated in σ(T ) then, by Lemma 2.47,

X = H0(λI − T )⊕K(λI − T ) = ker (λI − T )p ⊕K(λI − T ),

from which we obtain

(λI − T )p(X) = (λI − T )p(K(λI − T )) = K(λI − T ).

So X = ker (λI − T )p ⊕ (λI − T )p(X), which implies, by Theorem 1.35, that
p(λI − T ) = q(λI − T ) ≤ p, hence λ is a pole of the resolvent, so that T is
polaroid. Conversely, suppose that T is polaroid and λ is an isolated point of σ(T ).
Then λ is a pole, and if p is its order then H0(λI − T ) = ker(λI − T )p, again by
Lemma 2.47.

(ii) This follows from Theorem 4.3. �
Corollary 4.13 If T ∈ L(X) is either left or right polaroid then T is polaroid.

Proof Assume that T is left polaroid and let λ ∈ iso σ(T ). The boundary of the
spectrum is contained in σap(T ), in particular every isolated point of σ(T ), see
Theorem 2.58, thus λ ∈ iso σap(T ) and hence λ is a left pole of the resolvent of
T . By Theorem 4.12, there exists a ν := ν(λI − T ) ∈ N such that H0(λI − T ) =
ker (λI − T )ν . But λ is isolated in σ(T ), so λ is a pole of the resolvent, i.e. T is
polaroid.

To show the last assertion suppose that T is right polaroid. By Theorem 4.8,
T ∗ is left polaroid and hence, by the first part, T ∗ is polaroid, or equivalently T is
polaroid. �
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The following example shows that the converse of Corollary 4.13, in general,
does not hold.

Example 4.14 Let R denote the right shift on �2(N) defined by

R(x1, x2, . . . ) := (0, x1, x2, . . . ) (xn) ∈ �2(N),

and letQ be the weighted left shift defined by

Q(x1, x2, . . . ) := (x2/2, x3/3, . . . ) (xn) ∈ �2(N).

Q is a quasi-nilpotent operator, σ(R) = D(0, 1), where D(0, 1) denotes the closed
unit disc of C, and σap(R) = �, where � is the unit circle of C. Moreover, if
en := (0, . . . , 0, 1, 0 . . .), where 1 is the n-th term, then en+1 ∈ ker Qn+1 while
en+1 /∈ ker Qn for every n ∈ N, so p(Q) = ∞.

Define T := R ⊕ Q on X := �2(N) ⊕ �2(N). Clearly, σ(T ) = D(0, 1), and
σap(T ) = � ∪ {0}. We have p(T ) = p(R) + p(Q) = ∞, so 0 is not a left pole.
Therefore, T is polaroid, since iso σ(T ) = ∅, but not left polaroid. It is easily seen
that the dual T ∗ is polaroid but not right polaroid, since q(T ∗) = ∞.

Theorem 4.15 Let T ∈ L(X). Then we have:
(i) If T ∗ has the SVEP at every λ /∈ σuw(T ) then σap(T ) = σ(T ). Furthermore,

the properties of being polaroid, a-polaroid and left polaroid for T are all
equivalent.

(ii) If T has the SVEP at every λ /∈ σlw(T ) then σs(T ) = σ(T ). Furthermore,
the properties of being polaroid, a-polaroid and left polaroid for T ∗ are all
equivalent.

Proof

(i) Suppose that λ /∈ σap(T ). Then p(λI − T ) = 0 and λI − T ∈ W+(X), so
λ /∈ σuw(T ) and hence, by assumption, T ∗ has the SVEP at λ. Since λI − T
is upper semi-Weyl, by Theorem 2.98 it then follows that q(λI − T ) <∞ and
hence, by Theorem 1.22, p(λI − T ) = q(λI − T ) = 0, i.e., λ /∈ σ(T ). This
proves the equality σap(T ) = σ(T ). The equivalence of the polaroid conditions
is now clear: if T is polaroid then T is a-polaroid, since iso σap(T ) = iso σ(T ).
Thus, by Corollary 4.13, the equivalence is proved.

(ii) Using dual arguments to those of the proof of part (i) we have σs(T ) = σ(T )

and hence, by duality σap(T
∗) = σ(T ∗). Therefore, if T ∗ is polaroid then T ∗ is

a-polaroid, so the equivalence follows from Corollary 4.13. �
Define

�(T ) := {λ ∈ C : λ is a pole}.
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Analogously, set

�l(T ) := {λ ∈ C : λ is a left pole}

and

�r(T ) := {λ ∈ C : λ is a right pole}.

Clearly, σ(T ) = �(T ) ∪ σd(T ), and

σap(T ) = �l(T ) ∪ σld(T ) and σs(T ) = �r(T ) ∪ σrd(T ).

The sets �(T ), �l(T ) and �r(T ) may be empty. This, trivially, happens if
iso σap(T ) = ∅, or iso σs(T ) = ∅, for instance if T is a non-quasi-nilpotent weighted
right shift, as we shall see in Chap. 4.

Theorem 4.16 If T ∈ L(X) and f ∈ Hnc(σ (T )), then λ is a left pole (respectively,
right pole, pole) of f (T ) if and only if there exists a left pole (respectively, right pole,
pole) μ of T such that f (μ) = λ.
Proof We show that f (�l(T )) = �l(f (T )). We know that the spectral mapping
theorem holds for σap(T ). Moreover,�l(T ) and σld(T ) are disjoint. We have

f (σap(T )) = f (�l(T ) ∪ σld(T )) = f (�l(T )) ∪ f (σld(T )).

On the other hand,

σap(f (T )) = �l(f (T )) ∪ σld(f (T )) = �l(f (T )) ∪ f (σld(T )),

and since f (σap(T )) = σap(f (T )) it then follows that f (�l(T )) = �l(f (T )).
The case of right poles may be proved in a similar way: to prove that f (�r(T )) =

�r(f (T )), just replace�l(T ) by�r(T ) and σap(T ) by σs(T ). Proceed similarly for
the set of poles. �

To obtain further insight into the properties of polaroid operators, we need some
preliminary results concerning the kernel and the quasi-nilpotent part of p(T )where
p is a polynomial.

Lemma 4.17 Let T ∈ L(X) and let p be a complex polynomial. If p(λ0) �= 0 then
H(λ0I − T ) ∩ kerp(T )) = {0}. If T has the SVEP then

H0(p(T )) = H0(λ1I − T )⊕H0(λ2I − T ) · · · ⊕H0(λnI − T ),

where λ1, λ2, . . . , λn are the distinct roots of p.
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Proof Suppose that there is a non-zero element x ∈ H(λ0I −T )∩kerp(T ) and set

p(λ0)I − p(T ) := q(T )(λ0I − T ),

where q denotes a polynomial. Then q(T )(λ0I − T )x = p(λ0)x, and hence

q(T )(λ0I − T )nx = p(λ0)
nx.

Therefore,

|p(λ0)| ‖x‖1/n‖ ≤ ‖q(T )n‖1/n‖(λ0I − T )x‖1/n for all n ∈ N.

Since x is a non-zero element of H(λ0I − T ) we then have p(λ0) = 0, which is a
contradiction.

To prove the second assertion, consider an element x ∈ H0(p(T )). Since
H0(p(T )) = Xp(T )({0}), the glocal spectral space of p(T ) relative to the set {0},
there exists an analytic function f for which

x = (μI − p(T ))f (μ) for all μ ∈ C \ {0}.

Thus, for λ ∈ C \ {λ1, . . . , λn} we have

x = (p(λ)I − p(T ))f (p(λ)) = (λI − T )q(T , λ)f (p(λ)),

where q is a polynomial of T and λ. Consequently

σT (x) ⊆ {λ1, . . . , λn},

and hence

x ∈ XT ({λ1, . . . , λn}) =
n⊕
i=1

XT ({λi}).

Since T has the SVEP, by Theorem 2.23 we then have that

XT ({λi}) = XT ({λi}) = H0(λiI − T ) for all i = 1, . . . , n,

and hence

H0(p(T )) ⊆
n⊕
i=1

H0(λiI − T ).

The opposite inclusion is clear, since each λi is a root of the polynomial p. �



4.1 Left and Right Polaroid Operators 305

Remark 4.18 It is easy to check, from the definition of a quasi-nilpotent part, the
following properties:

(i) H0(T ) ⊆ H0(T
k), for all k ∈ N.

(ii) If T ,U ∈ L(X) commute and S = T U then H0(T ) ⊆ H0(S).

Theorem 4.19 For an operator T ∈ L(X) the following statements are equiva-
lent.

(i) T is polaroid;
(ii) f (T ) is polaroid for every f ∈ Hnc(σ (T ));
(iii) there exists a non-trivial polynomial p such that p(T ) is polaroid;
(iv) there exists an f ∈ Hc(σ (T )) such that f (T ) is polaroid.

Proof (i) ⇒ (ii) Let λ0 ∈ iso σ(f (T )). The spectral mapping theorem implies λ0 ∈
iso f (σ(T )). Let us show that λ0 ∈ f (iso σ(T )).

Select μ0 ∈ σ(T ) such that f (μ0) = λ0. Denote by� the connected component
of the domain of f which contains μ0 and suppose that μ0 is not isolated in σ(T ).
Then there exists a sequence (μn) ⊂ σ(T ) ∩ � of distinct scalars such that μn →
μ0. SinceK := {μ0, μ1, μ2, . . . } is a compact subset of�, the principle of isolated
zeros of analytic functions tells us that the function f may assume the value λ0 =
f (μ0) at only a finite number of points of K; so for n sufficiently large f (μn) �=
f (μ0) = λ0, and since f (μn) → f (μ0) = λ0 it then follows that λ0 is not an
isolated point of f (σ(T )), a contradiction. Hence λ0 = f (μ0), with μ0 ∈ iso σ(T ).
Since T is polaroid, μ0 is a pole of T and by Theorem 4.16, λ0 is a pole for f (T ),
which proves that f (T ) is polaroid.

The implications (ii) ⇒ (iii) ⇒ (iv) are obvious.
(iv) ⇒ (i) Suppose f (T ) is polaroid for some f ∈ Hc(σ (T )) and let λ0 ∈

iso σ(T ) be arbitrary. Then μ0 := f (λ0) ∈ f (iso σ(T )). We show now that μ0 ∈
iso f (σ(T )). Indeed, suppose that μ0 is not isolated in f (σ(T )). Then there exists
a sequence (μn) ⊂ f (σ(T )) of distinct scalars such that μn → μ0 as n → +∞.
Let λn ∈ σ(T ) such that μn = f (λn) for all n. Clearly, λn �= λm for n �= m, and
since

μn = f (λn)→ μ0 = p(λ0),

we then have λn → λ0, and this is impossible since, by assumption, λ0 ∈ iso σ(T ).
By the spectral mapping theorem, μ0 ∈ iso f (σ(T )) = iso σ(f (T )). Now, since
f (T ) is polaroid, part (i) of Theorem 4.12 entails that there exists a natural ν such
that

H0(μI − f (T )) = ker (μI − f (T ))ν. (4.4)

Let g(λ) := μ0 − f (λ). Trivially, λ0 is a zero of g, and g may have only a finite
number of zeros. Let {λ0, λ1, . . . , λn} be the set of all zeros of g, with λi �= λj , for
all i �= j . Define

p(λ) := �ni=1(λi − λ)νi ,
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where νi is the multiplicity of λi . Then we can write, for some k ∈ N,

g(λ) = (λ0 − λ)k p(λ) h(λ),

where h(λ) is an analytic function which does not vanish in σ(T ). Consequently,

g(T ) = μ0I − f (T ) = (λ0I − T )kp(T )h(T ),

where h(T ) is invertible, and hence

H0(μ0I − f (T )) = H0((λ0I − T )kp(T )h(T )) = H0((λ0I − T )kp(T )).

According to Remark 4.18 we then have

H0(λ0I − T ) ⊆ H0((λ0I − T )k) ⊆ H0((λ0I − T )kp(T ))
= H0(μ0I − f (T )),

and, evidently,

ker g(T ) = ker [(λ0I − T )kp(T )].

By Lemma 3.67, we also have

ker g(T ) = ker (μ0I − f (T )) = ker [(λ0I − T )k ⊕ ker p(T )].

and hence, from the equality (4.4),

H0(μ0I − f (T )) = ker (λ0I − T )kν ⊕ ker p(T )k.

Therefore,

H0(λ0I − T ) ⊆ ker (λ0I − T )kν ⊕ ker p(T )k.

From Lemma 4.17, we obtain

H0(λ0I − T ) ∩ ker p(T )k = {0},

and henceH0(λ0I −T ) ⊆ ker (λ0I −T )kν . The opposite of the latter inclusion also
holds, so we have H0(λ0I − T ) = ker (λ0I − T )kν . Theorem 4.12 then entails that
T is polaroid. �
Remark 4.20 A natural question is if an analogue of Theorem 4.19 holds for left
polaroid operators. By using the same arguments as the proof of Theorem 4.19
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(just use the spectral mapping theorem for σap(T ) and σs(T )) we easily obtain that
the implication

T left polaroid ⇒ f (T ) left polaroid

holds for every f ∈ Hnc(σ (T )), and a similar implication also holds for right
polaroid operators.

Denote by Hic(σ (T )) the set of all f ∈ Hnc(σ (T )) such that f is injective.

Theorem 4.21 For an operator T ∈ L(X) the following statements are equiva-
lent.

(i) T is left polaroid;
(ii) f (T ) is left polaroid for every f ∈ Hic(σ (T ));
(iii) there exists an f ∈ Hic(σ (T )) such that f (T ) is left polaroid.

Proof We have only to show that (iii) ⇒ (i). Let λ0 be an isolated point of σap(T )

and let μ0 := f (λ0). As in the proof of Theorem 4.19 it then follows that μ0 ∈
iso σap(f (T )), so μ0 is a left pole of f (T ). Now, by Theorem 4.16 there exists a left
pole η of T such that f (η) = μ0 and since f is injective then η = λ0. Therefore, T
is left polaroid. �

The polaroid properties are transmitted from a Drazin invertible operator to its
Drazin inverse:

Theorem 4.22 Suppose that T ∈ L(X) is Drazin invertible with Drazin inverse
S. If T is polaroid then S is polaroid. Analogously, if T is a-polaroid then S is
a-polaroid.

Proof Suppose that T is polaroid and suppose that λ ∈ iso σ(S). If λ = 0, then 0 is
a pole, since S is Drazin invertible. Hence we can suppose that 0 �= λ. We know that
we can write, by Theorem 1.132, T = T1 ⊕ T2 with T1 nilpotent and T2 invertible.
Write S = 0 ⊕ S2 where S2 is the inverse of T2. From Theorem 1.135 we then have
1
λ

∈ iso σ(T ), so, T being polaroid, by Theorem 4.12 we have

H0

(
1

λ
I − T

)
= ker

(
1

λ
I − T

)p
for some p ∈ N.

Since 1
λ
I − T1 is invertible, we have

H0

(
1

λ
I − T

)
= H0

(
1

λ
I − T1

)
⊕H0

(
1

λ
I − T2

)
= {0} ⊕H0

(
1

λ
I − T2

)
,

and analogously

H0(λI − S) = H0(λI − 0)⊕H0(λI − S2) = {0} ⊕H0(λI − S2).
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From Theorem 2.29, applied to the function f (λ) := 1
λ

, we know that

H0(λI − S2) = YS2({λ}) = YT2

({
1

λ

})
= H0

(
1

λ
I − T2

)
.

Hence,H0(λI − S) = H0(
1
λ
I − RT ). By Lemma 3.128 we also have

ker (λI − S)p = ker

(
1

λ
I − T

)p
,

so H0(λI − S) = ker (λI − S)p for all λ ∈ iso σ(S). Hence S is polaroid.
Observe that if T is a-polaroid then iso σ(T ) = iso σap(T ). Suppose now that

T is a-polaroid. Then iso σ(T ) = iso σap(T ). Let λ ∈ iso σap(S). If λ = 0 then
0 ∈ σ(S) and since S is Drazin invertible it then follows that 0 is a pole (of first
order) of the resolvent of S. If λ �= 0 then 1

λ
∈ iso σap(T ) = iso σ(T ), so λ ∈ σ(S).

Since S is polaroid by the first part of the proof, it then follows that λ is a pole of
the resolvent of S. �

Next we shall consider the preservation of the polaroid condition under suitable
commuting perturbations. We start by considering nilpotent commuting perturba-
tions.

Lemma 4.23 If T ∈ L(X) and N is a nilpotent operator commuting with T then
H0(T +N) = H0(T ). Consequently, T is polaroid if and only if T +N is polaroid.

Proof It is enough to proveH0(T ) ⊆ H0(T +N), since the opposite inclusion may
be obtained by symmetry. Let x ∈ H0(T ) and suppose Nν = 0. Then we have
(T +N)ν = T S, where

S :=
ν−1∑
j=0

cν,j T
ν−1−jNj ,

with suitable binomial coefficients cν,j . We have

‖(T +N)νn‖ 1
n ≤ ‖T nx‖ 1

n ‖Snx‖ 1
n .

From this estimate we then obtain limn→+∞ ‖(T + N)νn‖ 1
n = 0 and hence x ∈

H0(T +N).
By Theorem 3.78, λ is a pole of the resolvent of T if and only if λ is a pole of

the resolvent of T +N . Moreover, iso σ(T ) = iso σ(T + N). �
The result above cannot be extended to non-nilpotent quasi-nilpotent operators.

To see this, consider the case T = 0, and a non-nilpotent quasi-nilpotent operatorQ.
The perturbation of a polaroid operator by a compact operator may or may not affect
the polaroid property of the operator. For instance, if R is the right shift operator on
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�2(N), let T := R ⊕ R∗ and

K =
(
T 0 I − RR∗
0 0

)
.

Then both T and T + K are polaroid, since isoσ(T ) = ∅ and T + K is unitary.
Trivially, the identity I is polaroid, but its perturbation I +Q by a compact quasi-
nilpotent is not polaroid. The polaroid conditions are also preserved if K is a
commuting operator for whichKn is a finite rank operator for some n ∈ N:

Theorem 4.24 Let T ∈ L(X) and let K ∈ L(X) be a commuting operator for
which Kn is finite-dimensional for some n ∈ N. Then:

(i) If T is polaroid then T +K is polaroid.
(ii) If T is left polaroid (respectively, right polaroid) then T + K is left polaroid

(respectively, right polaroid).
(iii) If T is a-polaroid then T +K is a-polaroid.

Proof

(i) Suppose T is polaroid. If λ ∈ iso σ(T + K) then there are two possibilities:
λ /∈ σ(T ) or λ ∈ σ(T ). If λ /∈ σ(T ) then λI − T is invertible and hence
λI − (T +K) is Browder, by Theorem 3.11. Therefore, λ is a pole of T +K .
If λ ∈ σ(T ) then λ ∈ iso σ(T ), by Corollary 3.21. Since T is polaroid then λ
is a pole of T , or equivalently λI − T is Drazin invertible. By Theorem 3.78 it
then follows that λI + (T +K) is Drazin invertible. Since λ ∈ iso σ(T +K),
λ is a pole of the resolvent of T .

(ii) Suppose T is left polaroid. If λ ∈ iso σap(T + K) then there are two
possibilities: λ /∈ σap(T ) or λ ∈ σap(T ). If λ /∈ σap(T ) then λI − T is bounded
below and hence λI − (T + K) is upper semi-Browder, by Theorem 3.11, in
particular it is left Drazin invertible. Therefore, λ is a left pole of T +K . If λ ∈
σap(T ) then λ ∈ iso σap(T ), by Corollary 3.28. Since T is left polaroid then λ
is a left pole of T , and hence left Drazin invertible. By Theorem 3.78 it then
follows that λI + (T +K) is left Drazin invertible. Since λ ∈ iso σap(T +K)
then λ is a left pole of T +K . The proof in the case of right polaroid operators
is similar.

(iii) Suppose T is a-polaroid. If λ ∈ iso σap(T +K) then there are two possibilities:
λ /∈ σ(T ) or λ ∈ σ(T ). If λ /∈ σ(T ) then λI − T is invertible and hence
λI−(T +K) is Browder, by Theorem 3.11, in particular it is Drazin invertible.
If λ ∈ σ(T ) then λ ∈ iso σ(T ), by Corollary 3.21. Since T is a- polaroid then
λ is a pole of T , and hence λI − T is Drazin invertible. By Theorem 3.78 it
then follows that λI − (T +K) is Drazin invertible. Since λ ∈ σ(T +K) we
then conclude that λ is a pole of the resolvent of T +K . �

Obviously Theorem 4.24 applies to nilpotent commuting perturbations. The next
example shows that this result cannot be extended to quasi-nilpotent operators Q
commuting with T .
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Example 4.25 LetQ ∈ L(�2(N)) be defined by

Q(x1, x2, . . . ) =
(x2

2
,
x3

3
, . . .

)
for all (xn) ∈ �2(N),

Then Q is quasi-nilpotent and if en := (0, . . . , 1, 0, . . . ), where 1 is the n-th term
and all others are 0, then en+1 ∈ kerQn+1 while en+1 /∈ kerQn, so that p(Q) =
∞. If we take T = 0, the null operator, then T is both left and a-polaroid, while
T +Q = Q is not left polaroid, as well as not a-polaroid or polaroid.

However, the following theorem shows that T +Q is polaroid in a very special
case. Recall first that if α(T ) <∞ then α(T n) <∞ for all n ∈ N.

Theorem 4.26 Suppose that Q ∈ L(X) is a quasi-nilpotent operator which
commutes with T ∈ L(X) and suppose that all eigenvalues of T have finite
multiplicity.

(i) If T is a polaroid operator then T +Q is polaroid.
(ii) If T is a left polaroid operator then T +Q is left polaroid.

(iii) If T is an a-polaroid operator then T +Q is a-polaroid.

Proof

(i) Let λ ∈ iso σ(T + Q). It is well-known that the spectrum is invariant under
commuting quasi-nilpotent perturbations, thus λ ∈ iso σ(T ) and hence is a
pole of the resolvent of T (consequently, an eigenvalue of T ). Therefore, p :=
p(λI − T ) = q(λI − T ) < ∞ and since by assumption α(λI − T ) < ∞ we
then have α(λI − T ) = β(λI − T ), by Theorem 1.22, so λI − T is Browder.
By Theorem 3.8 we then obtain that λI − (T + Q) is Browder, hence λ is a
pole of T +Q, thus T +Q is polaroid.

(ii) Let λ ∈ iso σap(T + Q). We know that σap(T ) is invariant under commuting
quasi-nilpotent perturbations, so λ ∈ iso σap(T ) and hence, since T is left-
polaroid, λ is a left pole of the resolvent of T . Therefore,p := p(λI−T ) <∞
and (λI − T )p+1(X) is closed. Now, λI − T is injective or λ is an eigenvalue
of T . In both cases we have α(λI − T ) < ∞ and hence α(λI − T )p+1 <

∞. Thus, (λI − T )p+1 ∈ �+(X) and this implies that λI − T ∈ �+(X).
Consequently, λI − T ∈ B+(X) and hence, by Theorem 3.8, λI − (T + Q)
is upper-Browder. This implies that p′ := p(λI − (T + Q)) < ∞ and since
(λI−(T+Q))p′+1 is still upper semi-Browder, λI−(T+Q))p′+1(X) is closed
and hence (λI − (T +Q)) is left Drazin invertible. Since λ ∈ iso σap(T +Q)
it then follows that λ is a left pole of T +Q and hence T +Q is left polaroid.

(iii) The proof is analogous to that of part (i). In fact, if λ ∈ iso σap(T + Q) then
λ ∈ iso σap(T ) and hence, since T is a-polaroid, λ is a pole of the resolvent
of T . By assumption, α(λI − T ) < ∞. Proceeding as in part (i) we then have
that λ is a pole of T +Q, thus T +Q is a-polaroid. �

The argument of the proof of part (i) of Theorem 4.26 also works if we assume
that every isolated point of σ(T ) is a finite rank pole (in this case T is said to be
finitely polaroid). This is the case, for instance, for Riesz operators having infinite
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spectrum. Evidently,T+Q is also finitely polaroid, since for every λ ∈ iso σ(T+Q)
we have α(λI − (T +Q)) <∞.

Theorem 4.27 Let T ∈ L(X) and Q be a quasi-nilpotent operator which
commutes with T . If iso σb(T ) = ∅ then T is polaroid if and only if T + Q is
polaroid. Analogously, if iso σub(T ) = ∅ then T is a-polaroid if and only if T +Q
is a-polaroid

Proof We know that T and T +Q have the same spectrum. By Theorem 3.59 T and
T +Q have the same set of poles. The proof of the second assertion is similar. �

4.2 Hereditarily Polaroid Operators

Every operatorK for which Kn is finite-dimensional is algebraic, so it makes sense
to find conditions for which the polaroid condition is preserved under algebraic
commuting perturbations. By a part of an operator T we mean the restriction of T
to a closed T -invariant subspace.

Definition 4.28 An operator T ∈ L(X) is said to be hereditarily polaroid if every
part of T is polaroid.

A simple example shows that a polaroid operator need not be necessarily
hereditarily polaroid. Let T := R ⊕ Q on H ⊕ H , where H := �2(N), R is the
right shift andQ is quasi-nilpotent. Then σ(T ) is the unit disc, so iso σ(T ) is empty
and hence T is polaroid. On the other hand, if M := {0} ⊕ �2(N), then T |M is not
polaroid, sinceQ is not polaroid.

It is easily seen that the property of being hereditarily polaroid is similarity
invariant, but is not preserved by a quasi-affinity. We now want to show that every
hereditarily polaroid operator has the SVEP. First we need to introduce two concepts
of orthogonality on Banach spaces.

Definition 4.29 A closed subspaceM of a Banach spaceX is said to be orthogonal
to a closed subspaceN ofX in the sense of Birkhoff and James, in symbolsM ⊥ N
if ‖x‖ ≤ ‖x + y‖ for all x ∈ M and y ∈ N .

A study of this concept of orthogonality may be found in [143]. Note that
this concept of orthogonality is asymmetric and reduces to the usual definition of
orthogonality in the case of Hilbert spaces. This concept of orthogonality may be
weakened as follows:

Definition 4.30 A closed subspace M of a Banach space X is said to be approxi-
mately orthogonal to a closed subspaceN of X, in symbolsM ⊥a N , if there exists
a scalar α ≥ 1 such that ‖x‖ ≤ α‖x + y‖ for all x ∈ M and y ∈ N .
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What M ⊥a N means is that M meets N at an angle θ , 0 ≤ θ ≤ π
2 , where by

definition

sin θ = inf{‖x − y‖, ‖y‖ = 1} for all x ∈ M,y ∈ N.

If θ = π
2 , then M is orthogonal in the Birkhoff–James sense. If M meets N at an

angle θ > 0 then N meetsM at an angle φ > 0, where in general θ �= φ.

Theorem 4.31 Every hereditarily polaroid operator T ∈ L(X) has the SVEP.
Proof Let T be hereditarily polaroid. For distinct eigenvalues λ and μ of T , let
M denote the subspace generated by ker (λI − T ) and ker (μI − T ). Set S :=
T |M . Then S is polaroid and σ(S) = {λ,μ}. Denote by Pμ the spectral projection
corresponding to the spectral set {μ}. Then

Pμ(M) = ker (μI − S) = ker (μI − T ),

while

kerPμ = (I − Pμ)(M) = ker (λI − S) = ker(λI − T ).

Set α := ‖Pμ‖. Then α ≥ 1, and

‖x‖ = ‖pμx‖ = ‖Pμ(x.y)‖ ≤ α‖x − y‖

for all x ∈ Pμ(M) = ker (μI − T ) and y ∈ (I − Pμ)(M) = ker (λI − T ).
Now, suppose that T does not have the SVEP at a point δ0 ∈ C. Then there exists

an open disc D0 centered at δ0 and a non-trivial analytic function f : D0 → X such
that

f (δ) ∈ ker (δI − T ) for all δ ∈ D0.

Let λ ∈ D0 and μ ∈ D0 be two distinct complex numbers such that f (λ) and f (μ)
are non-zero. Since ker (μI − T ) ⊥a ker (λI − T ),

0 < ‖f (μ)‖ ≤ α‖f (μ)− f (λ)‖.

But then f is not continuous at μ, a contradiction. Hence T has the SVEP. �
We have seen that T ∗ is polaroid if and only if T is polaroid. An immediate

consequence of Theorem 4.31 is that this equivalence in general is not true for
hereditarily polaroid operators. Indeed, the right shift R is trivially hereditarily
polaroid while its dual, the left shift L, cannot be hereditarily polaroid, since it does
not have the SVEP. Note that, by Theorem 3.44, for a hereditarily polaroid operator
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T we have

σlw(T ) = σw(T ) = σb(T ) = σlb(T ),

since T has the SVEP.

Theorem 4.32 Suppose that T ∈ L(X) and K ∈ L(X) is an algebraic operator
which commutes with T .

(i) Suppose that T is hereditarily polaroid. Then T +K is polaroid and T ∗ +K∗
is a-polaroid. If T ∗ has the SVEP then T +K is a-polaroid.

(ii) Suppose that T ∗ is hereditarily polaroid. Then T ∗ +K∗ is polaroid and T +K
is a-polaroid. If T has the SVEP then T ∗ +K∗ is a-polaroid.

Proof

(i) An easy consequence of the spectral mapping theorem is that an algebraic
operator has a finite spectrum. Let σ(K) = {λ1, λ2, . . . , λn} and denote by
Pj the spectral projection associated with K and the spectral sets {λj }. Set
Yj := Pj (X) and Zj := ker Pj . From the classical spectral decomposition
we know that X = Yj ⊕ Zj , Yj and Zj are invariant closed subspaces under
T and K . Moreover, if we let Kj := K|Yj and Tj := T |Yj , then Kj and Tj
commutes, σ(Kj ) = {λj } and

σ(T +K) =
n⋃
j=1

σ(Tj +Kj ).

We claim that Nj := λj I −Kj is nilpotent for every j = 1, 2, . . . , n. To prove
this, denote by h a non-trivial polynomial for which h(K) = 0. Then

h(Kj ) = h(K|Yj ) = 0 for all j = 1, 2, . . . , n,

and since

h({λj }) = h(σ(Kj )) = σ(h(Kj )) = {0}

it then follows that h(λj ) = 0. Set

h(μ) := (λj − μ)νq(μ) with q(λj ) �= 0.

Then

0 = h(Kj ) = (λj −Kj)νq(Kj),

where all q(Kj) are invertible. Therefore, (λj − Kj )ν = 0 and hence Nj :=
λj −Kj is nilpotent for every j = 1, 2, . . . , n, as desired.
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We show now that T + K is polaroid. Let λ ∈ iso σ(T + K). Then λ ∈
iso σ(Tj+Kj ) for some j = 1, 2, . . . , n, hence λ−λj ∈ iso σ(Tj+Kj−λj I).
The restriction Tj is polaroid, by assumption, and as proved before λj I −Kj is
nilpotent. By Lemma 4.23 then Tj + Kj − λj I is polaroid. Therefore, λ − λj
is a pole of the resolvent of Tj +Kj − λj I and hence, by Corollary 2.47, there
exists a νj ∈ N such that

H0((λ− λj )I − (Tj +Kj + λj I)) = H0(λI − (Tj +Kj))
= ker(λI − (Tj +Kj))νj .

Taking into account that H0(λI − (Tj +Kj) = {0} if λ /∈ σ(Tj +Kj ), it then
follows that

H0(λI − (T +K)) =
n⊕
j=1

H0((λI − (Tj +Kj))

=
n⊕
j=1

ker(λI − (Tj +Kj))νj .

Clearly, if we put ν := max{ν1, ν2, · · · , νn} we then obtain

H0(λI − (T +K)) = ker (λI − (T +K))ν.
As λ is an arbitrary isolated point of σ(T + K), it then follows, by Theo-
rem 4.12, that λ is a pole of the resolvent of T +K . Hence T +K is polaroid.

To show that T ∗ + K∗ is a-polaroid observe that by duality T ∗ + K∗ is
polaroid. Since T has the SVEP, by Theorem 4.31, T + K also has the SVEP,
by Theorem 2.145. By Theorem 4.15 it then follows that T ∗+K∗ is a-polaroid.

Suppose now that T ∗ has the SVEP. Obviously, K∗ is algebraic and
commutes with T ∗. Therefore, T ∗+K∗ has the SVEP, again by Theorem 2.145,
and hence T +K is a-polaroid, by Theorem 4.15.

(ii) By part (i) we know that T ∗ +K∗ polaroid or, equivalently, T +K is polaroid.
Since T ∗ has the SVEP, again by Theorem 4.31, T ∗ + K∗ also has the SVEP,
so, by Theorem 4.15, T +K is a-polaroid. If we suppose that T has the SVEP,
then T +K has the SVEP, hence T ∗ +K∗ is a-polaroid, by Theorem 4.15. �

The result of Theorem 4.32 may be extended to f (T ) for every function f ∈
Hnc(σ (T +K)).
Theorem 4.33 Suppose K ∈ L(X) is an algebraic operator commuting with T ∈
L(X) and let f ∈ Hnc(σ (T +K)). Then we have
(i) If T is hereditarily polaroid then f (T + K) is polaroid, while f (T ∗ +K∗) is
a-polaroid.

(ii) If T ∗ is hereditarily polaroid then f (T +K) is a-polaroid, while f (T ∗ +K∗)
is polaroid.
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Proof

(i) Let T be hereditarily polaroid. Then T +K is polaroid, by Theorem 4.32, and
hence f (T + K) is polaroid, by Theorem 4.19. We also know that the SVEP
holds for T , and this entails that T +K also has the SVEP, by Theorem 2.145.
From Theorem 2.86 it then follows that f (T +K) has the SVEP. Since f (T +
K)∗ = f (T ∗ + K∗) is also polaroid, by Theorem 4.15, we then conclude that
f (T ∗ +K∗) is a-polaroid.

(ii) The proof is analogous. �
Remark 4.34 In the case of Hilbert space operators, the assertions of Theorem 4.32
are still valid if T ∗ is replaced by the Hilbert adjoint T ′.

A natural question is whether the polaroid property, or the hereditarily polaroid
property, for an operator is preserved under compact perturbations. The answer to
these questions is negative, see Zhu and Li [227], or Duggal [127].

4.3 Examples of Polaroid Operators

The class of hereditarily polaroid operators is substantial; it contains several
important classes of operators. The first class that we consider is the following one
introduced by Oudghiri [251].

Definition 4.35 A bounded operator T ∈ L(X) is said to belong to the class H(p)
if there exists a natural p := p(λ) such that:

H0(λI − T ) = ker (λI − T )p for all λ ∈ C. (4.5)

It should be noted that the integer p := p(λ) may assume different values. We
shortly say that T belongs to the class H(1) if p(λ) = 1 for all λ ∈ C. The class
H(1) has been studied by Aiena and Villafãne in [32].

Evidently, since H0(λI − T ) is closed for each λ ∈ C, every H(p)-operator
has the SVEP, by Theorem 2.39. Moreover, every H(p)-operator is polaroid, by
Theorem 4.12.

The propertyH(p) is inherited by restrictions to closed invariant subspaces:

Theorem 4.36 Let T ∈ L(X) be a bounded operator on a Banach space X. If T
has the property H(p) and Y is a closed T -invariant subspace of X then T |Y has
the property H(p).

Proof If H0(λI − T ) = ker(λI − T )p then

H0((λI − T )|Y ) ⊆ ker(λI − T )p ∩ Y = ker((λI − T )|Y )p,

from which we obtain H0((λI − T )|Y ) = ker((λI − T )|Y )p. �
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The following result is an easy consequence of Theorems 4.36 and 4.33.

Corollary 4.37 Every H(p)-operator T is hereditarily polaroid. Moreover, if K is
algebraic and commutes with T , then f (T + K) is a-polaroid, while f (T ∗ + K∗)
is polaroid, for every f ∈ Hnc(σ (T +K)).

The next result shows that propertyH(p) is preserved by quasi-affine transforms.

Theorem 4.38 If S ∈ L(Y ) has property H(p) and T ≺ S, then T has property
H(p).

Proof We consider the case when p := (λI − T ) = 1 for all λ ∈ C. Suppose S has
propertyH(1), i.e. SA = AT , with A injective. If λ ∈ C and x ∈ H0(λI − T ) then

‖(λI − S)nAx‖1/n = ‖A(λI − T )nx‖1/n ≤ ‖A‖1/n‖(λI − T )nx‖1/n,

from which it follows that Ax ∈ H0(λI − S) = ker (λI − S). Hence,

A(λI − T )x = (λI − S)Ax = 0

and, sinceA is injective, we then conclude that (λI−T )x = 0, i.e., x ∈ ker (λI−T ).
ThereforeH0(λI − T ) = ker (λI − T ) for all λ ∈ C.

The more general case of H(p)-operators is proved by a similar argument. �
The class ofH(p)-operators is very large. To see this, we first introduce a special

class of operators which plays an important role in local spectral theory. Let C∞(C)
denote the Fréchet algebra of all infinitely differentiable complex-valued functions
on C.

Definition 4.39 An operator T ∈ L(X),X a Banach space, is said to be generalized
scalar if there exists a continuous algebra homomorphism  : C∞(C) → L(X)

such that

(1) = I and (Z) = T ,

where Z denotes the identity function on C.

The interested reader can find a well-organized treatment of generalized scalar
operators in Laursen and Neumann [216, Section 1.5]. It should be noted that every
quasi-nilpotent generalized scalar operator is nilpotent [216, Proposition 1.5.10].
Moreover, if T is generalized scalar then T has the Dunford property (C), i.e.
XT (�) is closed for all closed subset � ⊆ C, see [216, Theorem 1.5.4 and
Proposition 1.4.3]. In particular, H0(λI − T ) = XT ({λ}) is closed for each λ ∈ C,
so every generalized scalar operator has the SVEP, by Theorem 2.39.

An operator similar to a restriction of a generalized scalar operator to one of its
closed invariant subspaces is called subscalar.
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Theorem 4.40 Every generalized scalar, as well as every subscalar operator
T ∈ L(X) is H(p). Consequently, every generalized scalar and every subscalar
operator is hereditarily polaroid.

Proof By Lemma 4.36 and Theorem 4.38 we may assume that T is generalized
scalar. Consider a continuous algebra homomorphism  : C∞(C) → L(X) such
that (1) = I and (Z) = T . Let λ ∈ C. Since every generalized scalar operator
has property (C), H0(λI − T ) = XT ({λ}) is closed. On the other hand, if f ∈
C∞(C) then

(f )(H0(λI − T )) ⊆ H0(λI − T ),

because T = (Z) commutes with (f ). Define

̃ : C∞(C)→ L(H0(λI − T ))

by

̃(f ) = (f )|H0(λI − T ) for every f ∈ C∞(C).

Clearly, T |H0(λI − T ) is generalized scalar and quasi-nilpotent, so it is nilpotent.
Thus there exists a p ≥ 1 for which H0(λI − T ) = ker(λI − T )p. �
Definition 4.41 An operator T ∈ L(X) is said to be paranormal if

‖T x‖ ≤ ‖T 2x‖ for all unit vectors x ∈ X. (4.6)

The restriction T |M of a paranormal operator T ∈ L(X) to a closed subspace
M is evidently paranormal. The property of being paranormal is not translation-
invariant, see Chō and Lee [91]. An operator T ∈ L(X) is called totally paranormal
if λI − T is paranormal for all λ ∈ C. Note that every isometry is paranormal.

Theorem 4.42 Every totally paranormal operator has property H(1).

Proof In fact, if x ∈ H0(λI − T ) then ‖(λI − T )nx‖1/n → 0 and since T is totally
paranormal then (λI−T )nx‖1/n ≥ ‖(λI−T )x‖. Therefore,H0(λI−T ) ⊆ ker(λI−
T ), and since the reverse inclusion holds for every operator, we haveH0(λI −T ) =
ker(λI − T ). �

Theorem 4.40 implies that some important classes of operators are H(p). In the
sequel we list some of these classes acting on Hilbert spaces. Let H be a Hilbert
space, with inner product (·, ·) and, as usual, denote by T ′ the adjoint of T .

(a) Hyponormal operators. A bounded operator T ∈ L(H) is said to be hyponor-
mal if

T ′T ≥ T T ′.
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It is easily seen that T is hyponormal if and only if

‖T ′x‖ ≤ ‖T x‖ for all x ∈ H.

Indeed, T ′T ≥ T T ′ means that (T ′T x, x) ≥ (T T ′x, x) for all x ∈ H , or
equivalently

‖T ′x‖2 = (T ′x, T ′x) = (T T ′x, x) ≤ (T ′T x, x) = (T x, T x) = ‖T x‖2.

Clearly, ‖T ′x‖2 ≤ ‖T x‖2 if and only if ‖T ′x‖ ≤ ‖T x‖.
By an important result due to Putinar [258], every hyponormal operator is similar

to a subscalar operator, see also [216, section 2.4], so, by Theorem 4.40, hyponormal
operators are H(p). A routine computation shows that that a weighted right shift,
see later for the definition, on the Hilbert space �2(N) is hyponormal if and only
if the corresponding weight sequence is increasing. Since every generalized scalar
operator is decomposable, see [216, Theorem 1.5.4], and hence has property (β),
for every increasing weight sequence the corresponding weighted right shift has
property (β). Examples of hyponormal operators are the quasi-normal operators,
see Conway [99] or Furuta [151], where T ∈ L(H) is said to be quasi-normal if

T (T ′T ) = (T ′T )T .

A very easy example of a quasi-normal operator is given by the right shift R on
�2(N). Indeed, the adjoint of R is the left shift L and obviouslyR(R′R) = (RR′)R.
Note that R is not normal, since RR′ = RL �= R′R = LR = I . An operator
T ∈ L(H) is said to be subnormal if there exists a normal extension N , i.e. there
exists a Hilbert space K such that H ⊆ K and a normal operator N ∈ L(K) such
that N |H = T . We have

T quasi-normal ⇒ T subnormal ⇒ T hyponormal.

For details, see Furuta [151, p. 105]. We give in the sequel some relevant properties
of hyponormal operators.

Lemma 4.43 Let T ∈ L(H) be hyponormal. Then we have:
(i) λI − T is hyponormal for every λ ∈ C.

(ii) IfM is a closed invariant subspace of H then T |M is hyponormal.

Proof

(i) We have

(λI − T )′(λI − T )− (λI − T )(λI − T )′
= (λI − T )(λI − T )− (λI − T )(λI − T ) = T ′T − T T ′ ≤ 0,

thus, λI − T is hyponormal.
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(ii) Observe first that if PM is the projection of T onto M , then (T |M)′ =
(PMT

′)|M . For every x ∈ M we then have

‖(T |M)′x‖ = ‖(PMT ′)x‖ ≤ ‖PM‖‖T ′x‖
= ‖T ′x‖ ≤ ‖T x‖ = ‖T |Mx‖,

so T |M is hyponormal. �
Lemma 4.44 Let T ∈ L(H) be a self-adjoint operator such that λI ≤ T for some
λ ≥ 0. Then T is invertible. In particular, if I ≤ T then 0 ≤ T −1 ≤ I .
Proof To show the first assertion, observe that by the Schwarz inequality we have

‖T x‖‖x‖ ≥ (T x, x) ≥ c‖x‖2,

so ‖T x‖ ≥ c‖x‖, and hence T is bounded below by Lemma 1.9. Let y be orthogonal
to T (H), that is

0 = (y, T x) = (T y, x) for all x ∈ H.

Then Ty = 0 and since T is injective we then have y = 0. Therefore, T (H)⊥ =
T (H)

⊥ = {0}, and hence T is surjective, thus T is invertible.
To show the second assertion, note that if I ≤ T then T is invertible and T −1 is

also positive. Since the product of two commuting positive operators is also positive,
it then follows that

T −1(T − I) = I − T −1 ≥ 0,

thus T −1 ≤ I . �
It is easily seen that if T is self-adjoint then ST S′ is also self-adjoint for every

S ∈ L(H). Moreover, if T is positive then ST S′ ≥ 0 for all S ∈ L(H).
Theorem 4.45 If T ∈ L(H) is an invertible hyponormal operator then its inverse
T −1 is also hyponormal.

Proof Suppose that T is hyponormal. Then T ′T − T T ′ ≥ 0 and hence, as noted
above, the product T −1(T ′T − T T ′)(T −1)′ is still positive. From this we obtain
T −1(T ′T )(T −1)′ − I ≥ 0, and hence

T −1(T ′T )(T −1)′ ≥ I,

thus, by Lemma 4.44, the product T −1(T ′T )(T −1)′ is invertible with

0 ≤ [T −1(T ′T )(T −1)′]−1 ≤ I.
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From the last inequality we then obtain that

S := I − T ′(T −1(T ′)−1)T

is positive, so T −1ST −1 ≥ 0, from which we easily obtain that

(T −1)′T −1 − T −1(T −1)′ ≥ 0.

Therefore, T −1 is hyponormal. �
Theorem 4.46 Every hyponormal operator T ∈ L(H) is totally paranormal.
Consequently, every hyponormal operator is H(1).

Proof To show that T is totally paranormal it suffices to prove, by Lemma 4.43,
that every hyponormal operator is paranormal. Since T is hyponormal we have, for
every x ∈ H ,

‖T x‖2 = (T x, T x) = (T ′T x, x) ≤ ‖T ′(T x)‖‖x‖
≤ ‖T (T x)‖‖x‖ = ‖T 2x‖‖x‖.

Taking ‖x‖ = 1 we then have ‖T x‖2 ≤ ‖T 2x‖, so T is paranormal.
By Theorem 4.42 T is H(1). �
For T ∈ L(H) let T = W |T | be the polar decomposition of T . Then

R := |T |1/2W |T |1/2

is said to be the Aluthge transform of T , see [47]. If R = V |R| is the polar
decomposition of R (see Appendix A) let us define

T̃ := |R|1/2V |R|1/2.

(b) Log-hyponormal operators. An operator T ∈ L(H) is said to be log-
hyponormal if it is invertible and satisfies

log (T ∗T ) ≥ log (T T ∗).

If T is log-hyponormal then T̃ is hyponormal and T = KT̃K−1, where K :=
|R|1/2|T |1/2, see Tanahashi [290], and Chō et al. [92]. Hence T is similar to a
hyponormal operator and therefore, by Theorem 4.38, has property H(1).

(c) p-hyponormal operators. An operator T ∈ L(H) is said to be p-hyponormal,
with 0 < p ≤ 1, if

(T ′T )p ≥ (T T ′)p.
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If p = 1
2 , T is said to be semi-hyponormal. The class of p-hyponormal

operators has been studied by Aluthge [47], while semi-hyponormal operators
were introduced by Xia [298]. Any p-hyponormal operator is q-hyponormal
if q < p, but there are examples to show that the converse is not true, see
[47]. Every invertible p-hyponormal is subscalar [200], and is quasi-similar to
a log-hyponormal operator. Consequently, by Theorem 4.38, every invertible
p-hyponormal is operator has property H(1), see Aiena and Miller [17], and
Duggal and Djordjević [129]. This is also true for p-hyponormal operators
which are not invertible, see Duggal and Jeon [134]. Every p-hyponormal
operator is paranormal, see [49] or [90].

(d) M-hyponormal operators. Recall that T ∈ L(H) is said to be M-hyponormal
if there exists anM > 0 such that

T T ∗ ≤MT ∗T .

Every M-hyponormal operator is subscalar [216, Proposition 2.4.9] and hence
H(p).

(e) w-hyponormal operators. If T ∈ L(H) and T = U |T | is the polar decomposi-
tion, define

T̂ := |T | 1
2U |T | 1

2 .

T ∈ L(H) is said to be w-hyponormal if

|T̂ | ≥ |T | ≥ |T̂ ∗|.

Examples of w-hyponormal operators are p-hyponormal operators and log-
hyponormal operators. Each w-hyponormal operator is subscalar, together with
its Aluthge transformation, see Chō et al. [228], and hence H(p). In [168,
Theorem 2.5] it is shown that for every isolated point λ of the spectrum of a
w-hyponormal operator T we haveH0(λI − T ) = ker(λI − T ) and hence λ is
a simple pole of the resolvent.

(f) Multipliers of semi-simple Banach algebras. Let A denote a complex Banach
algebra (not necessarily commutative) with or without a unit.

Definition 4.47 The mapping T : A→ A is said to be a multiplier of A if

x(Ty) = (T x)y for all x, y ∈ A. (4.7)

The set of all multipliers of A is denoted byM(A).

An immediate example of a multiplier of a Banach algebra A is given by the
multiplication operator La : x ∈ A → ax ∈ A by an element a which commutes
with every x ∈ A. In the case in which A is a commutative Banach algebra with
unit u the concept of multiplier reduces, trivially, to the multiplication operator by
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an element of A. To see this, given a multiplier T ∈ M(A), let us consider the
multiplication operator LTu by the element T u. For each x ∈ A we have

LTux = (T u)x = u(T x) = T x,

thus T = LTu. In this case we can identify A with M(A). A very important
example of a multiplier is given in the case whereA is the semi-simple commutative
Banach algebraL1(G), the group algebra of a locally compact abelian groupGwith
convolution as multiplication. Indeed, in this case to any complex Borel measure μ
on G there corresponds a multiplier Tμ defined by

Tμ(f ) := μ � f for all f ∈ L1(G),

where

(μ � f )(t) :=
∫
G

f (t − s)dμ(s).

The classical Helson–Wendel Theorem shows that each multiplier is a convolution
operator and the multiplier algebra of A := L1(G) may be identified with the
measure algebraM(G), see Larsen [210, Chapter 0].

We recall that an algebra A is said to be semi-prime if {0} is the only two-sided
ideal J for which J 2 = {0}. A left ideal J of a Banach algebra A is said to be
regular (or also modular) if there exists an element v ∈ A such that A(1 − v) ⊆ J ,
where

A(1 − v) := {x − xv : x ∈ A}.
Similar definitions apply to right regular ideals and regular ideals. It is clear that if
A has a unit u then every ideal, left, right, or two-sided, is regular. A two-sided ideal
J of A is called primitive if there exists a maximal regular left ideal L of A such
that

J = {x ∈ A : xA ⊆ L}.

It is well known that J is a primitive ideal of A if and only if J is the kernel of an
irreducible representation of A, see Bonsall and Duncan [80, Proposition 24.12].

The (Jacobson) radical of an algebra is the intersection of the primitive ideals
of A, or, equivalently, the intersection of the maximal regular left (right) ideals of
A, see Bonsall and Duncan [80, Proposition 24.14]. An algebra A is said to be
semi-simple if its radical radA is equal to {0}. If A = radA then A is said to be
a radical algebra. Each semi-simple Banach algebra is semi-prime. Note that in a
commutative Banach algebra A the radical is the set of all quasi-nilpotent elements
of A, see [80, Corollary 17.7], and consequently A is semi-simple precisely when
it contains non-zero quasi-nilpotent elements, while a commutative Banach algebra
A is semi-prime if and only if it contains non-zero nilpotent elements.
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The weighted convolution algebra L1(R+, ω), where the weight ω is chosen so
that ω1/t → 0 as t → 0, is an example of a semi-prime Banach algebra which
is not semi-simple [80], so these two classes of Banach algebras are distinct. For
an extensive treatment of multiplier theory we refer to the books by Laursen and
Neumann [216] and Aiena [1].

Theorem 4.48 Let A be a semi-simple Banach algebra. Every T ∈ M(A) has
property H(1), i.e.,

H0(λI − T ) = ker (λI − T ) for all λ ∈ C. (4.8)

Consequently, every T ∈ M(A) is hereditarily polaroid.
Proof Since λI − T is a multiplier, it suffices to show (4.8) for λ = 0. We know
that ker T ⊆ H0(T ), so it remains to prove the inverse inclusion.

Suppose that x ∈ H0(T ). By an easy inductive argument we have

(T y)n = (T ny)yn−1 for every y ∈ A and n ∈ N.

From this it follows that

‖(aT x)n‖ = ‖(T ax)n‖ = ‖T n(ax)(ax)n−1‖
≤ ‖a‖‖T nx‖‖(ax)n−1‖

for every a ∈ A, so the spectral radius of the element aT x is

r(aT x) = lim
n→∞ ‖(aT x)n‖1/n = 0

for every a ∈ A. This implies that T x ∈ radA, see [80, Proposition 1, p. 126]. Since
A is semi-simple T x = 0, hence x ∈ kerT , and consequently H0(T ) ⊆ ker T ,
which concludes the proof. �
Corollary 4.49 Let A be a semi-simple Banach algebra and T ∈ M(A). Then T is
quasi-nilpotent if and only if T = 0.

Proof Suppose T ∈ M(A) is quasi-nilpotent. Combining Theorems 4.48 and 2.35
we have A = H0(T ) = ker T and hence T = 0. �
Remark 4.50 Note that the assumption of semi-simplicity in Theorem 4.48 is
crucial, since, in general, a multiplier of a non-semi-simple Banach algebra A, also
semi-prime, does not satisfy property H(1). To see this, let ω := (ωn)n∈N be a
sequence with the property that

0 < ωm+n ≤ ωmωn for all m,n ∈ N,
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and let �1(ω) denote the space of all complex sequences x := (xn)n∈N for which

‖x‖ω :=
∞∑
n=0

ωn|xn| <∞.

The Banach space �1(ω) equipped with convolution as multiplication

(x � y)n :=
n∑
j=0

xn−j yj for all n ∈ N ,

is a commutative Banach algebra with unit. Denote by Aω the maximal ideal of
�1(ω) defined by

Aω := {(xn)n∈N ∈ �1(ω) : x0 = 0}.

The Banach algebra Aω is an integral domain (in the sense that the product of two
non-zero elements of Aω is always non-zero) and hence semi-prime. Suppose now
that the weight sequence ω satisfies the condition

ρω := lim
n→∞ω

1
n
n = 0.

ThenAω is a radical algebra (see Laursen and Neumann [216, Example 4.1.9]), i.e.,
Aω coincides with its radical, and hence is not semi-simple.

For every 0 �= a ∈ Aω, let Ta(x) := a � x, x ∈ Aω, denote the multiplication
operator by the element a. It is easily seen that Ta is quasi-nilpotent, thusHo(Ta) =
Aω. On the other hand, Aω is an integral domain so that ker Ta = {0}. Hence, the
operator Ta does not satisfy propertyH(1).

4.4 Paranormal Operators

The paranormal operators on Banach spaces provide important examples of oper-
ators which are not H(p). An operator T ∈ L(X), X a Banach space, is said to
be normaloid if its spectral radius r(T ) is equal to the norm ‖T ‖, or equivalently,
‖T n‖ = ‖T ‖n for every n = 1, 2, . . . .

Theorem 4.51 If T ∈ L(X) is paranormal then we have:
(i) Any scalar multiple, and the inverse (if it exists), of a paranormal operator, is

paranormal.
(ii) Every power T n is paranormal.

(iii) T is normaloid.
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Proof (i) Obvious. To show (ii) observe that from the definition (4.6) we have

‖T k+1x‖
‖T kx‖ ≤ ‖T k+2x‖

‖T k+1x‖
from which we obtain

‖T nx‖
‖x‖ = ‖T x‖

‖x‖
‖T 2x‖
‖T x‖ · · · ‖T nx‖

‖T n−1x‖

≤ ‖T n+1x‖
‖T nx‖

‖T n+2x‖
‖T n+1x‖ · · · ‖T 2nx‖

‖T 2n−1x‖ = ‖T 2nx‖
‖T nx‖ .

Consequently, ‖T nx‖2 ≤ ‖(T n)2x‖‖x‖.
(iii) For every paranormal operator we have

‖T x‖2 ≤ ‖T 2x‖‖x‖ ≤ ‖T 2‖‖x‖2,

thus ‖T 2‖ = ‖T ‖2. Since T n is paranormal, ‖T 2n = ‖T ‖2n for every n ∈ N. Hence

r(T ) = lim
n→∞ ‖T 2n‖ 1

2n = ‖T ‖. �

Remark 4.52 In [151, p. 113] it is shown that there exists a hyponormal operator T
such that T 2 is not hyponormal. Since every hyponormal operator is paranormal,
T is paranormal and hence, by Theorem 4.51, T 2 is paranormal. Therefore T 2

provides an example of an operator which is paranormal, but not hyponormal.

Corollary 4.53 If T ∈ L(X) is quasi-nilpotent and paranormal, then T = 0.

Proof T is normaloid, so r(T ) = ‖T ‖ = 0. �
Definition 4.54 Recall that an invertible operator T ∈ L(X) is said to be doubly
power-bounded if sup{‖T n‖ : n ∈ Z} <∞.

The following theorem is due to Gelfand, see [216, Theorem 1.5.14] for an
elegant proof.

Theorem 4.55 If T is doubly power-bounded then T = I .
Evidently, every isometry is paranormal. Note that if T ∈ L(X) is paranormal

and σ(T ) ⊆ �, � the unit circle in C, then T is an invertible isometry. Indeed, T
and its inverse T −1 are paranormal, and hence normaloid. Hence ‖T ‖ = ‖T −1‖ = 1
and

‖x‖ = ‖T −1T x‖ ≤ ‖T x‖ ≤ ‖x‖

for all x ∈ X, thus ‖T x‖ = ‖x‖.
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We know that every totally paranormal operator is H(1), by Theorem 4.42, and
hence hereditarily polaroid. In the next theorem we show that this is true for every
paranormal operator.

Theorem 4.56 If T ∈ L(X) is paranormal then every λ ∈ iso σ(T ) is a pole of the
resolvent of order 1. Moreover, T is hereditarily polaroid.

Proof Let λ ∈ iso σ(T ) and denote by Pλ the spectral projection associated with
{λ}. If λ = 0 then the paranormal operator T |P0(X) has spectrum {0}, i.e, is quasi-
nilpotent. By Corollary 4.53, T |P0(X) = 0. By Theorem 2.45 we have P0(X) =
H0(T ), soH0(T ) ⊆ ker T . Since the opposite inclusion holds we then conclude that
H0(T ) = ker T . Since X = H0(T ) ⊕ K(T ), we then have T (X) = T (K(T )) =
K(T ), hence X = ker T ⊕ T (X), which is equivalent to saying, by Theorem 1.35,
that 0 is a pole of the first order. Suppose that λ �= 0. Then Tλ := 1

λ
(T |Pλ) is

paranormal with spectrum equal to {1}. Therefore, Tλ and its inverse Tλ−1 are both
isometries, and hence ‖Tλn‖ = 1 for all n ∈ Z. By Lemma 4.55 we then deduce
that Tλ = I . So again, (λI −Tλ)(Pλ(X)) = {0} and proceeding as in the case λ = 0
we obtain that λ is a pole of the first order. This shows that T is polaroid. Since the
restriction of T to a closed invariant subspace is paranormal, we then conclude that
T is hereditarily polaroid. �

We say that T ∈ L(X) is analytically paranormal if there exists a function f ∈
Hnc(σ (T )) such that f (T ) is paranormal.

Corollary 4.57 Analytically paranormal operators on Banach spaces are heredi-
tarily polaroid.

Proof Let T ∈ L(X) be analytically paranormal and M a closed T -invariant
subspace of X. By assumption there exists an analytic function h such that h(T )
is paranormal. The restriction of any paranormal operator to an invariant closed
subspace is also paranormal, so h(T |M) = h(T )|M is paranormal and hence
polaroid, by Theorem 4.56. From Theorem 4.19 we then conclude that T |M is
polaroid. �

Let C be any class of operators. We say that T is an analytically C-operator if
there exists some analytic function f ∈ Hnc(σ (T )) such that f (T ) ∈ C.

Lemma 4.58 The property of being analytically C is translation invariant.

Proof We have to show that

T analytically C and λ0 ∈ C ⇒ λ0I − T analytically C.

Suppose that f (T ) ∈ C for some f ∈ Hnc(σ (T )). Let λ0 ∈ C be arbitrary and set
g(μ) := f (λ0 − μ). Then g is analytic and

g(λ0I − T ) = f (λ0I − (λ0I − T )) = f (T ),
thus λ0I − T is analytically C. �



4.4 Paranormal Operators 327

Definition 4.59 An operator T ∈ L(X) is said to be hereditarily normaloid, T ∈
HN , if the restriction T |M of T to any closed T -invariant subspaceM is normaloid.
Finally, T ∈ L(X) is said to be totally hereditarily normaloid, T ∈ T HN , if
T ∈ HN and every invertible restriction T |M has a normaloid inverse.

Evidently, every paranormal operator, and in particular every hyponormal opera-
tor, is totally hereditarily normaloid.

Theorem 4.60 Suppose that T ∈ L(X) is quasi-nilpotent. If T is an analytically
T HN operator, then T is nilpotent.

Proof Let T ∈ L(X) and suppose that f (T ) is a T HN-operator for some f ∈
Hnc(σ (T )). From the spectral mapping theorem we have

σ(f (T )) = f (σ(T )) = {f (0)}.

We claim that f (T ) = f (0)I . To see this, let us consider the two possibilities:
f (0) = 0 or f (0) �= 0.

If f (0) = 0 then f (T ) is quasi-nilpotent and f (T ) is normaloid, and hence
f (T ) = 0. The equality f (T ) = f (0)I then trivially holds.

Suppose the other case f (0) �= 0, and set f1(T ) := 1
f (0)f (T ). Clearly,

σ(f1(T )) = {1} and ‖f1(T )‖ = 1. Further, f1(T ) is invertible and is T HN .
This easily implies that its inverse f1(T )

−1 has norm 1. The operator f1(T ) is then
doubly power-bounded and hence, by Theorem 4.55, f1(T ) = I , and consequently
f (T ) = f (0)I , as claimed.

Now, let g(λ) := f (0)− f (λ). Clearly, g(0) = 0, and g may have only a finite
number of zeros in σ(T ). Let {0, λ1, . . . , λn} be the set of all zeros of g, where
λi �= λj , for all i �= j , and λi has multiplicity ni ∈ N. We have

g(λ) = μλm
n∏
i=1

(λiI − T )ni h(λ),

where h(λ) has no zeros in σ(T ). From the equality g(T ) = f (0)I − f (T ) = 0 it
then follows that

0 = g(T ) = μT m
n∏
i=1

(λiI − T )ni h(T ) with λi �= 0,

where all the operators λiI − T and h(T ) are invertible. This, obviously, implies
that T m = 0, i.e., T is nilpotent. �

If T ∈ L(X) the numerical range of T is defined as

W(T ) := {f (T ) : f ∈ L(X)∗, ||f ‖ = f (I) = 1},
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while the numerical radius of T is defined by

w(T ) := sup{|λ| : λ ∈ W(T )}.

In the case of Hilbert space operators the numerical range may be described as the
set

W(T ) = {(T x, x) : ‖x‖ = 1},

and the well-known Toeplitz–Hausdorff theorem establishes that W(T ) is a convex
set in the complex plane (for a proof, see Furuta [151, p. 91]). It is known that

r(T ) ≤ w(T ) ≤ ‖T ‖.

The next non-trivial result was proved in Sinclair [285]. We omit the difficult proof.

Theorem 4.61 Let T ∈ L(X) and suppose that 0 is in the boundary of the
numerical range of T . Then the kernel of T is orthogonal to the range of T .

In the case of paranormal operators we have:

Theorem 4.62 Suppose that T ∈ L(X) is totally hereditarily normaloid and λ,μ ∈
C, with λ �= 0 and λ �= μ. Then ker (λI − T ) ⊥ ker (μI − T ), i.e. ker (λI − T ) is
orthogonal to ker (μI − T ) in the Birkhoff and James sense.

Proof Suppose first that |λ| ≥ |μ|, let x ∈ ker (λI −T ) and y ∈ ker (μI −T ). Then
T x = λx and Ty = μy. Denote by M the subspace generated by x and y and set
TM := T |M . Clearly, σ(T |M) = {λ,μ} and since T |M is normaloid,

‖T |M‖ = r(T |M) = |λ, |

so that ν(T |M) = |λ|. Consequently, λ belongs to the boundary of the numerical
range of T |M and hence, by Theorem 4.61, ker(λI − T |M) ⊥ (λI − T |M)(M).
Evidently, λ andμ are poles of the resolvent of T |M having order 1. Denoting by Pλ
and Pμ the spectral projections for T |M associated with {λ} and {μ}, respectively,
we then have

(λI − T |M)(M) = (I − Pλ)(M) = Pμ(M) = ker (βI − T |M).

Now, x ∈ ker (λI − T |M) and y ∈ ker(μI − T |M), hence ‖x + y‖ ≥ ‖x‖.
Consider now the case where |λ| < |μ|. Then |μ| > 0, so T |M is invertible and

σ(T |M)−1 =
{

1

λ
,

1

μ

}
,
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with | 1
λ
| > | 1

μ
|. Since T |M is normaloid then (T |M)−1 is also normaloid. As in the

first case we then see that the kernels ker( 1
λ
I − (T |M)−1) and ker ( 1

μ
I − (T |M)−1)

are orthogonal. Obviously, x ∈ ker ( 1
λ
I − (T |M)−1) and y ∈ ker ( 1

μ
I − (T |M)−1),

so the proof is complete. �
Theorem 4.63 Every totally hereditarily normaloid operator T on a separable
Banach space has the SVEP.

Proof To prove the first assertion, we show that the point spectrum σp(T ) is
countable, hence its interior part is empty. If σp(T ) were not countable we would
have an uncountable set of unit vectors such that ‖xi−xj‖ ≥ 1. SinceX is separable
this is not possible. �

Every normal operator on a Hilbert space is paranormal. Indeed, if T ∈ L(H) is
normal then ‖T x‖ = ‖T ′x‖ for every x ∈ H . Consequently,

‖T x‖2 = (T x, T x) = (T ′T x, x) ≤ ‖T ′T x‖‖x‖ = ‖T 2x‖‖x‖.

Theorem 4.64 If T ∈ L(H) is paranormal and has finite spectrum then H is the
direct sum of eigenspaces of T .

Proof Let σ(T ) = {λ1, . . . , λn} and denote by Pk the spectral projection associated
with {λk}. Then

H =
⊕ k=n∑

k=1

Pk(X).

By Theorem 4.56 we have Pk(X) = ker (λkI − T ). �
Corollary 4.65 If T ∈ L(H) is paranormal and has finite spectrum then T is
normal. In particular, any algebraic paranormal operator is normal.

Proof We have

H =
⊕ k=n∑

k=1

ker (λkI − T ),

and ker (λkI − T ) ⊥ ker (λj I − T ) for k ≤ j , and this entails that T is normal. The
last assertion is clear, since algebraic operators have finite spectrum. �

The class of paranormal operators includes some other classes of operators
defined on Hilbert spaces:

(g) p-quasihyponormal operators. It has been observed before that every p-
hyponormal operator is paranormal. A Hilbert space operator T ∈ L(H) is



330 4 Polaroid-Type Operators

said to be p-quasihyponormal for some 0 < p ≤ 1 if

T ′|T ′|2pT ≤ T ′|T |2pT .
Every p-quasi-hyponormal is paranormal, see Lee and Lee [225].

(h) Class A operators. An operator T ∈ L(H) is said to be a class A operator if
|T 2| ≥ |T |2. Every log-hyponormal operator is a class A operator, see Furuta
et al. [152], but the converse is not true, see Furuta [151, p. 176]. Every class
A operator is paranormal (an example of a paranormal operator which is not a
class A operator can be found in [151, p. 177]).

4.5 Isometries

Let us consider, for an arbitrary operator T ∈ L(X) on a Banach space X, the
so-called lower bound of T defined by

k(T ) := inf{‖T x‖ : x ∈ X, ‖x‖ = 1}.
It is obvious that if T is invertible then k(T ) = ‖T −1‖. Clearly

k(T n)k(T m) ≤ k(T n+m) for all n,m ∈ N (4.9)

and consequently k(T ) = 0 whenever k(T n) = 0 for some n ∈ N. The converse is
also true: if k(T ) = 0 then 0 ∈ σap(T ) and therefore k(T n) = 0 for all n ∈ N.

Theorem 4.66 If T ∈ L(X) then
lim
n→∞ k(T

n)1/n = sup
n∈N
k(T n)1/n. (4.10)

Proof Fixm ∈ N and write for all n ∈ N, n = mq+r , 0 ≤ r ≤ m, where q := q(n)
and r := r(n) are functions of n. Note that

lim
n→∞

q(n)

n
= 1

m
and lim

n→∞
r(n)

n
= 0.

From (4.9) we obtain that k(T n) ≥ k(T m)qk(T )r and hence

lim
n→∞ inf(k(T n))1/n ≥ k(T m)1/m for all m ∈ N.

Therefore

lim
n→∞ inf(k(T n))1/n ≥ sup

n∈N
k(T n)1/n ≥ lim

n→∞ sup(k(T n))1/n,

from which the equality (4.10) follows. �
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Put

i(T ) := lim
n→∞ k(T

n)1/n.

If r(T ) denotes the spectral radius of T it is obvious that i(T ) ≤ r(T ). For every
bounded operator T ∈ L(X), X a Banach space, let us consider the (possible
degenerate) closed annulus

�(T ) := {λ ∈ C : i(T ) ≤ |λ| ≤ r(T )}.

The next result shows that the approximate point spectrum is located in �(T ).

Theorem 4.67 For every bounded operator T ∈ L(X),X a Banach space, we have
σap(T ) ⊆ �(T ).
Proof If λ ∈ σap(T ) then |λ| ≤ r(T ). Assume |λ| < i(T ) and let c > 0 be such
that |λ| < c < i(T ). Take n ∈ N such that cn ≤ k(T n). For every x ∈ X we have
cn‖x‖ ≤ ‖T nx‖ and hence

‖(λnI − T n)x‖ ≥ ‖T nx‖ − |λn| ‖x‖ ≥ (cn − |λn|)‖x‖,

thus λnI − T n is bounded below, so λn /∈ σap(T ). Writing

λnI − T n = (λI − T )(T n−1 + λT n−2 + · · · + λnI),

we then conclude that λ /∈ σap(T ). Therefore, σap(T ) ⊆ �(T ). �
As usual by D(0, ε) and D(0, ε) we shall denote the open disc and the closed disc

centered at 0 with radius ε, respectively.

Theorem 4.68 For a bounded operator T ∈ L(X), X a Banach space, the
following properties hold:

(i) If T is invertible then D(0, i(T )) ⊆ ρ(T ), and consequently σ(T ) ⊆ �(T ). If
T is non-invertible then D(0, i(T )) ⊆ σ(T );

(ii) Suppose that i(T ) = r(T ). If T is invertible then σ(T ) ⊆ ∂D(0, r(T )), while if
T is non-invertible then

σ(T ) = D(0, r(T )) and σap(T ) = ∂σ(T ).

Proof

(i) Let T be invertible and suppose that there is some λ ∈ σ(T ) for which |λ| <
i(T ). We have 0 ∈ ρ(T ), so there is some μ in the boundary of σ(T ) such
that |μ| ≤ |λ| < i(T ). But this is impossible since, by Theorem 1.12, we have
μ ∈ σap(T ). Hence, from Theorem 4.67 we deduce that |μ| ≥ i(T ), and this
shows the first assertion of (i).
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Suppose now that T is non-invertible and that there is an element λ ∈ ρ(T )
for which |λ| ≤ i(T ). By assumption 0 ∈ σ(T ) and ρ(T ) is open, so there
exists a 0 ≤ c < 1 such that cλ belongs to the boundary of σ(T ). From
Theorem 1.12 it then follows that cλ ∈ σap(T ). On the other hand, |cλ| < i(T ),
so, by Theorem 4.67, cλ /∈ σap(T ), and this is a contradiction. This shows the
second assertion of part (i).

(ii) The inclusion σ(T ) ⊆ ∂D(0, r(T )), if T is invertible, and the equality σ(T ) =
D(0, r(T )), if T is non-invertible, are simple consequences of part (i).

Suppose now that if T is not invertible and that there exists some λ ∈ σ(T ) such
that |λ| = 1 and λ /∈ σap(T ). By Corollary 2.92 T ∗ then fails the SVEP at λ and
this contradicts the fact that λ belongs to the boundary of the spectrum. Therefore
∂σ(T ) ⊆ σap(T ) and from Theorem 4.67 it then follows that ∂σ(T ) = σap(T ). �
Remark 4.69 Part (ii) of Theorem 4.68 shows that if i(T ) = r(T ) and T is not
invertible then T is a-polaroid, since iso σap(T ) = ∅.

Theorem 4.70 Let T ∈ L(X), X a Banach space, and suppose that λ ∈ C is a
point for which |λ| < i(T ). Then T has the SVEP at λ, while T ∗ has the SVEP at λ
if and only if T is invertible.

Proof From Theorem 4.67 we know that if |λ| < i(T ) then λ /∈ σap(T ). Hence the
assertions easily follow from Corollary 2.92. �

The following corollary describes the SVEP in the special case i(T ) = r(T ).
Corollary 4.71 Let T ∈ L(X), X a Banach space, and suppose that i(T ) = r(T ).
Then the following dichotomy holds:

(i) If T is invertible then both T and T ∗ have the SVEP;
(ii) If T is non-invertible then T has the SVEP, while T ∗ has the SVEP at a point λ

precisely when |λ| ≥ r(T ).
We now describe the SVEP for T or T ∗ for isometries:

Theorem 4.72 Every isometry T ∈ L(X) has the SVEP, while the adjoint T ∗ of
a non-invertible isometry has the SVEP at a point λ ∈ C if and only if |λ| ≥ 1.
Every non-invertible isometry is a-polaroid. Every invertible isometry is hereditarily
polaroid and also T ∗ has the SVEP.

Proof The first assertion is clear from Corollary 4.71 and every non-invertible
isometry is a-polaroid by Remark 4.69. An isometry T is invertible if and only if it is
generalized scalar, or equivalently is decomposable, see [216, Theorem 1.6.7]. Con-
sequently, T ∗ has the SVEP. Every invertible isometry is H(p), by Theorem 4.40
and hence, by Theorem 4.37 is hereditarily polaroid. �

Actually, Douglas in [120] has shown that every isometry has property (β), see
for a proof also [216, Theorem 1.6.7].
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The next result on non-invertible isometries will be useful to settle this question
in the case of certain operators.

Theorem 4.73 Let T ∈ L(X) be a non-invertible isometry and suppose that f :
U → C is a non-constant analytic function on some connected open neighborhood
of the closed unit disc. Then the following assertions hold:

(i) σ(f (T )) = f (D) and σap(f (T )) = f (∂D), where D denotes the open unit
disc of C.

(ii) f (T ) has the SVEP.
(iii) f (T )∗ has the SVEP at a point λ if and only if λ /∈ f (D).
(iv) f (∂D) ∩ f (D) = {λ ∈ C : f (T )∗ does not have the SVEP at λ}.
Proof Since σ(f (T )) = D and, by Theorem 4.67, σap(T ) = ∂D, the equalities (i)
follow from the spectral mapping theorems of σ(T ) and σap(T ). Assertion (ii) is a
consequence of Corollary 4.71 and the spectral mapping theorem.

(iii) Since f (T )∗ = f (T ∗), from Theorem 2.88 it follows that f (T )∗ has the
SVEP at the point λ ∈ C if and only if T ∗ has the SVEP at each point μ ∈ U
for which f (μ) = λ. Corollary 4.71 then ensures that the latter condition holds
precisely when λ /∈ f (D).

The assertion (iv) easily follows from part (i) and part (iii). �
Part (iv) of Theorem 4.73 leads to many examples in which the SVEP for the

adjoint fails to hold at the points which belong to the approximate point spectrum
of T . In fact, if f is a non-constant analytic function on some connected open
neighborhoodU of the closed unit disc and � := f (∂D) ∩ f (D) is non-empty then
for every λ ∈ � the adjoint of f (T ) does not have the SVEP at λ. This situation is,
for instance, fulfilled for every function of the form

f (λ) := (λ− γ )(λ− ω)g(λ) for λ ∈ U,

where g is an arbitrary analytic function on U , |γ | = 1 and |ω| < 1.
We conclude this section by mentioning two applications of Theorem 4.73 to

operators defined on Hardy spaces. In the sequel by Hp(D), 1 ≤ p < ∞, we
denote the Hardy space of all analytic functions f : D → C for which

sup

{∫ π

−π
|f (reiθ |dθ : 0 ≤ r < 1

}
<∞.

By H∞(D) we denote the Banach algebra of all bounded analytic functions on
the open disc D.

Example 4.74 If f ∈ H∞(D), the operator Tf onHp(D) defined by the assignment

Tf g := fg for every g ∈ Hp(D)

is called the multiplication analytic Toeplitz operator with symbol f .
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Theorem 4.75 Let f be a non-constant analytic function on some connected open
neighborhood of the closed unit disc. The multiplication Toeplitz operator Tf on
H 2(D) is polaroid and has the SVEP. The adjoint T ∗

f is a-polaroid and has the
SVEP at λ if and only if λ /∈ f (D).
Proof If T denotes the operator of multiplication by the independent variable,
defined by

(T g)(λ) := λg(λ) for all g ∈ H 2(D), λ ∈ D,

then Tf = f (T ). The operator T is unitary equivalent to the unilateral right shift on
�2(N), and hence is a non-invertible isometry. By part (i) of Theorem 4.73 we have

σ(Tf ) = f (σ(T )) = f (D) and σap(Tf ) = f (∂D).

From part (ii) of Theorem 4.73 we see that Tf has the SVEP, while from part (iv)
of Theorem 4.73, we conclude that the adjoint Tf ∗ has the SVEP at λ ∈ C if and
only if λ /∈ f (D). Since σ(T ) = D(0, 1) we then have that there are no isolated
spectral points, so T is polaroid. The SVEP for T also entails that T ∗ is a-polaroid,
by Theorem 4.15. �

Note that similar results hold for Toeplitz operators with arbitrary bounded
analytic symbols. In fact, if f ∈ H∞(D) the approximate point spectrum σap(Tf )

coincides with the essential range of the boundary function, which is obtained by
taking non-tangential limits of f almost everywhere on the unit circle, and the
operator Tf does not have the SVEP at any λ /∈ f (D). These results may be
established using standard tools from the theory of Hardy spaces, see Porcelli [257].

Example 4.76 Let C(�) denote the Banach algebra of all continuous complex-
valued functions on a compact Hausdorff space � and γ : � → � a homomor-
phism. Then we can define a composition operator Tγ : C(�) → C(�) by the
assignment

Tγ (f ) := f ◦ γ for all f ∈ C(�).

The operator Tγ is a surjective isometry, and therefore is generalized scalar (see
[216]). Thus Tγ is H(p), by Theorem 4.40, and hence hereditarily polaroid, by
Corollary 4.37.

In the same vein, every analytic function ϕ : D → D on the open unit disc D

induces a composition operator on Hp(D) defined by

Tϕ(f ) := f ◦ ϕ for all f ∈ Hp(D).
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The operator Tϕ is an isometry which is invertible if and only if ϕ is an automor-
phism of D, i.e., a mapping of the form

ϕ(λ) = aλ+ b
bλ+ a for all λ ∈ D,

where a and b are complex numbers for which |a|2−|b|2 = 1. These automorphisms
ϕ are classified as follows:

• ϕ is elliptic if |Im a| > |b|;
• ϕ is parabolic if |Im a| = |b|;
• ϕ is hyperbolic if |Im a| < |b|.
If ϕ is either elliptic or parabolic then a result of Smith [287] shows that the
corresponding composition operator Tϕ on Hp(D) and its adjoint has the SVEP
(actually we have much more, Tϕ is generalized scalar and therefore decomposable,
see §1.5 of Laursen and Neumann [216]). Therefore, if ϕ is either elliptic or
parabolic, the operator Tϕ is H(p), by Theorem 4.40, and hence hereditarily
polaroid.

On the other hand, from an inspection of the proof of Theorem 6 of Nordgreen
[249] and Theorems 1.4 and 2.3 of Smith [287] it easily follows that if ϕ is
hyperbolic then

σ(Tϕ) =
{
λ ∈ C : 1

r
≤ |λ| ≤ r

}
for some r > 1.

Moreover, Tϕ does not have the SVEP at λ if and only if 1
r
< |λ| < r . We mention

that the adjoint Tϕ∗ is subnormal, see [216], hence hyponormal, by Conway [101,
Proposition 2.4.2], in particular Tϕ∗ is H(p) and hence hereditarily polaroid.

4.6 Weighted Shift Operators

We consider first the operators T ∈ L(X) for which the condition T∞(X) = {0}
holds. This condition may be viewed, in a certain sense, as an abstract shift
condition, since it is satisfied by every weighted right shift operator T on �p(N).
Clearly the condition T∞(X) = {0} entails that T is non-surjective and hence
non-invertible. This condition also implies that K(T ) = {0}, since K(T ) is a
subset of T∞(X), but the quasi-nilpotent Volterra operator defined in Example 2.77
shows that in general the converse is not true. In fact, for this operator we have, by
Corollary 2.71,K(T ) = {0}, while T∞(X) �= {0}, see Example 2.77.

The proof of the following result may be found in [216, Theorem 3.1.12]. This
may be viewed as a local analogue of the inclusion ∂σ(T ) ⊆ σse(T ) proved in
Theorem 2.58.
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Theorem 4.77 If T ∈ L(X), then ∂σT (x) ⊆ σse(T ) for all x ∈ X.
In the sequel we shall denote by D(0, i(T )) the closed disc centered at 0 with

radius i(T ).

Theorem 4.78 Suppose that for T ∈ L(X) we have T∞(X) = {0}. Then:
(i) ker (λI − T ) = {0} for all 0 �= λ ∈ C;

(ii) T has the SVEP;
(iii) The local spectra σT (x) and σ(T ) are connected, and the closed disc

D(0, i(T )) is contained in σT (x) for all x �= 0;
(iv) H0(λI − T ) = {0} for all 0 �= λ ∈ C.

Proof

(i) For every λ �= 0 we have ker (λI − T ) ⊆ T∞(X).
(ii) This may be seen in several ways, for instance from Theorem 2.60, since

ker (λI − T ) ∩K(λI − T ) = {0} for every λ ∈ C.
(iii) It is easy to see that 0 ∈ σT (x) for every non-zero x ∈ X. Indeed, from

Theorem 2.20 we have

{0} = K(T ) = {x ∈ X : 0 ∈ ρT (x)},

and hence 0 ∈ σT (x) for every x �= 0. Now, suppose that σT (x) is non-
connected for some element x �= 0. Then there exist two non-empty closed
subsets �1, �2 of C such that:

σT (x) = �1 ∪�2, and �1 ∩�2 = ∅.

From the local decomposition property established in Theorem 2.19, there exist
two elements x1, x2 ∈ X such that

x = x1 + x2 with σT (xi) ⊆ �i (i = 1, 2).

Now, from Theorem 2.19 we have x1 �= 0 and x2 �= 0, and hence

0 ∈ σT (x1) ∩ σT (x2) ⊆ �1 ∩�2 = ∅,

a contradiction. Hence σT (x) is connected.
To prove that σ(T ) is connected observe that since T has the SVEP we have

by Theorem 2.21 and Corollary 2.68

σ(T ) = σsu(T ) =
⋃
x∈X

σT (x).

Since the local spectra σT (x) are connected for every non-zero x ∈ X, and
σ(0) = ∅, then σ(T ) is connected.
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It remains to prove the inclusion D(0, i(T )) ⊆ σT (x) for all x �= 0. We
know by Theorem 4.77 that ∂σT (x) ⊆ σse(T ) ⊆ σap(T ) for all x ∈ X. Since
i(T ) ≤ |λ| for all λ ∈ σap(T ), it follows easily that D(0, i(T )) ⊆ σT (x), as
desired.

(iv) Since T has the SVEP,H0(λI −T ) = {x ∈ X : σT (x) ⊆ {λ}} for every λ ∈ C,
see Theorem 2.30. Now, if x �= 0 and x ∈ H0(λI − T ) the SVEP ensures
that σT (x) �= ∅, so σT (x) = {λ}. On the other hand, from part (iii) we have
0 ∈ {λ}, a contradiction. �

Theorem 4.79 Let T ∈ L(X), where X is an infinite-dimensional Banach space,
and suppose that T∞(X) = {0}. Then we have:

(i) σ(T ) = σw(T ) = σb(T );
(ii) q(λI − T ) = ∞ for every λ ∈ σ(T ) \ {0};

(iii) T is nilpotent ⇔ q(T ) <∞.

Proof

(i) By Theorem 4.78 T has the SVEP and hence, by Theorem 3.44, σw(T ) =
σb(T ). We show that σb(T ) = σ(T ). The inclusion σb(T ) ⊆ σ(T ) is obvious,
so it remains to establish that σ(T ) ⊆ σb(T ). Observe that if the spectral point
λ ∈ C is not isolated in σ(T ) then λ ∈ σb(T ).

Suppose first that T is quasi-nilpotent. Then σb(T ) = σ(T ) = {0} since
σb(T ) is non-empty whenever X is infinite-dimensional. Suppose that T is
not quasi-nilpotent and let 0 �= λ ∈ σ(T ). Since σ(T ) is connected, by
Theorem 4.78, and 0 ∈ σ(T ), it follows that λ is not an isolated point in σ(T ).
Hence σ(T ) ⊆ σb(T ).

(ii) Let λ ∈ σ(T ) \ {0} and suppose that q(λI − T ) < ∞. By Theorem 4.78 we
have p(λI−T ) = 0 for every 0 �= λ, and hence by Theorem 1.20 q(λI−T ) =
p(λI − T ) = 0, which implies λ ∈ ρ(T ), a contradiction.

(iii) Clearly, because T is nilpotent we have q(T ) < ∞. Conversely, if q :=
q(T ) <∞ then T q(X) = T∞(X) = {0}. �

It is evident that the proof of Theorem 4.78 also works if we assumeK(T ) = {0},
a condition which is less restrictive with respect to the condition T∞(X) = {0}.
However, the next result shows that these two conditions are equivalent if i(T ) > 0.

Corollary 4.80 Suppose that for a bounded operator T ∈ L(X), X a Banach
space, we have i(T ) > 0. Then the following statements are equivalent:

(i) T∞(X) = {0};
(ii) D(0, i(T )) ⊆ σT (x) for all x �= 0;

(iii) K(T ) = {0}.
Proof The implication (i) ⇒ (ii) has been proved in Theorem 4.78, while (ii) ⇒ (iii)
is obvious. It remains only to prove the implication (iii) ⇒ (i). From Theorem 4.67
the condition i(T ) > 0 implies that 0 /∈ σap(T ), T is bounded below and therefore
semi-regular. By Theorem 1.44 it then follows that T∞(X) = K(T ) = {0}. �
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Corollary 4.81 Suppose that for a bounded operator T ∈ L(X), X a Banach
space, we have T∞(X) = {0} and i(T ) = r(T ). Then we have

σT (x) = σ(T ) = D(0, r(T )), (4.11)

for every x �= 0. Furthermore, if i(T ) = r(T ) > 0 then the equalities (4.11) hold
for every x �= 0 if and only if T∞(X) = {0}.
Proof If T∞(X) = {0} then T is non-invertible, so by Theorem 4.68 the condition
i(T ) = r(T ) entails that σ(T ) = D(0, r(T )), and therefore σT (x) ⊆ σ(T ) =
D(0, r(T )). The opposite inclusion is true by part (iii) of Theorem 4.78, so (4.11) is
satisfied. The equivalence in the last assertion is clear from Corollary 4.80. �

It should be noted that if T ∈ L(X) satisfies the conditions of the preceding
corollary then T has property (C). In fact, for every closed subset F of C we have:

XT (F) =
{
X if F ⊇ D(0, r(T )),
{0} otherwise,

and hence all XT (F) are closed.
Let �p(N), where 1 ≤ p < ∞, denote the space of all p-summable sequences

of complex numbers. Denote by ω := {ωn}n∈N any bounded sequence of strictly
positive real numbers. The corresponding unilateral weighted right shift operator
on the Banach space �p(N) is the operator defined by:

T x :=
∞∑
n=1

ωnxnen+1 for all x := (xn)n∈N ∈ �p(N).

It is easily seen that T does not admit eigenvalues, thus T has the SVEP.
Furthermore, the lower bound and the norms of the iterates T n may be easily
computed as follows:

k(T n) = inf
k∈N

{ωk · · ·ωk+n−1} for all n ∈ N,

and

‖T n‖ = sup
k∈N

{ωk · · ·ωk+n−1} for all n ∈ N.

Moreover, a routine calculation shows that the numbers i(T ) and r(T ) of a unilateral
weighted right shift may be computed as follows:

i(T ) = lim
n→∞ inf

k∈N(ωk · · ·ωk+n−1)
1/n
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and

r(T ) = lim
n→∞ sup

k∈N
(ωk · · ·ωk+n−1)

1/n.

To determine further properties of the spectrum of an unilateral weighted right
shift we recall two simple facts which will be used in the sequel.

Remark 4.82

(i) Let α ∈ C, with |α| = 1 and define, on �p(N), the linear operator Uαx :=
(αnxn)n∈N for all x = (xn)n∈N ∈ �p(N). Evidently, λT Uα = UαT and

UαUα = UαUα = I.

From this it follows that the operators αT and T are similar, and consequently
have the same spectrum. This also shows that σ(T ) is circularly symmetric
about the origin.

(ii) Let K be a non-empty compact subset of C. If K is connected and invariant
under circular symmetry about the origin, then there are two real numbers a
and b, with 0 ≤ a ≤ b, such that K = {λ ∈ C : a ≤ |λ| ≤ b}.

Theorem 4.83 For an arbitrary unilateral weighted right shift T on �p(N) we have
σ(T ) = D(0, r(T )) and

σap(T ) = {λ ∈ C : i(T ) ≤ |λ| ≤ r(T )}.

Proof We know by Theorem 4.78 that σ(T ) is connected and contains the closed
disc D(0, i(T )). Since, by part (i) of Remark 4.82, σ(T ) is circularly symmetric
about the origin, from part (ii) of the same Remark we deduce that σ(T ) is the
whole closed disc D(0, r(T )). For the description of σap(T ), see Proposition 1.6.15
of [216]. �

It is easily seen that the adjoint of a unilateral weighted right shift T is the
unilateral weighted left shift on �q(N) defined by:

T ∗x :=
∞∑
n=1

ωnxn+1en for all x := (xn)n∈N ∈ �q(N),

where, as usual,
1

p
+ 1

q
= 1, and �q(N) is canonically identified with the dual

(�p(N))∗ of �p(N). Finally, from Corollary 4.71 we deduce that T ∗ does not have
the SVEP whenever i(T ) > 0.
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To investigate more precisely the question of the SVEP for T ∗ we introduce the
following quantity:

c(T ) := lim
n→∞ inf(ω1 · · ·ωn)1/n.

It is clear that i(T ) ≤ c(T ) ≤ r(T ).
Theorem 4.84 Let T be a unilateral weighted right shift on �p(N) for some 1 ≤
p < ∞. Then T ∗ has the SVEP at a point λ ∈ C precisely when |λ| ≥ c(T ). In
particular, T ∗ has the SVEP if and only if c(T ) = 0.

Proof By the classical formula for the radius of convergence of a vector-valued
power series we see that the series

f (λ) :=
∞∑
n=1

en λ
n−1

ω1 · · ·ωn−1

converges in �q(N) for every |λ| < c(T ). Moreover, this series defines an analytic
function f on the open disc D(0, c(T )). Clearly

(λI − T ∗)f (λ) = 0 for all λ ∈ D(0, c(T )),

and hence the set of all points where T ∗ does not have the SVEP is a subset of
D(0, c(T )).

On the other hand, it is not difficult to check that T � has no eigenvalues outside
the closed disc D(0, c(T )). This implies that T ∗ has the SVEP at every point λ for
which |λ| ≥ c(T ), so the proof is complete. �

The result of Theorem 4.84 has a certain interest, since for every triple of real
numbers i, c, and r for which 0 ≤ i ≤ c ≤ r it is possible to find a weighted right
shift T on �p(N) for which i(T ) = i, c(T ) = c and r(T ) = r . The details of the
construction of the sequences {ωn}n∈N for which the corresponding weighted right
shift T has these properties are outlined in Shields [284].

It is clear that for every weighted right shift operator T on �p(N) we have e1 ∈
ker T ∗ ∩ T ∗∞(X), so N∞(T ∗) ∩ T ∗∞(X) is non-trivial. On the other hand, if we
consider a weighted right shift T such that c(T ) = 0 then, by Theorem 4.84, T ∗ has
the SVEP at 0 while N∞(T ∗) ∩ T ∗∞(X) �= {0}. This observation illustrates that
the implication established in Corollary 2.66 cannot be reversed in general.

The next result shows that the converse of the implications provided in Theo-
rems 2.73 and 2.75 also fails to be true in general.

Theorem 4.85 Let 1 ≤ p <∞ be arbitrarily given and let T be the weighted right
shift operator on �p(N) with weight sequence ω := (ωn)n∈N. Then:
(i) H0(T )+ T (X) is norm dense in �p(N) if and only if

lim
n→∞ sup(ω1 · · ·ωn)1/n = 0; (4.12)
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(ii) T ∗ has the SVEP at 0 if and only if

lim
n→∞ inf(ω1 · · ·ωn)1/n = 0.

Proof By Theorem 4.84 we need only to prove the equivalence (i). Since

‖T ne1‖ = ω1 · · ·ωn for all n ∈ N,

the equality (4.12) holds precisely when e1 ∈ H0(T ). From this it follows that (4.12)
implies that the sum H0(T )+ T (X) is norm dense in �p(N) because en ∈ T (X) for
all n ≥ 2.

Conversely, suppose that H0(T ) + T (X) is norm dense in �p(N), and for every
k ∈ N choose uk ∈ H0(T ) and vk ∈ T (X) such that uk + vk → e1 as k → ∞. Let
P denote the projection on �p(N) defined by

Px := x1e1 for every x := (xn)n∈N ∈ �p(N).

It is clear that P vanishes on T (X) and leaves H0(T ) invariant. Moreover, the
subspaceH0(T ) ∩ T (X) is closed, since its dimension is at most 1. Finally,

P(uk + vk)→ Pe1 = e1 as k → ∞,

so that e1 ∈ H0(T ), which concludes the proof. �
Every weighted right shift operator T on �p(N) is injective, thus N∞(T ) =

{0}. Moreover, T∞(�p(N)) = {0}, and consequently K(T ) = {0}. From this it
follows that for these operators the implications provided in Corollary 2.74 and
the implications provided in Corollary 2.76 are considerably weaker than those
provided in Theorems 2.73 and 2.75.

We now give some information on the SVEP for the bilateral case of shift
operators. Let �2(Z) denote the space of all two-sided 2-summable sequences of
complex numbers. For a two-sided bounded sequence ω = (ωn)n∈Z of strictly
positive real numbers, the corresponding bilateral weighted right shift on �p(Z),
1 ≤ p ≤ ∞, is defined by

T x := (ωn−1xn−1)n∈Z for all x = (xn)n∈Z ∈ �p(Z).

The dual of T is the bilateral weighted left shift on �q(Z), defined by

T ∗x := (ωnxn+1)n∈Z for all x = (xn)n∈Z ∈ �q(Z),

where 1
p

+ 1
q

= 1.
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In contrast to the unilateral case, T may well have eigenvalues. In fact, we shall
see that T need not have the SVEP. Define α0 := 1, αn := ω0 · · ·ωn−1 and α−n :=
ω−n · · ·ω−1, and let

c±(T ) := lim inf
n→∞ α

1/n
± and d±(T ) := lim sup

n→∞
α

1/n
± .

Theorem 4.86 Let T be bilateral weighted right shift on �p(Z), 1 ≤ p ≤ ∞. Then
T does not have the SVEP at λ precisely when d+(T ) < |λ| < c−(T ). In particular,
T has the SVEP if and only if c−(T ) ≤ d+(T ).

Proof Suppose that λ is an eigenvalue of T and consider a corresponding non-zero
eigenvector x ∈ �p(Z). A simple computation shows that λ �= 0 and

xn = x0αn/λ
n, x−n = x0λ

n/α−n for all n ∈ N.

Because x ∈ �p(Z), it then follows that d+(T ) ≤ |λ| ≤ c−(T ). On the other hand,
if d+(T ) < c−(T ), then as in the proof of Theorem 4.84, the classical formula for
the radius of convergence guarantees that the definition

f (λ) :=
∞∑
n=0

enαn/λ
n +

∞∑
n=1

e−nλn/α−n,

for all λ ∈ C with d+(T ) < |λ| < c−(T ), is an analytic solution of the equation
(λI − T )f (λ) = 0 on the annulus {λ ∈ C : d+(T ) < |λ| < c−(T )}. �
Corollary 4.87 Let T be a bilateral weighted right shift on �p(Z), 1 ≤ p ≤ ∞.
Then the following assertions hold:

(i) T ∗ does not have the SVEP at λ if and only if d(T ) < |λ| < c(T ).
(ii) T ∗ has the SVEP if and only if c−(T ) ≤ d+(T ).

(iii) At least one of the operators T or T ∗ has the SVEP.

Proof We have already observed that the dual of T is the bilateral weighted left shift
on �q(Z), defined as T ∗x := (ωnxn+1)n∈Z for all x = (xn)n∈Z ∈ �q(Z). Choose
ω̂ := (ω−n−1)n∈Z and set

Sx := (x−n)n∈Z for all x = (xn)n∈Z ∈ �q(Z).

It is easily seen that

(ST ∗S)x = (ω̂n−1xn−1)n∈Z for all x = (xn)n∈Z ∈ �q(Z).

This shows that T ∗ is similar to the bilateral weighted right shift on �q(Z) with
weight sequence ω̂. In the sense of the right shift representation of T ∗, we then
obtain the identities c±(T ∗) = c∓(T ) and d±(T ∗) = d∓(T ), because α̂n = α−n for
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all n ∈ Z. Hence the assertion (i) is clear from Theorem 4.86, and (ii) is immediate
from (i). Finally, to prove (iii), assume that both T and T ∗ fail to have the SVEP.
Then the preceding results entail that d+(T ) < c−(T ) and d−(T ) < c+(T ). But this
leads to an obvious contradiction, since c−(T ) ≤ d−(T ) and c+(T ) ≤ d+(T ). �

Note that in part (c) of the preceding result, it is possible that both T and T ∗
have the SVEP. For instance, the classical bilateral shift has spectrum σ(T ) =
σ(T ∗) = �, � the unit circle, and hence both T and T ∗ have the SVEP. There
are many examples of decomposable bilateral weighted shifts beyond the quasi-
nilpotent one, however, the precise characterization of those weight sequences for
which the corresponding bilateral shift is decomposable remains an open problem.

Let us consider a bounded operator T on a Banach space X which satisfies the
abstract shift condition T∞(X) = {0}. This condition entails that 0 ∈ σ(T ) since T
is not surjective.

Theorem 4.88 Suppose that T ∈ L(X), X an infinite-dimensional Banach space,
is non-invertible and i(T ) = r(T ). Then

σw(T ) = σb(T ) = σsu(T ) = σ(T ) = D(0, r(T )), (4.13)

while, in particular, these equalities hold if T∞(X) = {0} and i(T ) = r(T ).
Proof If T is a non-invertible and i(T ) = r(T ) then, by Theorem 4.68, σ(T )
is the whole closed disc D(0, r(T )) and σap(T ) is the circle ∂D(0, r(T )). Since,
by Theorem 4.71, T has the SVEP then σsu(T ) = σ(T ), by Theorem 2.68, and
σw(T ) = σb(T ), by Theorem 3.44.

Suppose first that i(T ) = r(T ) = 0. Then T is quasi-nilpotent. The equali-
ties (4.13) are then trivially satisfied (note that sinceX is infinite-dimensional,σb(T )

is non-empty and hence is {0}). Suppose then that i(T ) = r(T ) > 0. Also in this
case σ(T ) = σb(T ), since every non-isolated point of the spectrum lies on σb(T ).
Therefore the equalities (4.13) are proved. �

Theorem 4.88 also applies to every non-invertible isometry T on a Banach space
X since i(T ) = r(T ) = 1.

Definition 4.89 An operator T ∈ L(X) is said to be a semi-shift if T is an isometry
and T∞(X) = {0}.

Every semi-shift is non-invertible isometry, since the condition T∞(X) = {0}
entails that T is not surjective. It should be noted that for Hilbert space operators
the semi-shifts coincide with the isometries for which none of the restrictions to a
non-trivial reducing subspace is unitary, see Chapter I of Conway [101].

An operator T ∈ L(X) for which the equality σT (x) = σ(T ) holds for every x �=
0 is said to have fat local spectra, see Neumann [247]. Clearly, by Corollary 4.81 an
isometry T is a semi-shift if and only if T has fat local spectra.

Examples of semi-shifts are the unilateral right shift operators of arbitrary
multiplicity on �p(N), as well as every right translation operator on Lp([0,∞)).
In Laursen and Neumann [216, Proposition 1.6.9] it is shown that if X is the
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Banach space of all analytic functions on a connected open subset U of C, f is
a non-constant analytic function on U , and if Tf ∈ L(X) denotes the point-wise
multiplication operator by f , then the condition σ(Tf ) ⊆ f (U) implies that Tf has
local fat spectra. In particular, these conditions are verified by every multiplication
operator Tf on the disc algebraA(D) of all complex-valued functions continuous on
the closed unit disc of C and analytic on the open unit disc D, where f ∈ A(D), and
the same result holds for the Hardy algebraH∞(D). If f ∈ H∞(D) and 1 ≤ p <∞
the operator onHp(D) defined by the multiplication by f also has a local fat spectra.

4.7 Toeplitz Operators on Hardy Spaces

An important class of polaroid operators is provided by the Toeplitz operators on
the classical Hardy spaces H 2(T), where T denotes the unit circle of C. To define
the Hardy space H 2(T), for n ∈ Z, let χn be the function on T defined by

χn(e
it ) := eint for all n ∈ N.

Let μ be the normalized Lebesgue measure on T, and L2(T) the classical Hilbert
space defined with respect to μ. The set {χn}n∈Z is an orthogonal basis of L2(T). If
f ∈ L2(T), then the Fourier transform of f is the map f̂ : Z → C, defined by

f̂ (n) = 〈f, χn〉 =
∫ 2π

0
f (t)e−intdt.

f̂ (n) is called the n-th Fourier coefficient of f , and by the classical Parseval’s
identity we have

f =
∞∑

−∞
f̂ (n)zn.

Note that if f ∈ L2(T) then f̂ ∈ �2(Z) and the mapping  : L2(T) → �2(Z),
defined by (f ) := f̂ , is an isomorphism.

The Hardy space H 2(T) is defined as the closed subspace of all f ∈ L2(T) for
which

1

2π

∫ 2π

0
f χndt = 0 for n = 1, 2, . . . .

The Hilbert space H 2(T) is the closed linear span of the set {χn}n=0.1,.... Moreover,
H 2(T) is a closed subspace of L∞(T). We summarize in the sequel some basic
results concerning the Hardy spaces H 2(T). For further details the reader is invited
to consult Douglas’ book [121].
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If φ ∈ L∞(T) and f ∈ L2(T) then φf ∈ L2(T), so we may define an operator
Mφ : L2(T)→ L2(T) by

Mφf = φf for all f ∈ L2(T),

where φf is the pointwise product. Let P denote the projection of L2(T) onto
H 2(T).

Definition 4.90 If φ ∈ L∞(T), the Toeplitz operator with symbol φ Tφ on H 2(T)
is defined by

Tφf := P(φf ) for f ∈ H 2(T).

Since the set � := {zn : n = 0, 1, 2, . . . } is an orthonormal basis for H 2(T), if
for every φ ∈ L∞(T) we set

φ̂(n) := 1

2π

∫ 2π

0
φzdt,

then, with respect to the basis �, Tφ may be represented by a matrix aij , where

aij = 〈Tφzj , zi〉 = 1

2π

∫ 2π

0
φzi − jdt = φ̂(i − j).

Thus the matrix for T� is constant on diagonals:

(aij ) =

⎛
⎜⎜⎜⎜⎜⎝

c0 c−1 c−2 c−3 · · ·
c1 c0 c−1 c−2 · · ·
c2 c1 c0 c−1 · · ·
c3 c2 c1 c0 · · ·
...
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎠
, where cj = φ̂(j).

Such a matrix is called a Toeplitz matrix. The Toeplitz operators with analytic
symbols are particulary amenable to study. The adjoint of the Hilbert space operator
Mφ on L2(T) is M ′

φ = Mφ and obviously, MφM ′
φ = M ′

φMφ , so Mφ is a normal
operator. Let H∞(T) denote the Banach space of all φ ∈ L∞(T) such that

1

2π

∫ 2π

0
φχndt = 0 for all n = 1, 2, . . . .

H∞(T) is a closed subalgebra of L∞(T) and H∞(T) = L∞(T) ∩ H 2(T). If φ ∈
H∞(T), the operator Tφ is the restriction of Mφ to the closed invariant subspace
H 2(T), so Tφ is subnormal. Note that every Toeplitz operator is normaloid, i.e.
‖Tφ‖ = r(Tφ), see [82].
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Theorem 4.91 For φ ∈ H∞(T), the Toeplitz operator Tφ is hyponormal. In
particular, Tφ is H(1) and hence is hereditarily polaroid and has the SVEP.

Proof Tφ , φ ∈ H∞(T) is subnormal and hence hyponormal, see Conway [101,
Proposition 2.4.2]. By Theorem 4.46, every hyponormal operator is totally paranor-
mal and henceH(1). �

For each φ ∈ L∞(T), let

ε(φ) := {k ∈ H∞(T) : ‖k‖ ≤ 1, φ − kφ ∈ H∞(T)}.

An elegant theorem due to Cowen [103] characterizes the hyponormality of Tφ ,
where φ ∈ L∞(T), by means of some properties of the symbol φ. More precisely,
the result of Cowen (in its Nakazi–Takahashi formulation) shows that Tφ is
hyponormal if and only if ε(φ) �= ∅. If ε(φ) �= ∅ then T is H(1), by Theorem 4.46.
The reader may find further results on subnormality of Toeplitz operators in Lee
[223].

Note that if φ ∈ L∞(T) then λI − Tφ = Tλ−φ is a Toeplitz operator and for the
adjoint T ′

φ we have T ′
φ = Tφ . The Fredholm theory of Tφ enjoys some important

properties which we list in the sequel.

Theorem 4.92 Suppose that φ ∈ H∞(T). We have:

(i) If Tφ is Fredholm then φ is invertible in L∞(T).
(ii) If Tφ is quasi-nilpotent, or compact then φ = 0.

In particular, Tφ is invertible if and only if φ is invertible in L∞(T).

Let C(T) denote the Banach algebra of all complex-valued continuous functions
on T. By [121, Proposition 7.22] we also have

Theorem 4.93 If φ ∈ C(T) andψ ∈ L∞(T) then TφTψ−TψTφ and TψTφ−TφTψ
are both compact.

An operator T ∈ L(H), H a Hilbert space, is said to be essentially normal
if T T ′ − T ′T is compact. Note that the operator T := S + K , with S normal
and K compact, is evidently essentially normal, but the converse is not true, for
instance, if T is the unilateral shift on �2(N) with basis {en}, n = 0, 1, . . . then
T ′T − T T ′ = I − T T ′ is the rank one projection onto the 1-dimensional subspace
Ce0, thus T is essentially normal. However, T is a Fredholm operator having no-
zero index. The index is stable under compact perturbation, so the same persists for
a normal operator on a Hilbert space H plus a compact operator. In [83] Brown
et al. proved that T is a normal operator plus a compact operator precisely when
T is essentially normal and σe(T ) = σw(T ). Evidently, if φ ∈ C(T) then Tφ is
essentially normal.

We now enunciate the classical Frechét and Riesz theorem, whose proof may be
found in many standard books, see for instance Hofmann [180].
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Theorem 4.94 (Frechét and Riesz Theorem) If f is a nonzero function in H 2(T)
then the set {z ∈ T : f (z) = 0} has Lebesgue measure zero. In particular, if
f, g ∈ H 2(T) and if fg = 0 almost everywhere then f = 0 or g = 0, almost
everywhere.

The following result plays a crucial role in characterizing the Toeplitz operators
which are Fredholm:

Theorem 4.95 (Coburn) Suppose that φ ∈ L∞(T) is not almost everywhere 0.
Then either α(Tφ) = 0 or β(Tφ) = α(T ′

φ) = 0.

Proof Suppose that both α(Tφ) �= 0 and α(T ′
φ) �= 0. Then there exist nonzero

functions f, g ∈ H 2(T) such that Tφf = 0 and T ′
φ g = Tφ g = 0. Then P(φf ) =

P(φ g) = 0, so that, by the standard properties of H 2(T), there exist functions
h, k ∈ H 2(T) for which

∫ 2π

0
hdt =

∫ 2π

0
kdt = 0 and φf = h, φg = h.

From the Frechét and Riesz theorem, it then follows that φ, f, g, h, k are all nonzero
except on a set of measure zero. Dividing the two sides of the equation φf = h by
the corresponding sides of the equation φg = k, we see that

f

g
= h

k
pointwise,

so that f k = gh almost everywhere. By another standard property of H 2(T), this
is possible unless gh = 0 almost everywhere. Using again the theorem of Frechét
and Riesz, we then conclude that either f = 0 almost everywhere or g = 0 almost
everywhere, a contradiction. �

As a consequence of Theorem 4.95 we obtain:

Corollary 4.96 Suppose that φ ∈ L∞(T) is not almost everywhere 0. Then Tφ is
Weyl if and only if Tφ is invertible. Consequently, σ(Tφ) = σw(Tφ).

Proof Suppose that Tφ is a Weyl operator. Then α(Tφ) = β(Tφ) and from
Theorem 4.95 we see that α(Tφ) = β(Tφ) = 0, thus Tφ is invertible. �

It should be noted that for every compact operator K ∈ K(L2(T)) we have
‖Tφ‖ ≤ ‖T + K‖. Indeed, the Fredholm spectrum σf(Tφ) coincides with the
spectrum of the class Tφ + K(X) in the Calkin algebra L(L2(T)/K(L2(T))), and
hence σ(Tφ) ⊆ σ(Tφ + K). Since Tφ is normaloid then ‖Tφ‖ ≤ ‖T + K‖.
The operators which satisfy the latter inequality are sometimes called extremally
noncompact.
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We next consider the Toeplitz operators Tφ with continuous symbols, i.e. φ ∈
C(T). First we recall that the winding number wn(φ, λ) of a closed curve φ in the
plane around a given point λ is an integer representing the total number of times
that curve travels counterclockwise around the point. The winding number depends
on the orientation of the curve, and is negative if the curve travels around the point
clockwise.

We recall the classical definition of homotopy. Suppose that γ0 and γ1 are closed
curves in a topological space X, both with parameter interval [0, 1]. We say that γ0
and γ1 are X-homotopic if there is a continuous mapping  : [0, 1] × [0, 1] → X

such that

 (s, 0) = γ0(s),  (s, 1) = γ1(s),  (0, t) = (1, t)

for all s, t ∈ [0, 1]. Intuitively, this means that the curve γ0 can be continuously
deformed in γ1, within X.

The following nice result is due to a number of authors (Krein [207], Widom
[297], Devinatz [108]).

Theorem 4.97 If φ ∈ C(T) then Tφ is a Fredholm operator if and only if φ does
not vanish. In this case

ind Tφ = −wn(φ, 0),

where wn(φ, 0) is the winding number of the curve traced by φ with respect to the
origin. In particular, Tφ is Weyl, or equivalently, invertible, if and only if wn(φ, 0)
= 0.

Proof The first assertion is clear. We show that if two functions φ and ψ determine
homotopic curves in C{0} then ind (Tφ) = ind (Tψ). To see this, let� be a constant
map from [0, 1] × T to C \ {0} such that

�(0, eit ) = φ(eit ), �(1, eit ) = ψ(eit ).

If we set �λ := �(λ, eit ), then the mapping λ → T�λ is norm continuous, and
each T�λ is Fredholm. Since the map index is continuous, ind (Tφ) = ind (Tψ), as
claimed. Now, take n := wn(φ, 0). Then φ is homotopic in C \ {0} to ψ(z) := zn,
and since ind Tzn = −n, we then conclude that ind Tφ = −wn(φ, 0). The last
assertion is evident. �

Recall that given a compact set σ ⊂ C, a hole of σ is a bounded component of
the complement C \ σ . Since C \ σ always has an unbounded component, C \ σ is
connected precisely when σ has no holes. Now, set σ = φ(T), the range of φ. Then
C \ φ(T) has a unique unbounded component� and the winding number is 0 in �,
while it is constant on each other component of C \ φ(T).

The spectrum and the Weyl spectrum of a Toeplitz operator having a continuous
symbol may be described in the following way.
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Corollary 4.98 If φ ∈ C(T) then

σ(Tφ) = σw(Tφ) = σb(Tφ) = φ(T) ∪ {λ ∈ C : wn(φ, λ) �= 0}

and

σe(Tφ) = φ(T).

In particular, σ(Tφ) = σw(T ) is connected.

Proof σ(Tφ) is connected since it is formed from the union of � and certain
components of the resolvent of Tφ . Clearly, σ(Tφ) = σw(Tφ) by Corollary 4.96,
while σb(Tφ) = σw(Tφ) is clear, since σw(Tφ) ⊆ σb(Tφ) ⊆ σ(Tφ). For the equality
σe(Tφ) = φ(T), see Douglas [121, Chapter 7]. �

The result of Corollary 4.98 may be improved. The spectra σ(Tφ) and the essen-
tial spectrum σe(Tφ) are also connected if φ ∈ L∞(T), see [121, Corollary 7.47 and
Theorem 7.45].

Theorem 4.99 If φ ∈ C(T) then the following statements hold:
(i) φ is non-constant.

(ii) iso σw(Tφ) = ∅.
(iii) iso σuw(Tφ) = ∅.
Moreover, Tφ is polaroid.

Proof If φ ∈ C(T) we have

ρw(Tφ) = σ(Tφ) = {λ ∈ C : wn(φ, λ) = 0},

and

ρ+
sf (Tφ) = {λ ∈ C : wn(φ, λ) < 0},

while

ρ−
sf (Tφ) = C \ σlw(Tφ) = {λ ∈ C : wn(φ, λ) > 0}.

From Lemma 3.57, we know that

σw(Tφ) = σsf(Tφ) ∪ ρ+
sf (Tφ) ∪ ρ−

sf (Tφ)

and

σuw(Tφ) = σsf(Tφ) ∪ ρ+
sf (Tφ),
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so σw(Tφ) consists of � = φ(T) and those holes with respect to which the winding
number of φ is nonzero, and analogously, σuw(Tφ) consists of � and those holes
with respect to which the winding number of φ is negative.

We see now that

iso σuw(Tφ) = ∅ ⇔ iso σw(Tφ) = ∅ ⇔ φ is non-constant.

Indeed, if iso σuw(Tφ) �= ∅, or iso σw(Tφ) �= ∅, then, by Theorem 3.58, we have
iso σsf(Tφ) �= ∅. Because � = σe(Tφ) is connected, it then follows that � is
a singleton and φ is constant. On the other hand, if φ is constant, for instance
φ ≡ λ, then it is obvious that σ(Tφ) = σw(Tφ) = σuw(Tφ) = {λ}. Thus,
iso σw(Tφ) = iso σuw(Tφ) = {λ}. These remarks also show that every Toeplitz
operator with continuous symbol is polaroid. �

In the next result we show that if the orientation of the curve φ(T) does not
change then either Tφ , or T ′

φ , has the SVEP.

Theorem 4.100 Let φ ∈ C(T ). Then we have:
(i) If the orientation of the curve φ(T) traced out by φ is counterclockwise then Tφ

has the SVEP.
(ii) If the orientation of the curve φ(T) traced out by φ is clockwise then T ′

φ has the
SVEP.

Proof

(i) Suppose first that the orientation of φ(T) is counterclockwise. Let �1 be the
bounded component of C\φ(T) and�2 the unbounded component of C\φ(T).
Then wn(φ, λ) > 0 for every λ ∈ �1, while wn(φ, λ) = 0 for every λ ∈ �2.
Therefore, for every λ ∈ �1 we have ind (λI − Tφ) = −wn(φ, λ) < 0 and
consequently

σ(Tμ) = σw(Tμ) = �1 ∪ φ(T).

Note that σuw(Tφ) = φ(T) is the boundary of the spectrum. Now, if λ ∈ �1 the
condition ind (λI − Tφ) < 0 entails that α(λI − Tφ) < β(λI − Tφ) and hence
β(λI−Tφ) > 0. From Theorem 4.95 we have that α(λI−Tφ) = 0, and λI−Tφ
having a closed range, since λI − Tφ is upper semi-Weyl, we then deduce that
λ /∈ σap(Tφ). Therefore, σap(Tφ) ⊆ φ(T), from which we obtain that

φ(T) = σuw(Tφ) ⊆ σap(Tφ) ⊆ φ(T),

thus σap(Tφ) = φ(T) is the boundary of the spectrum σ(Tφ). This entails that
Tφ has the SVEP.

(ii) Suppose that the orientation of φ(T) is clockwise. Then wn(φ, λ) < 0 for
every λ ∈ �1, so, if λ ∈ �1 then ind (λI − Tφ) > 0. Consequently, σlw(Tφ) =
φ(T), and α(λI − Tφ) > β(λI − Tφ) for all λ ∈ �1, so α(λI − Tφ) > 0.
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From Theorem 4.95 we have that β(λI − Tφ) = 0, so λ /∈ σs(Tφ) and hence
σs(Tφ) ⊆ φ(T). Again,

φ(T) = σlw(Tφ) ⊆ σs(Tφ) ⊆ φ(T),

from which we obtain that σs(Tφ) = φ(T) is contained in the boundary of the
spectrum. This entails that T ′

φ has the SVEP. �
Example 4.101 The next example provides a Toeplitz operator Tφ having continu-
ous symbol for which the SVEP for both Tφ and Tφ fails. Let φ be defined by

φ(eiθ ) :=
{−e2iθ + 1 if 0 ≤ θ ≤ π,
e−2iθ − 1 if π ≤ θ ≤ 2π.

The orientation of the graph of φ is shown in the following figure.

Let �1 and �2 be the interior of the circle C1 and C2, respectively. Since
wn(φ, λ) = 1 in �1 and wn(φ, λ) = −1 in �2, we have ind (λI − Tφ) < 0
for λ ∈ �1, while ind (λI − Tφ) > 0 for λ ∈ �2. Since λI − Tφ is Fredholm for
every λ ∈ �1 ∪ �2, the operator Tφ cannot have the SVEP, otherwise we would
have ind (λI − Tφ) ≤ 0 for all λ ∈ �2, by Corollary 2.106, and, analogously, if T ′

φ

has the SVEP we would have ind (λI − Tφ) ≥ 0 for all λ ∈ �1. A contradiction.

Example 4.101 provides an example of a Toeplitz operator Tφ which is not
hereditarily polaroid, because Tφ does not have the SVEP.

In some sense an opposite result to that established in Theorem 4.100 holds: if φ
has a unique orientation and Tφ has the SVEP then the orientation of φ is forced to
be counterclockwise, and analogously if T ′

φ has the SVEP then the orientation of φ
is forced to be clockwise.

In general, for symbols φ ∈ L∞(T), the operators Tφ are not hyponormal,
even if the symbol is continuous. The operator Tφ in Example 4.101 cannot be
hyponormal since hyponormality entails SVEP. Toeplitz operators with continuous
symbol which are hyponormal have also been studied by Farenick and Lee [145],
in particular if φ is a trigonometric polynomial. A celebrated result of Brown and
Halmos [82] shows that Tφ is normal if and only if φ = α + βψ where α and
β are complex and φ is a real-valued function in L∞(T). There are many results
concerning hyponormality of Toeplitz operators in the literature and properties of
hyponormal Toeplitz operators have played an important role in work on Halmos
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Problem 5 [165]: “Is every subnormal Toeplitz operator either normal or analytic?”
but a characterization has been lacking. Here, the operator Tφ is said to be analytic
if φ ∈ H 2(T). This question appears natural since every normal operator is
obviously subnormal and, as has observed before, every analytic Toeplitz operator
is subnormal.

Theorem 4.102 If φ ∈ C(T) is such that σ(Tφ) has planar Lebesgue measure zero
then both Tφ and T ′

φ have the SVEP.

Proof The planar measure of σ(Tφ) is zero, because σ(Tφ) = σe(Tφ) = φ(T) is a
compact set consisting of φ(T) and some of its holes, so ∂σ(Tφ) = φ(T), which is
just a continuous curve. Therefore, both Tφ and T ′

φ have the SVEP. �

4.8 Polaroid Operators Under Affinities

Let T ∈ L(X) and λ ∈ iso σ(T ). Recall, according to Definition 2.139, that A ∈
L(X, Y ) intertwines T ∈ L(X) and S ∈ L(Y ) if SA = AT . If A is a quasi-
affinity then T ≺ S. If A is bijective then T and S are similar, and we know that
similar operators have the same spectrum, as well as some distinguished parts of the
spectrum, for instance σap(T ) = σap(S) and σs(T ) = σs(S). The situation becomes
more complicated if the condition of similarity is replaced by the weaker condition
of quasi-similarity. For instance, if A is assumed to be a quasi-affinity, a result of
Fialkow [146] asserts that the essential spectra σe(T ) and σe(S) always have non-
empty intersection. In [178] Herrero proved that if T and S are quasi-similar each
connected component of σe(T ) touches σe(S), and vice versa. Herrero’s proof is
rather long and complicated, to present it here would lead us too far afield.

Denote by PT (λ) the spectral projection associated to T and the spectral set {λ}.
Lemma 4.103 Suppose that T ∈ L(X) and S ∈ (Y ) are intertwined by A ∈
L(X, Y ). If λ ∈ iso σ(T ) ∩ iso σ(S) then PT (λ) and PS(λ) are also intertwined
by A, i.e. PS(λ)A = APT (λ).
Proof If T and S are intertwined by A ∈ L(X, Y ) we have

(μI − S)A = A(μI − T ) for all μ ∈ C.

Suppose that μ belongs to the resolvent of T and to the resolvent of S. Then A =
(μI − S)−1A(μI − T ) and hence A(μI − T )−1 = (μI − S)−1A, from which it
easily follows that

PS(λ)A =
(

1

2πi

∫
�

(μI − S)−1dμ

)
A = 1

2πi

∫
�

(μI − S)−1Adμ

= 1

2πi

∫
�

A(μI − T )−1dμ = APT (λ). �
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If T ≺ S a classical result due to Rosenblum shows that σ(S) and σ(T ) must
overlap, see [268]. Quasi-similarity is, in general, not sufficient to preserve the
spectrum. In fact, Hoover in [182] provides an example of a pair of quasi-similar
operators T and S defined on a Hilbert space such that T is quasi-nilpotent and
compact, hence σ(T ) = {0}, while σ(S) is the closed unit disc. The preservation
of the spectrum happens only in some special cases, for instance, by a result of
Clary [95], if T and S are quasi-similar hyponormal operators, or whenever T and S
have totally disconnected spectra, see [161, Corollary 2.5]. Therefore, it is not quite
surprising that, if T ≺ S, the preservation of “certain” spectral properties from S to
T requires that some spectral inclusions are satisfied.

Remark 4.104 Classical examples show the polaroid property is not preserved if
two bounded operators are intertwined by an injective map. For instance, by Fialkow
[146], or Hoover [182], there exist bounded linear operators U , V , B on a Hilbert
space such that BU = UV , B and its Hilbert adjoint B ′ are injective, V is quasi-
nilpotent and the spectrum of U the unit disc D(0, 1). Let T := V ′, S := U ′ and
A := B ′. Then SA = AT , so that T and S are intertwined by the injective operator
A, S is polaroid, since σ(S) = σ(U) = D(0, 1) has no isolated points, while T is
also quasi-nilpotent and hence is not polaroid.

The next example shows that a polaroid operator may be the quasi-affine
transform of an operator which is not polaroid.

Example 4.105 Let S ∈ L(�2(N)) be the weighted unilateral right shift defined as

S(x1, x2, . . . ) :=
(

0,
x1

2
,
x2

3
, . . .

)
, (xn) ∈ �2(N),

and let T ∈ L(�2(N)) be the unilateral right shift defined by

T (x1, x2, . . . ) := (0, x1, x2, . . . ), (xn) ∈ �2(N).

If A ∈ L(�2(N)) is the operator defined by

A(x1, x2, . . . ) :=
(x1

1! ,
x2

2! , . . .
)
, (xn) ∈ �2(N),

thenA is a quasi-affinity. Clearly, SA = AT , T is polaroid, since σ(T ) is the closed
unit disc of C, while S is quasi-nilpotent and hence not polaroid.

The polaroid condition is preserved if we assume some special conditions on the
isolated points of the spectrum:

Theorem 4.106 Let T ∈ L(X), S ∈ L(Y ) be intertwined by an injective map
A ∈ L(X, Y ), and suppose that
(i) If S is polaroid and iso σ(T ) ⊆ iso σ(S) then T is polaroid.

(ii) If S is meromorphic and σ(T ) \ {0} ⊆ σ(S) \ {0} then T is meromorphic.
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Proof

(i) If σ(T ) has no isolated point then T is polaroid and hence there is nothing to
prove. Suppose that iso σ(T ) �= ∅ and let λ ∈ iso σ(T ). Then λ ∈ iso σ(S), so λ
is a pole of the resolvent of S. Let PT (λ) and PS(λ) be the spectral projections
associated to T and S with respect to {λ}, respectively. As we have seen in
Lemma 4.103, PT (λ) and PS(λ) are intertwined by A, i.e. PS(λ)A = APT (λ).
Since λ is a pole of the resolvent of S then p := p(λI − S) = q(λI − S) <∞
and ker(λI − S)p coincides with the range of PS(λ), by Theorem 2.45 and
Corollary 2.47. Therefore, (λI − S)pPS(λ) = 0, and consequently

0 = (λI − S)pPS(λ)A = (λI − S)pAPT (λ) = A(λI − T )pPT (λ).

Since A is injective, (λI − T )pPT (λ) = 0. Now, the range of PT (λ) coincides
with the quasi-nilpotent part H0(λI − T ), by Theorem 2.45, hence

H0(λI − T ) = PT (λ)(X) ⊆ ker(λI − T )p.

The opposite inclusion also holds, since ker(λI − T )n ⊆ H0(λI − T ) for all
natural n ∈ N. Therefore, H0(λI − T ) = ker(λI − T )p for all λ ∈ iso σ(T ).
By Theorem 4.12 we then conclude that T is polaroid.

(ii) The condition σ(T )\{0} ⊆ σ(S)\{0} entails that iso σ(T )\{0} ⊆ iso σ(S)\{0}.
If 0 �= λ is an isolated point of σ(T ) then λ ∈ iso σ(S) and proceeding as in
the proof of part (i) we see that H0(λI − T ) = ker(λI − T )p. This shows that
λ is a pole of the resolvent of T , see the proof of Theorem 4.12. �

The inclusion iso σ(T ) ⊆ iso σ(S) has a crucial role in Theorem 4.106. If T ,
S and A are as in Remark 4.104 we have iso σ(S) = ∅, iso σ(T ) = {0} and
the polaroid condition is not preserved by the quasi-affinity A. The example of
Remark 4.104 also shows that the condition iso σ(T ) ⊆ iso σ(S) cannot be replaced
by the weaker condition iso σ(T ) ⊆ σ(S).
Corollary 4.107 Suppose that T ∈ L(X) and S ∈ L(Y ) are intertwined by a quasi-
affinity A ∈ L(X, Y ) and iso σ(T ) = iso σ(S). Then T is polaroid if and only if S
is polaroid.

Proof By Theorem 4.106 we need only to prove that if T is polaroid then S is
polaroid. Now, T ∗ is polaroid and SA = AT implies T ∗A∗ = A∗S∗, where
A∗ ∈ L(Y ∗,X∗) is injective, since A has a dense range. Moreover, iso σ(T ∗) =
iso σ(T ) = iso σ(S) = iso σ(S∗). Since T ∗ is polaroid by Theorem 4.106 it then
follows that S∗ is polaroid, or equivalently S is polaroid. �

The operator C∗
p considered in Example 2.142 shows that in general a polaroid

operator does not satisfy the SVEP. In fact, σ(C∗
p) has no isolated points. A more

trivial example is given by the left shift T on �2(N). This operator is polaroid, since
σ(T ) is the unit disc of C, and it is well known that T fails SVEP at 0.
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The next result shows that hereditarily polaroid operators are transformed, always
under the assumption iso σ(T ) ⊆ iso σ(S), by quasi-affinities into a-polaroid
operators.

Theorem 4.108 Suppose that T ∈ L(X), S ∈ L(Y ) are intertwined by an injective
map A ∈ L(X, Y ). If S is hereditarily polaroid and iso σ(T ) ⊆ iso σ(S) then T ∗ is
a-polaroid.

Proof By Theorem 4.106 T is polaroid, and hence T ∗ is also polaroid. As observed
above, S has the SVEP, so T has the SVEP by Lemma 2.153. The SVEP for T by
Theorem 2.68 entails that σ(T ∗) = σ(T ) = σs(T ) = σap(T

∗), and this trivially
implies that T ∗ is a-polaroid. �

Note that quasi-similar operators may have unequal approximate point spectra,
for an example see Clary [95].

Theorem 4.109 Let T ∈ L(X), S ∈ L(Y ) be intertwined by an injective map
A ∈ L(X, Y ) and suppose that iso σap(T ) ⊆ iso σap(S). If S is left polaroid then T
is polaroid.

Proof We first show that

A(H0(λI − T )) ⊆ H0(λI − S).

Let x ∈ H0(λI − T ). Then

lim
n→∞ ‖(λI − S)nAx‖1/n = lim

n→∞ ‖A(λI − T )nx‖1/n

≤ lim
n→∞ ‖(λI − T )nx‖1/n = 0,

thus Ax ∈ H0(λI − S) and hence A(H0(λI − T )) ⊆ H0(λI − S), as claimed.
Here we can also suppose that iso σ(T ) �= ∅. Let λ ∈ iso σ(T ). Since

the approximate point spectrum of every operator contains the boundary of the
spectrum, in particular every isolated point of the spectrum, λ ∈ iso σa(T ) ⊆
iso σa(S). Since S is left polaroid by part (ii) of Theorem 4.12 there exists a positive
integer p such that H0(λI − S) = ker (λI − S)p. Consequently,

A(H0(λI − T )) ⊆ H0(λI − S) = ker (λI − S)p,

so, if x ∈ H0(λI − T ) then

A(λI − T )px = (λI − S)p(Ax) = 0.

Since A is injective, (λI − T )px = 0 and hence H0(λI − T ) ⊆ ker (λI − T )p.
The opposite inclusion is still true, so that H0(λI − T ) = ker (λI − T )p for every
λ ∈ iso σ(T ), and hence by Theorem 4.12 T is polaroid. �
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In Theorem 4.109 the assumption that iso σap(T ) ⊆ iso σap(S) is essential. For
the operators S and T of Remark 4.104 we have σap(S) = �, � the unit circle of C,
so iso σap(S) = ∅, while {0} = σap(T ) = iso σap(T ). Evidently, S is both left and
a-polaroid, while T is not polaroid.

Theorem 4.110 Suppose that S ∈ L(Y ) and T ∈ L(X) are intertwined by a map
A ∈ L(Y,X) which has dense range. If iso σs(T ) ⊆ iso σs(S) and S is right polaroid
then T is polaroid.

Proof From TA = AS we have A∗T ∗ = S∗A∗ with A∗ ∈ L(X∗, Y ∗)
injective. Since S is right-polaroid, S∗ is left-polaroid and by duality we have
σs(T ) = σap(T

∗) and σs(S) = σap(S
∗). Therefore iso σap(T

∗) ⊆ iso σap(S
∗). By

Theorem 4.106 it then follows that T ∗ is polaroid, or equivalently T is polaroid. �
Under the stronger conditions of quasi-similarity and property (β), the assump-

tion on the isolated points of the spectra of T and S in Theorem 4.106 may be
omitted:

Theorem 4.111 Let T ∈ L(X), S ∈ L(Y ) be quasi-similar.
(i) If both T and S have property (β) then T is polaroid if and only if S is polaroid.

In this case, T ∗ is a-polaroid.
(ii) If both T and S are Hilbert spaces operators for which property (C) holds then

T is polaroid if and only if S is polaroid. In this case, T ∗ is a-polaroid. �
Proof

(i) By a result of Putinar [259] property (β) preserves the spectrum, i.e. σ(S) =
σ(T ) and hence iso σ(T ) = iso σ(S). By Corollary 4.107 we then obtain that
T is polaroid exactly when S is polaroid. Evidently, in this case T ∗ is polaroid.
Now, property (β) implies that S has the SVEP and hence, by Lemma 2.153,
T also has the SVEP. The SVEP for T , again by Theorem 2.68, entails that
σ(T ∗) = σap(T

∗), and hence T ∗ is a-polaroid.
(ii) Also in this case, by a result of Stampfli [289], we have σ(S) = σ(T ), and

property (C) entails SVEP, so the assertion follows by using the same argument
of part (i). �

Hyponormal operators on Hilbert spaces have property (β), see [216]. Theo-
rem 4.111 then applies to these operators, since they are H(1) and hence polaroid.
Another class of polaroid operators to which Theorem 4.111 applies is the class of
all p∗ −QH operators studied in [135]. In fact, these operators are H(1) and have
property (β), see Duggal and Jeon [135, Theorem 2.12 and Theorem 2.2].

Recall that if T ∈ L(X) and S ∈ L(Y ), we say that the pair (S, T ) is
asymptotically intertwined by the operator A ∈ L(X, Y ) if ‖C(T , S)(A)‖1/n → 0
as n→ ∞, where C(T , S) is the commutator introduced in Chap. 2.

Definition 4.112 The pairs (S, T ) and (T , S) are said to be asymptotically quasi-
similar if both are asymptotically intertwined by some quasi-affinity.



4.8 Polaroid Operators Under Affinities 357

The proof of the next theorem may be found in Laursen and Neumann [216,
Corollary 3.4.5].

Theorem 4.113 If a pair (S, T ) is asymptotically intertwined by A ∈ L(X, Y ) then

AXT (F ) ⊆ YS(F ) for all closed sets F ⊆ C. (4.14)

Example 4.114 The polaroid condition is not transmitted whenever S and T are
asymptotically intertwined by a quasi-affinity, even in the case when the inclusion
iso σ(T ) ⊆ iso σ(S) is satisfied. For instance, if T ∈ L(�2(N)) is defined by

T (x1, x2, . . . ) =
(x2

2
,
x3

3
, . . .

)
for all (xn) ∈ �2(N).

If S := 0 then S is polaroid, while the quasi-nilpotent operator T is not polaroid. T
and S are, as observed above, quasi-nilpotent equivalent.

Let us now consider the very particular case when C(S, T )n(I) = 0 for some
n ∈ N. If T and S commute then C(S, T )n(I) = (S − T )n = 0. In this case T and
S differ from a commuting nilpotent operator N and, without any condition, if S is
polaroid then T is also polaroid, by Lemma 4.23.

Set

E∞(S) := {λ ∈ iso σ(S) : α(λI − S) <∞}.

Theorem 4.115 Let T ∈ L(X) and S ∈ L(Y ) be asymptotically intertwined by
an injective map A ∈ L(X, Y ) and iso σ(T ) ⊆ E∞(S). If S is polaroid then T is
polaroid.

Proof

(i) If λ ∈ iso (T ) then λ ∈ iso σ(T ). Since S is polaroid it then follows thatH0(λI−
S) = ker (λI − S)p for some positive integer p. Since λ ∈ E∞(S) we have
α(λI − S) < ∞, so α((λI − S)p) < ∞, and hence H0(λI − S) is finite-
dimensional. From the inclusion (4.14) we have

A(H0(λI − T )) = A(XT ({λ}) ⊆ YS({λ}) = H0(λI − S),

and since A is injective it then follows that H0(λI − T ) is finite-dimensional.
From the inclusion ker (λI − T )n ⊆ H0(λI − T ) for all n ∈ N it then easily
follows that p(λI − T ) < ∞. But λ is an isolated point of σ(T ), so the
decompositionX = H0(λI − T )⊕K(λI − T ) holds, consequentlyK(λI − T )
is finite co-dimensional, and sinceK(λI −T ) ⊆ (λI −T )(X) we then conclude
that β(λI − T ) <∞. Therefore, λI − T is Fredholm. But λ is an isolated point
of σ(T ∗) = σ(T ), so T ∗ has the SVEP at λ and, since λI − T is Fredholm, this
implies that q(λI − T ) <∞. Therefore, λ is a pole of the resolvent of T . �
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Corollary 4.116 Suppose that S and T are quasi-nilpotent equivalent. If S is
polaroid and every eigenvalue of S has finite multiplicity then T is polaroid.

Proof The quasi-nilpotent equivalence preserves the spectrum, see the book by
Colojoară and Foiaş [98, Chapter 1,Theorem 2.2], hence iso σ(T ) = iso σ(S). Now,
if λ ∈ iso σ(S) then either λI − S is injective or λ is an eigenvalue of S. In both
cases λ ∈ E∞(S). �

The Example 4.114 shows that the result of Corollary 4.116 fails if the
eigenvalues of S do not have finite multiplicity. Define

Ea∞(S) := {λ ∈ iso σap(S) : α(λI − S) <∞}.

Clearly, E∞(S) ⊆ Ea∞(S).
Theorem 4.117 Let T ∈ L(X) and S ∈ L(Y ) be asymptotically intertwined by an
injective map A ∈ L(X, Y ) and iso σ(T ) ⊆ Ea∞(S). If S is left polaroid then T is
polaroid.

Proof

(i) If λ ∈ iso σ(T ) then λ ∈ iso σap(S). S is left polaroid so, by part (ii) of
Theorem 4.12, there exists a positive integer p such that H0(λI − S) =
ker (λI − S)p. Since α(λI − S) < ∞ it then follows that H0(λI − S) is finite-
dimensional. �

4.9 Comments

The class of polaroid operators was introduced in [138] by Duggal, Harte, and Jeon,
while hereditarily polaroid operators were introduced by Duggal in [125], see also
[127] and [7].

All the remaining material in the section concerning the perturbation T + K of
a hereditarily polaroid operators by an algebraic commuting operator is modeled
after Aiena et al. [38], Aiena and Sanabria [24], Aiena et al. [42], and Aiena and
Aponte [8]. The results of Theorems 4.19 and 4.21 were proved in Aiena [5]. The
SVEP for hereditarily polaroid operators was first proved by Duggal and Djordjević
[132, 133]. The class of H(p) operators was introduced by Oudghiri [253], which
showed the important fact that every subscalar operator is H(p) for some p ∈ N.
The material concerning multipliers on semi-simple commutative Banach algebras
is taken from Aiena and Villafãne [31]. Paranormal operators on Hilbert spaces were
studied by Chourasia and Ramanujan [94], who first observed the SVEP for these
operators.
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All the material contained in the section on weighted shift operators is modeled
after Aiena et al.[34]. The class of semi-shifts was introduced in Holub [181] and
discussed in Laursen and Vrbová [217], and Laursen et al. [219]. The result that an
isometry T is a semi-shift if and only if T has fat local spectra was first observed by
Neumann, see [247].

The section concerning Toeplitz operators is modeled after Farenick and Lee
[145], Jia and Feng [188], and Aiena and Triolo [29].

The section concerning polaroid operators under affinities is modeled after Aiena
et al. [39].



Chapter 5
Browder-Type Theorems

This chapter may be viewed as the part of the book in which the interaction between
local spectral theory and Fredholm theory comes into focus. The greater part of
the chapter addresses some classes of operators on Banach spaces that have a very
special spectral structure. We have seen that the Weyl spectrum σw(T ) is a subset
of the Browder spectrum σb(T ) and this inclusion may be proper. In this chapter we
investigate the class of operators on complex infinite-dimensional Banach spaces for
which the Weyl spectrum and the Browder spectrum coincide. These operators are
said to satisfy Browder’s theorem. The operators which satisfy Browder’s theorem
have a very special spectral structure, indeed they may be characterized as those
operators T ∈ L(X) for which the spectral points λ that do not belong to the Weyl
spectrum are all isolated points of the spectrum.

In some sense Browder’s theorem is a local spectral property. Indeed, if T
satisfies Browder’s theorem then T has the SVEP at every λ /∈ σw(T ), since λ
belongs to the resolvent or is an isolated point of σ(T ). On the other hand, the
converse is still true, by Theorem 2.97. Browder’s theorem was introduced by Harte
and Lee in [173], in an erroneous description of Weyl’s theorem that will be studied
in Chap. 6, and then developed a life of its own. We shall also consider classes of
operators for which some other parts of the spectrum coincide, and these operators
are said to satisfy a Browder-type theorem. Examples of Browder-type theorems
are a-Browder’s theorem, property (b) and property (ab). All these Browder-type
theorems may also be characterized by means of the SVEP for T or T ∗ at the points
of some suitable parts of the spectrum. Other variants of Browder-type theorems
may be obtained by considering the B-Fredholm theory, treated in the previous
chapters, instead of the classical Fredholm theory. These last variants are, rather
improperly, called generalized Browder-type theorems, however it will be shown
that Browder’s theorem (respectively, a-Browder’s theorem) in its generalized form
or in its classical form, are equivalent.
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Some other characterizations of Browder-type theorems, generalized or not, are
obtained by showing that the quasi-nilpotent part H0(λI − T ) (respectively, the
analytic coreK(λI−T )) has finite dimension (respectively, has finite codimension),
as λ ranges over a certain subset of the spectrum. We also give some perturbation
results concerning Browder-type theorems, by using the perturbation results of
Chap. 3. In the last part of the chapter we show that Browder-type theorems are
transferred from a Drazin invertible operator R to its Drazin inverse.

5.1 Browder’s Theorem

In Theorem 3.44 we proved that if T or T ∗ has the SVEP then the Browder spectra
σb(T ), σub(T ) and σlb(T ) coincide with the corresponding Weyl spectra σw(T ),
σuw(T ) and σlw(T ), respectively.

Definition 5.1 T ∈ L(X) is said to satisfy Browder’s theorem if

σw(T ) = σb(T ),

or equivalently, by Theorem 3.43, if

accσ(T ) ⊆ σw(T ). (5.1)

Hence the SVEP for either T or T ∗ entails that both T and T ∗ satisfy Browder’s
theorem. However, the following example shows that SVEP for T or T ∗ is not a
necessary condition for Browder’s theorem.

Example 5.2 Let T := L ⊕ R ⊕ Q, where L and R are the unilateral left shift
and the unilateral right shift on �2(N), respectively, while Q is any quasi-nilpotent
operator on �2(N). Now, R is the adjoint L′ of L, and analogously L is the adjoint
R′ of R. Moreover, L does not have the SVEP, see Remark 2.64, and consequently,
by Theorem 2.15, both T and T ′ do not have the SVEP. On the other hand, it is
easily seen that σb(T ) = σw(T ) = D(0, 1), thus Browder’s theorem holds for T as
well as for T ′.

For a bounded operator T ∈ L(X) let us denote by

p00(T ) := σ(T ) \ σb(T ) = {λ ∈ σ(T ) : λI − T ∈ B(X)}

the set of all Riesz points in σ(T ). It is evident, from Theorem 3.7, that p00(T ) =
p00(T

∗). Let us consider the following set:

�(T ) := σ(T ) \ σw(T ).

We begin with an elementary lemma.
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Lemma 5.3 If T ∈ L(X) then p00(T ) ⊆ �(T ). Moreover,

�(T ) = {λ ∈ C : λI − T ∈ W(X), 0 < α(λI − T )}. (5.2)

Proof The inclusion p00(T ) ⊆ �(T ) is obvious, since every Browder operator is
Weyl. The equality (5.2) is clear: if λ ∈ �(T ) then α(λI − T ) = β(λI − T ) > 0,
since λ ∈ σ(T ). �

The following result shows that Browder’s theorem is equivalent to the localized
SVEP at the points of the complement of σw(T ).

Theorem 5.4 If T ∈ L(X) then the following statements are equivalent:
(i) p00(T ) = �(T );

(ii) T satisfies Browder’s theorem;
(iii) T ∗ satisfies Browder’s theorem;
(iv) T has the SVEP at every λ /∈ σw(T );
(v) T ∗ has the SVEP at every λ /∈ σw(T ).

Consequently, if either T or T ∗ has SVEP then Browder’s theorem holds for both
T and T ∗.

Proof (i) ⇒ (ii) Suppose that p00(T ) = �(T ). Let λ /∈ σw(T ). We show that λ /∈
σb(T ). Evidently, if λ /∈ σ(T ) then λ /∈ σb(T ). Consider the other case λ ∈ σ(T ).
Then λ ∈ �(T ) = p00(T ), thus λ /∈ σb(T ). Hence σb(T ) ⊆ σw(T ). The reverse
inclusion is satisfied by every operator, so σb(T ) = σw(T ).

(ii) ⇔ (iii) Obvious, since σb(T ) = σb(T
∗) and σw(T ) = σw(T

∗).
(ii) ⇒ (iv) Suppose that σb(T ) = σw(T ). If λ /∈ σw(T ) then λI − T ∈ B(X) so

p(λI − T ) <∞ and hence T has the SVEP at λ.
(iv) ⇒ (v) Suppose that T has the SVEP at every point λ ∈ C \σw(T ). For every

λ /∈ σw(T ) then λI − T ∈ W(X), and the SVEP at λ implies that p(λI − T ) <
∞. Since α(λI − T ) = β(λI − T ) < ∞ it then follows, by Theorem 1.22, that
q(λI − T ) <∞, and consequently T ∗ has the SVEP at λ.

(v) ⇒ (i) Suppose that λ ∈ �(T ). We have λI − T ∈ W(X) and hence
ind(λI−T ) = 0. By Theorem 2.98 the SVEP of T ∗ at λ implies that q(λI−T ) <∞
and hence, again by Theorem 1.22, p(λI − T ) is also finite. Therefore λ ∈
σ(T ) \ σb(T ) = p00(T ). This shows that �(T ) ⊆ p00(T ). By Lemma 5.3 we
then conclude that the equality p00(T ) = �(T ) holds. �
Corollary 5.5 Let T ∈ L(X). Then we have:

(i) If T satisfies Browder’s theorem and R ∈ L(X) is a Riesz operator which
commutes with T , then T + R satisfies Browder’s theorem.

(ii) If T has the SVEP and K ∈ L(X) is an algebraic operator which commutes
with T , then T +K satisfies Browder’s theorem.
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(iii) If T has the SVEP then both f (T ) and f (T ∗) satisfy Browder’s theorem for
every f ∈ H(σ (T )).

(iv) If T ∈ L(X) has the SVEP and T and S ∈ L(Y ) are intertwined by an injective
map A ∈ L(X, Y ) then S satisfies Browder’s theorem.

Proof (i) follows from Theorems 2.129 and 5.4. (ii) follows from Theorem 2.145.
(iii) By Theorem 2.86 f (T ) has the SVEP. (iv) S has the SVEP by Lemma 2.141.�
Theorem 5.6 Let T ∈ L(X) and suppose that intσw(T ) = ∅. Then the following
statements are equivalent:

(i) T satisfies Browder’s theorem;
(ii) T has SVEP;

(iii) T ∗ satisfies Browder’s theorem;
(iv) T ∗ has SVEP.

Proof (i) ⇔ (ii) Browder’s theorem for T is equivalent to the SVEP of T at the
points λ /∈ σw(T ), by Theorem 5.4. Let λ0 ∈ σw(T ). Then λ0 /∈ intσw(T ), since the
last set is empty. Hence λ0 ∈ ∂σw(T ), the boundary of σw(T ). Let (λI−T ))f (λ) =
0 for all λ in an open disc Dλ0 centered at λ. Obviously, the disc Dλ contains a
point μ of ρw(T ), and the SVEP of T at μ entails that f ≡ 0 in a suitable open
disc Dμ centered at μ, contained in Dλ0 . From the identity theorem for analytic
functions it then follows that f ≡ 0 in Dλ0 , so T also has the SVEP at the points
λ ∈ σw(T ). This shows the implication (i) ⇒ (ii). The reverse implication follows
from Theorem 5.4. The statements (i) and (iii) are equivalent, by Theorem 5.4. Since
intσw(T ) = intσw(T

∗) = ∅, the previous argument shows that (iii) ⇔ (iv). �
We have seen in Chap. 3 that if T or T ∗ has the SVEP then the spectral mapping

theorem holds for the Weyl spectrum σw(T ). In general, Browder’s theorem and
the spectral mapping theorem are independent. In [173, Example 6] an example is
given of an operator T for which the spectral mapping theorem holds for σw(T )

but Browder’s theorem fails for T . Another example [173, Example 7] shows that
there exist operators for which Browder’s theorem holds while the spectral mapping
theorem for the Weyl spectrum fails. However we have:

Theorem 5.7 Let T ∈ L(X) and f ∈ H(σ (T )). If Browder’s theorem holds for
f (T ) then f (σw(T )) = σw(f (T )).

Proof We have, since the spectral theorem holds for the Browder spectrum,

σw(f (T )) = σb(f (T )) = f (σb(T )) ⊇ f (σw(T )).

From part (ii) of Theorem 3.115 we then obtain σw(f (T )) = f (σw(T )). �
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Part (iii) of Theorem 5.5 may be improved in the case when f is non-constant on
each of the components of its domain:

Theorem 5.8 Suppose that T ∈ L(X) satisfies Browder’s theorem and f ∈
Hc(σ (T )). Then Browder’s theorem holds for f (T ).

Proof Suppose that f ∈ Hc(σ (T )) and f (λ0) ∈ σ(f (T )) \ σw(f (T )). Then there
is a ν ∈ N and two polynomials h and g in H(σ(T )) with no zero in σ(T ), such
that

f (λ)− f (λ0) = (λ0 − λ)νh(λ)g(λ),

with h(λ0) �= 0 and h(λ0) /∈ g(σ(T )). It then follows that

f (T )− f (λ0I) = (λ0I − T )νh(T )g(T ) ∈ W(X),

with 0 /∈ σ(h(T )g(T )) and, consequently, λ0 /∈ σw(T ). By Theorem 5.4 T has
the SVEP at λ0 and, by Theorem 2.88, f (T ) has the SVEP at f (λ0). This implies
Browder’s theorem for f (T ). �
Remark 5.9 It is easily seen that in the case of f ∈ H(σ(T )) the result of
Theorem 5.8 remains valid if we assume that T has the SVEP at every λ ∈
σ(T ) \ σw(T ), or f is injective.

Let us write isoK for the set of all isolated points ofK ⊆ C. A very clear spectral
picture of operators for which Browder’s theorem holds is given by the following
theorem:

Theorem 5.10 For an operator T ∈ L(X) the following statements are equiva-
lent:

(i) T satisfies Browder’s theorem;
(ii) Every λ ∈ �(T ) is an isolated point of σ(T );

(iii) �(T ) ⊆ ∂σ(T ), ∂σ(T ) the topological boundary of σ(T );
(iv) int�(T ) = ∅;
(v) σ(T ) = σw(T ) ∪ iso σ(T ).

Proof (i) ⇒ (ii) If T satisfies Browder’s theorem then �(T ) = p00(T ), and in
particular every λ ∈ �(T ) is an isolated point of σ(T ).

(ii) ⇒ (iii) Obvious.
(iii) ⇒ (iv) Clear, since int ∂σ(T ) = ∅.
(iv) ⇒ (v) Suppose that int�(T ) = ∅. Let λ0 ∈ �(T ) = σ(T ) \ σw(T ). We

show first that λ0 ∈ ∂σ(T ). Suppose that λ0 /∈ ∂σ(T ). Then there exists an open
disc centered at λ0 contained in the spectrum. Since λ0I − T ∈ W(X) by the
classical punctured neighborhood theorem there exists another open disc D centered
at λ0 such that λI − T ∈ W(X) for all λ ∈ D. Therefore λ0 ∈ int�(T ), which is
impossible. This argument shows that σ(T ) = σw(T ) ∪ ∂σ(T ).
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Now, if λ ∈ ∂σ(T ) and λ /∈ σw(T ) then λI − T ∈ W(X) and, since both T and
T ∗ have the SVEP at every point of ∂σ(T ) = ∂σ(T ∗), by Theorems 2.97 and 2.98
we then have p(λI − T ) = q(λI − T ) < ∞. Therefore λ is an isolated point of
σ(T ), and consequently σ(T ) = σw(T ) ∪ iso σ(T ).

(v) ⇒ (i) Suppose that σ(T ) = σw(T ) ∪ iso σ(T ). Suppose that λ /∈ σ(T ) \
σw(T ). Then λ ∈ iso σ(T ) (otherwise, λ /∈ σw(T ) ∪ iso σ(T ) = σ(T ), a
contradiction). Since T and T ∗ have the SVEP at every isolated point of σ(T ) and
λI − T ∈ W(X) it then follows, by Theorems 2.97 and 2.98, that p(λI − T ) =
q(λI − T ) <∞, so λ /∈ σb(T ). Therefore σb(T ) = σw(T ). �

Let M , N denote two closed linear subspaces of a Banach space X. In Chap. 1
we have observed that the gap δ̂(M,N) is a metric on the set of all linear closed
subspaces of X, and the convergence Mn → M is defined by δ̂(Mn,M) → 0 as
n→ ∞. Browder’s theorem may be characterized by means of the discontinuity of
certain mappings:

Theorem 5.11 For a bounded operator T ∈ L(X) the following statements are
equivalent:

(i) T satisfies Browder’s theorem;
(ii) the mapping λ → ker(λI − T ) is not continuous at every λ ∈ �(T ) in the gap

metric;
(iii) the mapping λ→ γ (λI − T ) is not continuous at every λ ∈ �(T );
(iv) the mapping λ → (λI − T )(X) is not continuous at every λ ∈ �(T ) in the

gap metric.

Proof (i) ⇒ (ii) By Theorem 5.10 if T satisfies Browder’s theorem then �(T ) ⊆
iso σ(T ). For every λ0 ∈ �(T ) we have α(λ0I − T ) > 0 and since λ0 is an isolated
point of σ(T ) there exists an open disc D(λ0, ε) such that α(λI − T ) = 0 for all
λ ∈ D(λ0, ε) \ {λ0}. Therefore the mapping λ → ker(λI − T ) is not continuous at
λ0 in the gap metric.

(ii) ⇒ (i) Let λ0 ∈ �(T ) be arbitrary. By the punctured neighborhood theorem
there exists an open disc D(λ0, ε) such that λI − T ∈ �(X) for all λ ∈ D(λ0, ε),
α(λI − T ) is constant as λ ranges on D(λ0, ε) \ {λ0},

ind(λI − T ) = ind(λ0I − T ) for all λ ∈ D(λ0, ε),

and

0 ≤ α(λI − T ) ≤ α(λ0I − T ) for all λ ∈ D(λ0, ε).

The discontinuity of the mapping λ→ ker(λI − T ) at every λ ∈ �(T ) implies that

0 ≤ α(λI − T ) < α(λ0I − T ) for all λ ∈ D(λ0, ε) \ {λ0}.

We claim that α(λI − T ) = 0 for all λ ∈ D(λ0, ε) \ {λ0}. To see this, suppose that
there is a λ1 ∈ D(λ0, ε) \ {λ0} such that α(λ1I − T ) > 0. Clearly, λ1 ∈ �(T ), so
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arguing as for λ0 we obtain a λ2 ∈ D(λ0, ε) \ {λ0, λ1} such that

0 < α(λ2I − T ) < α(λ1I − T ),

and this is impossible since α(λI − T ) is constant for all λ ∈ D(λ0, ε) \ {λ0}.
Therefore 0 = α(λI −T ) for λ ∈ D(λ0, ε) \ {λ0}, and since λI −T ∈ W(X) for all
λ ∈ D(λ0, ε) we conclude that α(λI − T ) = β(λI − T ) = 0 for all λ ∈ D(λ0, ε) \
{λ0}. Hence λ0 ∈ iso σ(T ), thus T satisfies Browder’s theorem by Theorem 5.10.

To show the equivalences of the assertions (ii), (iii) and (iv) observe first that for
every λ0 ∈ �(T ) we have λ0I − T ∈ �(X), and hence the range (λI − T )(X) is
closed for all λ near to λ0. The equivalences (ii) ⇔ (iii) ⇔ (iv) then follow from
Theorem 1.51. �

Recall that a bounded operator T ∈ L(X) is said be relatively regular if there
exists an S ∈ L(X) such that T ST = T . It is well known that every Fredholm
operator is relatively regular, see Appendix A. A “complemented” version of Kato
operators is given by the Saphar operators, where T ∈ L(X) is said to be Saphar if
T is semi-regular and relatively regular. The Saphar spectrum, already introduced
in Chap. 3, is denoted by σsa(T ). Clearly, σse(T ) ⊆ σsa(T ).

Theorem 5.12 For a bounded operator T each of the following statements is
equivalent to Browder’s theorem:

(i) �(T ) ⊆ σse(T );
(ii) �(T ) ⊆ iso σse(T );

(iii) �(T ) ⊆ σsa(T );
(iv) �(T ) ⊆ iso σsa(T ).

Proof By Theorem 1.51 the equivalent conditions of Theorem 5.11 are equivalent
to saying that λI − T is not semi-regular for all λ ∈ �(T ).

(i) ⇔ (ii) The implication (ii) ⇒ (i) is obvious. To show that (i) ⇒ (ii) suppose
that �a(T ) ⊆ σse(T ). If λ0 ∈ �a(T ) then λ0I − T ∈ �+(X) so λ0I − T is
essentially semi-regular, in particular of Kato-type. By Theorem 1.65 then there
exists an open disc D(λ0, ε) such that λI − T is semi-regular for all λ ∈ D(λ0, ε) \
{λ0}. But λ0 ∈ σse(T ), so λ0 ∈ iso σse(T ).

(i) ⇔ (iii) The implication (i) ⇒ (iii) is immediate, since σse(T ) ⊆ σsa(T ).
To show the implication (iii) ⇒ (i) suppose that �(T ) ⊆ σsa(T ). Let λ ∈ �(T ).

Then α(λI − T ) < ∞ and since λI − T ∈ W(X) it follows that β(λI −
T ) < ∞. Clearly, ker(λI − T ) is complemented, since it is finite-dimensional,
and (λI − T )(X) is complemented, since it is closed and finite-codimensional.
Therefore T is relatively regular, and from λ ∈ σsa(T ) it then follows that λI − T
is not semi-regular. Thus�(T ) ⊆ σse(T ).

(iv) ⇒ (iii) Obvious.
(ii) ⇒ (iv) Let λ0 ∈ �(T ). Since λ0I − T ∈ W(X), then there exists an open

disc D(λ0, ε) centered at λ0 such that λI −T ∈ W(X) for all λ ∈ (λ0, ε), so λI −T
is Fredholm, and hence is relatively regular for all λ ∈ D(λ0, ε). On the other hand,
λ0 is isolated in σse(T ), so λ0 ∈ iso σsa(T ). �
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We now establish some characterizations of operators satisfying Browder’s
theorem in terms of the quasi-nilpotent parts H0(λI − T ).
Theorem 5.13 For a bounded operator T ∈ L(X) the following statements are
equivalent:

(i) Browder’s theorem holds for T ;
(ii) For every λ ∈ �(T ) there exists a p := p(λI − T ) such that H0(λI − T ) =

ker (λI − T )p;
(iii) H0(λI − T ) is finite-dimensional for every λ ∈ �(T );
(iv) H0(λI − T ) is closed for all λ ∈ �(T );
(v) K(λI − T ) has finite-codimension for all λ ∈ �(T ).
Proof (i) ⇒ (ii) Suppose that T satisfies Browder’s theorem. By Theorem 5.4 then
�(T ) = p00(T ) = σ(T )\σb(T ). If λ ∈ �(T ) then λI −T ∈ B(X), so λ is isolated
in σ(T ) and hence T has the SVEP at λ. From Theorem 2.105 we then conclude
that H0(λI − T ) is finite-dimensional.

(ii) ⇒ (iii) If λ ∈ �(T ) = σ(T ) \ σw(T ), then λI − T is upper semi-Fredholm
and hence (λI − T )p is upper semi-Fredholm, so α(λI − T )p <∞. Consequently,
H0(λI − T ) = ker (λI − T )p is finite-dimensional.

(iii) ⇒ (iv) Clear.
(iv) ⇒ (i) Suppose that H0(λI − T ) is closed for all λ ∈ �(T ). Then T has the

SVEP at λ, by Theorem 2.39, and hence, by Theorem 2.97, we havep(λI−T ) <∞.
Since λI − T is Weyl, we then have λI − T ∈ B(X), by Theorem 1.22, hence λ ∈
p00(T ). This shows the inclusion �(T ) ⊆ p00(T ) and since the reverse inclusion
holds for every operator, we then have �(T ) = p00(T ), so T satisfies Browder’s
theorem by Theorem 5.4.

(i) ⇒ (v) By Theorem 5.10 every λ ∈ �(T ) is an isolated point of σ(T ) and
by the first part of the proof H0(λI − T ) is finite-dimensional. By Theorem 2.45,
X = H0(λI − T )⊕K(λI − T ), so K(λI − T ) has finite codimension.

(v) ⇒ (i) Suppose that K(λI − T ) has finite codimension for every λ ∈ �(T ).
Because K(λI − T ) ⊆ (λI − T )n(X) for each n ∈ N, it then follows that
q(λI − T ) <∞, so T ∗ has the SVEP at every λ ∈ �(T ), and hence Browder’s
theorem holds for T , by Theorem 5.4. �

A natural generalization of Browder’s theorem is suggested by considering B-
Fredholm theory instead of Fredholm theory. In other words, by considering those
operators T ∈ L(X) for which the equality

σbw(T ) = σd(T ) (5.3)

holds. Recall that by Corollary 3.49 we have σd(T ) = σbb(T ). By Theorem 3.50
the equality (5.3) holds if and only if

accσ(T ) ⊆ σbw(T ). (5.4)
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The operators T ∈ L(X) which satisfy the equality (5.3) have been investigated for
some time by several authors, and these operators are said to satisfy the generalized
Browder’s theorem. Since σbw(T ) ⊆ σw(T ) holds for every T ∈ L(X), from
the inclusion (5.4) we obtain accσ(T ) ⊆ σw(T ), which means that T satisfies
Browder’s theorem. Hence the generalized Browder’s theorem apparently seems to
be a stronger property than Browder’s theorem. Next we show that this is not true.
First we need to characterize the equality (5.3) by the localized SVEP at the points
λ /∈ σbw(T ).

Theorem 5.14 Let T ∈ L(X). Then the following statements are equivalent:
(i) σbw(T ) = σd(T ), i.e. the generalized Browder’s theorem holds for T ;

(ii) T has the SVEP at every λ /∈ σbw(T );
(iii) T ∗ has the SVEP at every λ /∈ σbw(T ).

Proof (i) ⇔ (ii) If σd(T ) = σbw(T ), then, by Theorem 2.97, T has the SVEP at the
points λ /∈ σbw(T ).

Conversely, assume that T has the SVEP at every point λ /∈ σbw(T ). If λ /∈
σbw(T ) then, by Corollary 2.107, λ /∈ σd(T ). This shows that σd(T ) ⊆ σbw(T ).
On the other hand, by Theorem 1.141 we have σbw(T ) ⊆ σd(T ), for all operators
T ∈ L(X), thus σbw(T ) = σd(T ), and hence T satisfies the generalized Browder’s
theorem.

(i) ⇔ (iii) If σd(T ) = σbw(T ) then q(λI −T ) <∞ for every λ /∈ σbw(T ), so T ∗
has the SVEP at every λ /∈ σbw(T ), by Theorem 2.98. Conversely, if λ /∈ σbw(T ),
the SVEP for T ∗ at λ entails, by Corollary 2.107, that λ /∈ σd(T ), hence σd(T ) ⊆
σbw(T ). The opposite inclusion is always true, thus σd(T ) = σd(T ).

It is perhaps surprising, and somewhat unexpected, that the two concepts of
Browder’s theorem and the generalized Browder’s theorem are equivalent:

Theorem 5.15 If T ∈ L(X) the following statements are equivalent:
(i) σw(T ) = σb(T );

(ii) σbw(T ) = σd(T ).

Consequently, for an operator T ∈ L(X), Browder’s theorem and the general-
ized Browder’s theorem are equivalent.

Proof Suppose that σw(T ) = σb(T ). Since, by Theorem 1.141, σbw(T ) ⊆ σd(T ) =
for all T ∈ L(X), we need only show the opposite inclusion. Assume that λ0 /∈
σbw(T ), i.e. that λ0I − T is B-Weyl. By Theorem 1.117, there exists an open disc
D(λ0, ε) such that λI − T is Weyl and hence Browder for all λ ∈ D(λ0, ε) \ {λ0}.
The condition p(λI − T ) = q(λI − T ) < ∞ implies that both T and T ∗ have
the SVEP at every λ ∈ D \ {λ0}, so both T and T ∗ have the SVEP at λ0. Since
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every B-Fredholm operator has topological uniform descent, by Theorem 2.97 and
Theorem 2.98, we then have that λ0I − T is Drazin invertible, i.e. λ0 /∈ σd(T ).
Hence σbw(T ) = σd(T ).

Conversely, suppose that σbw(T ) = σd(T ). By Theorem 5.14, T has the SVEP
at every λ /∈ σbw(T ) and in particular T has the SVEP for every λ /∈ σw(T ), since
σbw(T ) ⊆ σw(T ). Therefore, by Theorem 5.4, σw(T ) = σb(T ). �

Define

�g(T ) := σ(T ) \ σbw(T ),

and let

�(T ) := σ(T ) \ σd(T )

be the set of all poles of the resolvent (no restriction on rank).

Lemma 5.16 If T ∈ L(X) then

�g(T ) = {λ ∈ C : λI − T is B-Weyl and 0 < α(λI − T )}. (5.5)

Furthermore,�(T ) ⊆ �g(T ) and�(T ) ⊆ �g(T ).
Proof The inclusion

{λ ∈ C : λI − T is B-Weyl and 0 < α(λI − T )} ⊆ �g(T )

is obvious. To show the opposite inclusion, suppose that λ ∈ �g(T ). There is
no harm in assuming λ = 0. Since 0 ∈ σ(T ) and T is B-Weyl, hence, by
Theorem 1.119, T = T1 ⊕ T2, where T1 is Weyl and T2 is nilpotent. If α(T ) = 0
then α(T1) = 0 and since T1 is Weyl then α(T1) = β(T1) = 0 so T1 is invertible
and hence T is Drazin invertible, i.e., p(T ) = q(T ) < ∞. But this implies, by
Theorem 1.22, that 0 = α(T ) = β(T ), so 0 /∈ σ(T ), a contradiction. Therefore
α(T ) > 0, so that �g(T ) is contained in the set on the right-hand side of (5.5).
Therefore the equality (5.5) holds.

To show the inclusion �(T ) ⊆ �g(T ), let us assume that λ ∈ �(T ) = σ(T ) \
σd(T ). Then λI − T is Drazin invertible, and since λ is a pole, λ is an isolated
point of σ(T ). Moreover, by Theorem 1.141, λI − T is B-Weyl. We also have
0 < α(λI − T ) (otherwise from p(λI − T ) = q(λI − T ) < ∞ we would obtain
α(λI − T ) = β(λI − T ) = 0, i.e. λ /∈ σ(T )), hence�(T ) ⊆ �g(T ).

The inclusion�(T ) ⊆ �g(T ) is obvious, since σbw(T ) ⊆ σw(T ). �
The following theorem is an improvement of Theorem 5.10.
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Theorem 5.17 For a bounded operator T ∈ L(X) the following statements are
equivalent:

(i) T satisfies Browder’s theorem;
(ii) �g(T ) = �(T );

(iii) �g(T ) ⊆ iso σ(T );
(iv) �g(T ) ⊆ ∂σ(T ), ∂σ(T ) the topological boundary of σ(T );
(v) int�g(T ) = ∅;

(vi) σ(T ) = σbw(T ) ∪ ∂σ(T );
(vii) σ(T ) = σbw(T ) ∪ iso σ(T ).

Proof (i) ⇒ (ii) By Theorem 5.15 we have σbw(T ) = σd(T ), and hence �g(T ) =
σ(T ) \ σbw(T ) = σ(T ) \ σd(T ) = �(T ).

(ii) ⇒ (iii) Clear, since �g(T ) = �(T ) ⊆ iso σ(T ).
(iii) ⇒ (iv) Obvious.
(iv) ⇒ (v) Clear, since int ∂σ(T ) = ∅.
(v) ⇒ (vi) Suppose that int�g(T ) = ∅. Let λ0 ∈ �g(T ) = σ(T ) \ σbw(T )

and suppose that λ0 /∈ ∂σ(T ). Then there exists an open disc D(λ0, ε) centered at
λ0 contained in σ(T ). Since λ0I − T is B-Weyl there exists, by Theorem 1.117, a
punctured open disc D1 contained in D such that λI − T is Weyl for all λ ∈ D1.
Clearly, 0 < α(λI − T ) for all λ ∈ D1 (otherwise we would have 0 = α(λI −
T ) = β(λI − T )), hence by Lemma 5.16 λ0 belongs to int�g(T ), and this is a
contradiction since int�g(T ) = ∅. This shows that σ(T ) = σbw(T ) ∪ ∂σ(T ), as
desired.

(vi) ⇒ (vii) If λ ∈ ∂σ(T ) and λ /∈ σbw(T ) then λI − T is B-Weyl and T has the
SVEP at λ. By Theorem 2.107 it then follows that λI − T is Drazin invertible, i.e.
0 < p(λI −T ) = q(λI −T ) <∞ and hence λ is an isolated point of the spectrum.
Therefore, σ(T ) = σbw(T ) ∪ iso σ(T ).

(vii) ⇒ (i) Suppose that σ(T ) = σbw(T )∪iso σ(T ). Let λ /∈ σbw(T ). If λ /∈ σ(T )
then λ /∈ σd(T ). Suppose that λ ∈ σ(T ). Then λ ∈ σ(T ) \ σbw(T ) and hence
λ ∈ iso σ(T ). This implies that T has the SVEP at λ. Since λI −T is B-Weyl it then
follows, by Theorem 1.141, that λI − T is Drazin invertible and hence λ /∈ σd(T ).
This proves the inclusion σd(T ) ⊆ σbw(T ). Since the opposite inclusion is satisfied
by every operator we then conclude that σd(T ) = σbw(T ), so that T satisfies the
generalized Browder’s theorem, or equivalently, Browder’s theorem. �
Corollary 5.18 If either T or T ∗ has the SVEP and iso σ(T ) = ∅ then σ(T ) =
σw(T ) = σbw(T ).

Proof By Theorem 5.17 we have ∅ = �g(T ) = σ(T ) \ σbw(T ). Hence
σ(T ) = σbw(T ) and, obviously, these spectra coincide with σw(T ), since σbw(T ) ⊆
σw(T ) ⊆ σ(T ). �
Theorem 5.19 Suppose that T∞(X) = 0. If T is not nilpotent then

σbw(T ) = σd(T ) = σ(T ). (5.6)
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Proof The condition T∞(X) = 0 entails that T satisfies SVEP. This may be proved
in several ways, for instance, since ker (λI − T ) ⊆ T∞(X) for all λ �= 0, the
condition T∞(X) = {0} entails that ker (λI − T ) = 0 for every λ �= 0. Therefore,

ker (λI − T )n ∩ (λI − T )∞(X) = {0} for all λ ∈ C.

Since K(λI − T ) ⊆ (λI − T )∞(X) we then obtain N∞(λ0I − T ) ∩ K(λ0I −
T ) = {0}, and hence T has the SVEP, by Corollary 2.66. Therefore, T satisfies
the generalized Browder’s theorem and hence σbw(T ) = σd(T ). Suppose that T is
quasi-nilpotent, but not nilpotent. Then X = H0(T ) �= kerT p for each p ∈ N, so
0 cannot be a pole of the resolvent by Theorem 2.47. Hence σbw(T ) = σd(T ) =
σ(T ) = {0}.

Suppose that T is not quasi-nilpotent. Then q(λI−T ) = ∞ for all λ ∈ σ(T )\{0},
otherwise, since p(λI − T ) = 0 for all λ �= 0, we would have q(λI − T ) =
p(λI − T ) = 0, hence λ /∈ σ(T ). Therefore,

σ(T ) \ {0} ⊆ σd(T ) = σbw(T ) ⊆ σ(T ).

On the other hand, we also have q(T ) = ∞, because if q(T ) < ∞ we would have
T q(X) = T∞(X) = {0} and hence T is nilpotent. Therefore 0 ∈ σd(T ), from which
we may conclude that the equalities (5.6) hold. �
Remark 5.20 It should be noted that every nilpotent operator T on an infinite-
dimensional complex Banach space satisfies the equality σd(T ) = σbw(T ), since
T has the SVEP, while T p(X) = {0} and ker T p = X for some p ∈ N entail that
p(T ) = q(T ) < ∞ and hence σd(T ) = ∅. Therefore, for a nilpotent operator the
equality (5.6) fails, since σ(T ) = {0}.

The next two theorems improve the results of Theorems 5.11 and 5.35.

Theorem 5.21 For a bounded operator T ∈ L(X) the following statements are
equivalent:

(i) T satisfies Browder’s theorem;
(ii) The mapping λ→ ker(λI −T ) is discontinuous at every λ ∈ �g(T ) in the gap

metric.

Proof (i) ⇒ (ii) By Theorem 5.17 we have�g(T ) ⊆ iso σ(T ). If λ0 ∈ �g(T ) then
α(λ0I − T ) > 0 and there exists a punctured open disc D(λ0) centered at λ0 such
that α(λ0I − T ) = 0 for all λ ∈ D(λ0). Hence λ → ker (λI − T ) is discontinuous
at λ0 in the gap metric.

(ii) ⇒ (i) Let λ0 ∈ �g(T ) be arbitrary. Then λ0I − T is B-Weyl and by
Theorem 1.117 we know that there exists an open disc D(λ0, ε) such that λI − T ∈
�(X) for all λ ∈ D(λ0, ε)\{λ0}, α(λI−T ) is constant as λ ranges onD(λ0, ε)\{λ0},

ind(λI − T ) = ind(λ0I − T ) for all λ ∈ D(λ0, ε),
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and

0 ≤ α(λI − T ) ≤ α(λ0I − T ) for all λ ∈ D(λ0, ε).

The discontinuity of the mapping λ → ker(λI − T ) at every λ ∈ �g(T ) implies
that

0 ≤ α(λI − T ) < α(λ0I − T ) for all λ ∈ D(λ0, ε) \ {λ0}.

We claim that

α(λI − T ) = 0 for all λ ∈ D(λ0, ε) \ {λ0}. (5.7)

To see this, suppose that there exists a λ1 ∈ D(λ0, ε)\{λ0} such that α(λ1I−T ) > 0.
Clearly, λ1 ∈ �(T ), so arguing as for λ0 we obtain a λ2 ∈ D(λ0, ε) \ {λ0, λ1} such
that

0 < α(λ2I − T ) < α(λ1I − T ),

and this is impossible since α(λI − T ) is constant for all λ ∈ D(λ0, ε) \ {λ0}.
Therefore (5.7) is satisfied and, since λI − T ∈ W(X) for all λ ∈ D(λ0, ε) \ {λ0}
we then conclude that α(λI − T ) = β(λI − T ) = 0 for all λ ∈ D(λ0, ε) \ {λ0}.
Hence λ0 ∈ iso σ(T ), thus T satisfies Browder’s theorem by Theorem 5.17. �

The generalized Browder’s theorem, or equivalently Browder’s theorem, may be
characterized by means of the quasi-nilpotent parts H0(λI − T ) as λ ranges over
�g(T ):

Theorem 5.22 For a bounded operator T ∈ L(X) the following statements are
equivalent:

(i) T satisfies Browder’s theorem;
(ii) For every λ ∈ �g(T ) there exists a p := p(λ) ∈ N such that H0(λI − T ) =

ker (λI − T )p;
(iii) H0(λI − T ) is closed for all λ ∈ �g(T );
(iv) N∞(λI − T ) is closed for all λ ∈ �g(T ).
Proof (i) ⇒ (ii) By Theorem 5.17 we have �g(T ) = �(T ). If λ0 ∈ �g(T ) then
λ0 is a pole of the resolvent and H0(λ0I − T ) = ker (λ0I − T )p where p :=
p(λ0I − T ) = q(λ0I − T ), by Theorem 2.47.

(ii) ⇒ (iii) Clear.
(iii) ⇒ (i) Suppose that H0(λ0I − T ) is closed for λ0 ∈ �g(T ). Since λ0I − T

is B-Weyl there exists, by Theorem 1.119, two closed linear subspacesM , N such
that X = M ⊕ N , λ0I − T |M is Weyl and λ0I − T |N is nilpotent. Now, from
Theorem 2.39 we know that T has the SVEP at λ0 and hence T |M also has the
SVEP at λ0, so, by Theorem 2.97, we have p(λ0I − T |M) < ∞. Since α(λ0I −
T |M) = β(λ0I − T |M) it then follows by Theorem 1.22 that q(λ0I − T |M) <∞.
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Obviously, p(λ0I − T ) = p(λ0I − T |M) + p(λ0I − T |N) < ∞, and a similar
argument shows that also q(λ0I − T ) <∞. Therefore λ0 ∈ �(T ). This shows that
�g(T ) ⊆ iso σ(T ), so, by Theorem 5.17, T satisfies Browder’s theorem.

(ii) ⇒ (iv) We have ker (λI −T )n ⊆ N∞(λI −T ) ⊆ H0(λI −T ) for all n ∈ N,
so N∞(λI − T ) = ker (λI − T )p is closed for all λ ∈ �g(T ).

(iv) ⇒ (i) We first prove that p(λI − T ) < ∞ for every λ ∈ �(T ). We use a
standard argument from the well-known Baire theorem. Suppose p(λI − T ) = ∞
for λ ∈ σ(T ) \ σbw(T ). By assumption N∞(λI − T ) = ⋃∞

n=1 ker (λI − T )n is
closed so it is of second category in itself. Moreover, ker (λI −T )n �= N∞(λI −T )
implies that ker (λI−T )n is of the first category as subset of N∞(λI−T ) and hence
N∞(λI−T ) is also of the first category. From this it then follows that N∞(λI−T )
is not closed, a contradiction.

Therefore p(λI −T ) <∞ for every λ ∈ σ(T )\σbw(T ) and consequently T has
the SVEP at λ. Trivially, T also has the SVEP at every point λ /∈ σ(T ), so T has the
SVEP at every λ /∈ σbw(T ) and this is equivalent, by Theorem 5.14, to saying that
T satisfies Browder’s theorem. �

5.2 a-Browder’s Theorem

An approximate point version of Browder’s theorem is defined as follows:

Definition 5.23 A bounded operator T ∈ L(X) is said to satisfy a-Browder’s
theorem if

σuw(T ) = σub(T ),

or equivalently, by Theorem 3.43, if

acc σap(T ) ⊆ σuw(T ).

By Theorem 3.44 it then follows that if either T or T ∗ has the SVEP then a-
Browder’s theorem holds for both T and T ∗.

Define

pa00(T ) := σap(T ) \ σub(T ) = {λ ∈ σap(T ) : λI − T ∈ B+(X)}.

By Theorem 4.3 pa00(T ) ⊆ iso σap(T ).

Lemma 5.24 Let T ∈ L(X). Then we have:
(i) λ ∈ pa00(T ) if and only if λ is a left pole of finite rank for T .

(ii) λ ∈ pa00(T
∗) if and only if λ is a right pole of finite rank for T .
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Proof

(i) Suppose λ is a left pole of finite rank. We may assume λ = 0. Then, 0 ∈ σap(T ),
T is left Drazin invertible, so p(T ) < ∞. By Corollary 3.49 the condition of
left Drazin invertibility is equivalent to saying that T is upper semi B-Browder,
i.e. there exists an n ∈ N such that T n(X) is closed and the restriction Tn :=
T |T n(X) is upper semi-Browder, in particular upper semi-Fredholm. Since λ is
a left pole of finite rank we have α(T ) < ∞ and hence α(T n) < ∞, so T n ∈
�+(X) and from the classical Fredholm theory this implies that T ∈ �+(X).
Since p(T ) < ∞ we then conclude that T ∈ B+(X), so 0 /∈ σub(T ), and
consequently 0 ∈ σa(T ) \ σub(T ) = pa00(T ).

Conversely, assume that 0 ∈ pa00(T ). Then 0 ∈ σap(T ) \ σub(T ), hence
p := p(T ) < ∞ and T ∈ �+(X). From Fredholm theory we know that T n ∈
�+(X) for all n ∈ N, so T p+1(X) is closed. Thus T is left Drazin invertible.
But 0 ∈ σap(T ), thus 0 is a left pole having finite rank, since α(T ) <∞.

(ii) Suppose λ is a right pole of finite rank. We may assume λ = 0. Then 0 ∈
σs(T ) = σap(T

∗), T is right Drazin invertible and q(T ) < ∞. The condition
of right Drazin invertibility is equivalent to saying that T is lower semi B-
Browder, i.e. there exists an n ∈ N such that T n(X) is closed and the restriction
Tn := T |T n(X) is lower semi-Browder, in particular lower semi-Fredholm.
Since β(T ) < ∞ then β(T n) < ∞, hence T n ∈ �−(X), from which we
obtain that T ∈ �−(X). Since q(T ) < ∞ we then conclude that T ∈ B−(X),
or equivalently T ∗ ∈ B+(X∗), hence 0 /∈ σub(T

∗). Therefore, 0 ∈ σap(T
∗) \

σub(T
∗) = pa00(T

∗).

Conversely, assume that 0 ∈ pa00(T
∗). Then 0 ∈ σap(T

∗) \ σub(T
∗) and since, by

duality σub(T
∗) = σlb(T ), it then follows that 0 ∈ σs(T ) \ σlb(T ). Therefore, q :=

q(T ) < ∞ and T ∈ �−(X). From Fredholm theory we know that T n ∈ �−(X)
for all n ∈ N, in particular T q(X) is closed. Thus T is right Drazin invertible. But
0 ∈ σs(T ), thus 0 is a right pole of T . Finally, since T ∈ �−(X)we have β(T ) <∞
and consequently 0 is a right pole of finite rank for T . �

Define

�a(T ) := σap(T ) \ σuw(T ).

It should be noted that the set �a(T ) may be empty. This is, for instance, the
case of a right shift on �2(N), see the next Corollary 5.34, since a right shift has the
SVEP. If ρw(T ) := C \ σw(T ) and, as usual, σp(T ) denotes the point spectrum, we
have

Lemma 5.25 For T ∈ L(X) we have

�a(T ) = {λ ∈ C : λI − T ∈ W+(X), 0 < α(λI − T )}
= [ρ−

sf (T ) ∪ ρw(T )] ∩ σp(T ).
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Moreover, the following inclusions hold:

(i) p00(T ) ⊆ pa00(T ) ⊆ �a(T ).
(ii) p00(T ) ⊆ �(T ) ⊆ �a(T ) and pa00(T ) ⊆ �a(T ) ⊆ σap(T ).

Proof The first equality above is clear: if λ ∈ �a(T ) then λI−T is upper semi-Weyl
and hence has closed range. Since λ ∈ σap(T ) we then deduce that 0 < α(λI − T ).
The second equality is evident.

The inclusion p00(T ) ⊆ pa00(T ) is easy to see: every λ ∈ p00(T ) is a pole and
hence an eigenvalue of T , so λ ∈ σap(T ). On the other hand, λ /∈ σub(T ) since
λ /∈ σb(T ) and σub(T ) ⊆ σb(T ).

The inclusion pa00(T ) ⊆ �a(T ) is evident, since σuw(T ) ⊆ σub(T ). Clearly,
p00(T ) ⊆ �(T ), and �(T ) ⊆ �a(T ) follows from Lemma 5.3. �
Theorem 5.26 For a bounded operator T ∈ L(X), a-Browder’s theorem holds
for T if and only if pa00(T ) = �a(T ). In particular, a-Browder’s theorem holds
whenever�a(T ) = ∅.
Proof Suppose that T satisfies a-Browder’s theorem. Clearly, by Lemma 5.25, part
(ii), the equality pa00(T ) = �a(T ) holds whenever �a(T ) = ∅. Suppose then
�a(T ) �= ∅ and let λ ∈ �a(T ). Then λI − T ∈ W+(X) and λ ∈ σap(T ).
From the equality σuw(T ) = σub(T ) it then follows that λI − T ∈ B+(X), so
λ ∈ pa00(T ). Hence �a(T ) ⊆ pa00(T ), and by part (ii) of Lemma 5.25 we conclude
that pa00(T ) = �a(T ).

Conversely, suppose that pa00(T ) = �a(T ). Let λ /∈ σuw(T ). We show that
λ /∈ σub(T ). If λ /∈ σap(T ) then λ /∈ σub(T ), since σub(T ) ⊆ σap(T ). Consider the
other case λ ∈ σap(T ). Then λ ∈ �a(T ) = pa00(T ), thus λ /∈ σub(T ). Therefore
we have σub(T ) ⊆ σuw(T ) and, since the reverse inclusion is satisfied by every
operator, then σub(T ) = σuw(T ), i.e. T satisfies a-Browder’s theorem.

The last assertion is clear by Lemma 5.25, part (ii). �
a-Browder’s theorem may also be described in terms of the localized SVEP at

the points of a certain set:

Theorem 5.27 If T ∈ L(X) then the following statements hold:
(i) T satisfies a-Browder’s theorem if and only if T has the SVEP at every λ /∈
σuw(T ), or equivalently T has the SVEP at every λ ∈ �a(T ).

(ii) T ∗ satisfies a-Browder’s theorem if and only if T ∗ has the SVEP at every λ /∈
σlw(T ).

(iii) If T has the SVEP at every λ /∈ σlw(T ) then a-Browder’s theorem holds for
T ∗.

(iv) If T ∗ has the SVEP at every λ /∈ σuw(T ) then a-Browder’s theorem holds for
T .

Consequently, if either T or T ∗ has the SVEP then a-Browder’s theorem holds
for both T and T ∗.
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Proof

(i) Suppose that σub(T ) = σuw(T ). If λ /∈ σuw(T ) then λI − T ∈ B+(X) so
p(λI−T ) <∞ and hence T has the SVEP at λ. Conversely, if T has the SVEP
at every point which is not in σuw(T ), then for every λ /∈ σuw(T ), λI − T ∈
�+(X) and the SVEP at λ by Theorem 2.97 implies that p(λI −T ) <∞, and
consequently λ /∈ σub(T ). This shows that σub(T ) ⊆ σuw(T ). The opposite
inclusion is clear, so σub(T ) = σuw(T ).

To show the last assertion, observe first that if T has the SVEP at every λ /∈
σuw(T ) then T has the SVEP at every λ ∈ �a(T ), since�a(T )∩σuw(T ) = ∅.
Conversely, suppose that T has the SVEP at every λ ∈ �a(T ). If λ /∈ σuw(T )

then either λ /∈ σap(T ) or λ ∈ �a(T ) = σap(T ) \ σuw(T ). In both cases T has
the SVEP at λ, by Theorem 2.97.

(ii) Obvious, since σlw(T ) = σuw(T
∗).

(iii) Suppose that T has the SVEP at every point which does not belong to σlw(T ).
If λ /∈ σuw(T

∗) = σlw(T ) then λI − T ∈ �−(X) with ind(λI − T ) ≥ 0. By
Theorem 2.97 the SVEP of T at λ entails that p(λI − T ) < ∞ and hence by
Theorem 1.22 we have ind(λI−T ) ≤ 0. Therefore, ind(λI−T ) = 0, and since
p(λI−T ) <∞ we conclude, from part (iv) of Theorem 1.22, that q(λI−T ) <
∞, and hence λ /∈ σlb(T ) = σub(T

∗). Consequently, σub(T
∗) ⊆ σuw(T

∗),
and since the reverse inclusion holds for every operator we then conclude that
σub(T

∗) = σuw(T
∗).

(iv) This has been shown in Theorem 3.44. �
The next example shows that the reverse of the assertions (iii) and (iv) of

Theorem 5.27 generally do not hold.

Example 5.28 Let 1 ≤ p ≤ ∞ be given, and let ω := (ωn) be a bounded sequence
of strictly positive real numbers. The corresponding unilateral weighted right shift
on �p(N) is defined by

T x :=
∞∑
n=1

ωnxnen+1 for all x = (xn) ∈ �p(N),

where (en) is the standard basis of �p(N). In this case the spectral radius of T is
given by

r(T ) = lim
n→∞ sup

k∈N
(ωk · · ·ωk+n−1)

1/n.

Define

i(T ) := lim
n→∞ inf

k∈N(ωk · · ·ωk+n−1)
1/n,
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and

c(T ) := lim
n→∞ inf

k∈N(ω1 · · ·ωn)1/n.

We have i(T ) ≤ c(T ) ≤ r(T ), and as observed by Shields [284], for every triple
of real number 0 ≤ i ≤ c ≤ r it is possible to find a weighted right shift on �p(N)
such that

i(T ) = i, c(T ) = c, r(T ) = r.

Suppose now that 0 < i(T ) ≤ c(T ) ≤ r(T ). We know that every unilateral
weighted right shift has the SVEP, so T satisfies a-Browder’s theorem. Moreover,
by Theorem 1.6.15 of [216], we have that

σap(T ) = {λ ∈ C : i(T ) ≤ |λ| ≤ r(T )},

and since i(T ) is strictly greater than 0 then 0 /∈ σap(T ). The dual T ∗ of T is the
unilateral weighted left shift on �q(N) given by

T ∗x = (ωnxn+1) for all x = (xn) ∈ �q(N),

where, as usual, 1/p+ 1/q = 1 and �q(N) is canonically identified with the dual of
�p(N). Since the inclusion σwa(T ) ⊆ σap(T ) holds for every operator, we conclude
that 0 /∈ σwa(T ). This example shows that the assertion (iv) of Theorem 5.27 cannot
be reversed.

To show the converse of assertion (iii) of Theorem 5.27, let S := T ∗. Then
S∗ = T has the SVEP, so a-Browder’s theorem holds for S, while S does not have
the SVEP at 0. On the other hand, 0 /∈ σuw(T ) = σlw(T

∗) = σlw(S).

The SVEP is preserved under commuting Riesz or algebraic perturbations, and
also by the functional calculus, so we have:

Corollary 5.29 Let T ∈ L(X). Then we have:
(i) If satisfies a-Browder’s theorem and R ∈ L(X) is a Riesz operator which

commutes with T , then T + R satisfies a-Browder’s theorem.
(ii) If T has the SVEP and K ∈ L(X) is an algebraic operator which commutes

with T , then T +K satisfies a-Browder’s theorem.
(iii) If T has the SVEP then f (T ) satisfies a-Browder’s theorem for every f ∈

H(σ (T )).
(iv) If T ∈ L(X) has the SVEP and T and S ∈ L(Y ) are intertwined by an injective

map A ∈ L(X, Y ) then S satisfies a-Browder’s theorem.

Proof (i) follows from Theorems 2.129 and 5.27. (ii) follows from Theorem 2.145,
while the assertion (iii) follows from Theorem 2.86. To show (iv), observe that S
has the SVEP by Lemma 2.141. �
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Since σuw(T ) ⊆ σw(T ), from Theorems 5.27 and 5.4 we readily obtain:

Corollary 5.30 If T ∈ L(X) then a-Browder’s theorem for T implies Browder’s
theorem for T .

The following results are analogous to the results of Theorem 5.10, and they give
a precise spectral picture of a-Browder’s theorem.

Theorem 5.31 For a bounded operator T ∈ L(X) the following statements are
equivalent:

(i) T satisfies a-Browder’s theorem;
(ii) �a(T ) ⊆ iso σap(T );

(iii) �a(T ) ⊆ ∂σap(T ), ∂σap(T ) the topological boundary of σap(T );
(iv) the mapping λ → ker(λI − T ) is not continuous at every λ ∈ �a(T ) in the

gap metric;
(v) the mapping λ → γ (λI − T ) is not continuous at every λ ∈ �a(T );

(vi) the mapping λ → (λI − T )(X) is not continuous at every λ ∈ �a(T ) in the
gap metric;

(vii) �a(T ) ⊆ σse(T );
(viii) �a(T ) ⊆ iso σse(T );

(ix) σap(T ) = σuw(T ) ∪ iso σap(T ).

Proof The equivalences are obvious if �a(T ) = ∅, so we may suppose that �a(T )
is non-empty.

(i) ⇔ (ii) By Theorem 5.26 if T satisfies a-Browder’s theorem then �a(T ) =
pa00(T ), so, by Lemma 5.25, every λ ∈ �a(T ) is an isolated point of σap(T ).
Conversely, suppose that�a(T ) ⊆ iso σap(T ) and take λ ∈ �a(T ). Then T has the
SVEP at λ, since λ is an isolated point of σap(T ), and since λI − T ∈ �+(X) the
SVEP at λ is equivalent to saying that p(λI−T ) <∞, and hence λI−T ∈ B+(X).
Therefore, λ ∈ pa00(T ), from which we conclude that �a(T ) = pa00(T ).

(ii) ⇒ (iii) Obvious.
(iii) ⇒ (ii) Suppose that the inclusion�a(T ) ⊆ ∂σap(T ) holds. Let λ0 ∈ �a(T )

be arbitrarily given. We show that T has the SVEP at λ0. Let f : U → X be
an analytic function defined on an open disc U of λ0 which satisfies the equation
(λI − T )f (λ) = 0 for all λ ∈ U . Since λ0 ∈ ∂σap(T ) we can choose μ �= λ0,
μ ∈ U such that μ /∈ σap(T ). Consider an open disc W of μ such that W ⊆ U .
Since T has the SVEP at μ, then f (λ) = 0 for all λ ∈ W . The identity theorem
for analytic functions then implies that f (λ) = 0 for all λ ∈ U , hence T has the
SVEP at λ0. Finally, λ0I − T ∈ �+(X), since λ0 ∈ �a(T ). The SVEP at λ0 then
implies that σap(T ) does not cluster at λ0, and �a(T ) being a subset of σap(T ) we
then conclude that λ0 ∈ iso σap(T ).

(ii) ⇒ (iv) Suppose that �a(T ) ⊆ iso σap(T ). For every λ0 ∈ �a(T ) then
α(λ0I − T ) > 0 and since λ0 ∈ iso σap(T ) there exists an open disc D(λ0, ε)

such that α(λI − T ) = 0 for all λ ∈ D(λ0, ε) \ {λ0}. Therefore the mapping
λ→ ker(λI − T ) is not continuous at λ0.
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(iv) ⇒ (ii) Let λ0 ∈ �a(T ) be arbitrary. By the punctured neighborhood theorem
there exists an open disc D(λ0, ε) such that α(λI − T ) is constant as λ ranges over
D(λ0, ε) \ {λ0}, λI − T ∈ �+(X) for all λ ∈ D(λ0, ε),

ind(λI − T ) = ind(λ0I − T ) for all λ ∈ D(λ0, ε),

and

0 ≤ α(λI − T ) ≤ α(λ0I − T ) for all λ ∈ D(λ0, ε).

Since the mapping λ→ ker(λI − T ) is not continuous at λ0 it then follows that

0 ≤ α(λI − T ) < α(λ0I − T ) for all λ ∈ D(λ0, ε) \ {λ0}.

We claim that α(λI − T ) = 0 for all λ ∈ D(λ0, ε) \ {λ0}. To see this, suppose that
there is a λ1 ∈ D(λ0, ε) \ {λ0} such that α(λ1I − T ) > 0. From ind(λ1I − T ) =
ind(λ0I − T ) ≤ 0 we see that λI − T is upper semi-Weyl, and hence λ1 ∈ �a(T ).
Repeating the same reasoning as above we may choose a λ2 ∈ D(λ0, ε) \ {λ0, λ1}
such that

0 < α(λ2I − T ) < α(λ1I − T )

and this is impossible since α(λI − T ) is constant for all λ ∈ D(λ0, ε) \ {λ0}.
Therefore α(λI − T ) = 0 for λ ∈ D(λ0, ε) \ {λ0} and since (λI − T )(X) is closed
for all λ ∈ D(λ0, ε) we can conclude that λ0 ∈ iso σap(T ), as desired.

(iv) ⇔ (v) ⇔ (vi) To show these equivalences observe first that for every
λ ∈ �a(T ) the range (λI − T )(X) is closed. The equivalences then follow from
Theorem 1.51.

(vi) ⇔ (vii) If λ0 ∈ �a(T ) then there exists an open disc D(λ0, ε) centered at λ0
such that λI − T has closed range for all λ ∈ D(λ, ε). The equivalence (vi) ⇔ (vii)
then easily follows from Theorem 1.51.

(viii) ⇒ (vii) Clear.
(vii) ⇒ (viii) Suppose that �a(T ) ⊆ σse(T ). If λ0 ∈ �a(T ) then λ0I − T ∈

�+(X) so λ0I − T is essentially semi-regular, in particular of Kato-type. By
Theorem 1.65 there exists an open disc D(λ0, ε) centered at λ0 such that λI − T is
semi-regular for all λ ∈ D(λ0, ε) \ {λ0}. But λ0 ∈ σse(T ), so λ0 ∈ iso σse(T ).

(i) ⇔ (ix) The inclusion σuw(T ) ∪ iso σap(T ) ⊆ σap(T ) holds for every T ∈
L(X), so we need only prove the reverse inclusion. Suppose that a-Browder’s
theorem holds. If λ ∈ σap(T ) \ σuw(T ) then, by Theorem 5.27, T has the SVEP
at λ, and hence, by Theorem 2.97, we deduce that λ ∈ iso σap(T ). Therefore
σap(T ) ⊆ σuw(T ) ∪ iso σap(T ), so the equality (ix) is proved.
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Conversely, suppose that σap(T ) = σuw(T ) ∪ iso σap(T ). Let λ /∈ σuw(T ). There
are two possibilities: λ ∈ iso σap(T ) or λ /∈ iso σap(T ). If λ ∈ iso σap(T ) then T has
the SVEP at λ. In the other case λ /∈ σuw(T ) ∪ iso σap(T ) = σap(T ), and hence T
has the SVEP at λ. From Theorem 5.27 we then conclude that a-Browder’s theorem
holds for T .

The second assertion follows by duality, since σs(T ) = σap(T
∗) and σlw(T ) =

σuw(T
∗) for every T ∈ L(X). �

Remark 5.32 If T ∈ �+(X), the property that T is not semi-regular may be
expressed by saying that the jump j (T ) is greater than 0, see Aiena [1, Theo-
rem 1.58], so

a-Browder’s theorem holds for T ⇔ j (λI − T ) > 0 for all λ ∈ �a(T ).

Corollary 5.33 Suppose that T ∗ has the SVEP. Then �a(T ) ⊆ iso σ(T ).

Proof Here we can also suppose that�a(T ) is non-empty. If T ∗ has the SVEP then
a-Browder’ s theorem holds for T , so by Theorem 5.31 �a(T ) ⊆ iso σap(T ). By
Theorem 2.68, the SVEP for T ∗ entails that σap(T ) = σ(T ) �
Corollary 5.34 Suppose that T ∈ L(X) has the SVEP and iso σap(T ) = ∅. Then

σap(T ) = σuw(T ) = σse(T ). (5.8)

Analogously, if T ∗ has the SVEP and iso σs(T ) = ∅, then

σs(T ) = σlw(T ) = σse(T ). (5.9)

We now give a further characterization of operators satisfying a-Browder’s
theorem in terms of the quasi-nilpotent part H0(λI − T ).
Theorem 5.35 For a bounded operator T ∈ L(X) the following statements are
equivalent:

(i) a-Browder’s theorem holds for T .
(ii) H0(λI − T ) is finite-dimensional for every λ ∈ �a(T ).

(iii) H0(λI − T ) is closed for every λ ∈ �a(T ).
(iv) N∞(λI − T ) is finite-dimensional for every λ ∈ �a(T ).
(v) N∞(λI − T ) is closed for every λ ∈ �a(T ).
Proof There is nothing to prove if �a(T ) = ∅. Suppose that �a(T ) �= ∅.

(i) ⇔ (ii) Suppose that T satisfies a-Browder’s theorem. By Theorem 5.26 then

�a(T ) = pa00(T ) = σap(T ) \ σub(T ).

If λ ∈ �a(T ) then λ is isolated in σap(T ) and hence T has the SVEP at λ. We also
have that λI − T ∈ �+(X), so, from Theorem 2.97 we conclude that H0(λI − T )
is finite-dimensional.
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Conversely, suppose thatH0(λI −T ) is finite-dimensional for every λ ∈ �a(T ).
To show that T satisfies a-Browder’s theorem it suffices to prove that T has the
SVEP at every λ /∈ σuw(T ). Since T has the SVEP at every λ /∈ σap(T ) we can
suppose that λ ∈ σap(T ) \ σuw(T ) = �a(T ). Since λI − T ∈ �+(X) the SVEP at
λ then follows by Theorem 2.97.

(ii) ⇔ (iii) Since λI−T ∈ �+(X) for every λ ∈ �a(T ), the equivalence follows
from Theorem 2.97.

(ii) ⇒ (iv) Clear, since N∞(λI − T ) ⊆ H0(λI − T ).
(iv) ⇒ (i) Here we also prove that T has the SVEP at every λ /∈ σuw(T ). We can

suppose that λ ∈ σap(T ) \ σuw(T ) = �a(T ), since the SVEP is satisfied at every
point μ /∈ σap(T ). By assumption N∞(λI − T ) is finite-dimensional and from the
inclusion

ker (λI − T )n ⊆ ker (λI − T )n+1 ⊆ N∞(λI − T ) for all n ∈ N,

it is evident that there exists a p ∈ N such that ker (λI − T )p = ker (λI − T )p+1.
Hence p(λI − T ) <∞, so T has the SVEP at λ.

(iv) ⇒ (v) Obvious.
(v) ⇒ (i) As above it suffices to prove that p(λI−T ) <∞ for every λ /∈ σuw(T ).

We use a standard argument from the well-known Baire theorem. Suppose p(λI −
T ) = ∞, λ /∈ σuw(T ). By assumption N∞(λI − T ) = ⋃∞

n=1 ker T n is closed so
it is of second category in itself. Moreover, ker (λI − T )n �= N∞(λI − T ) implies
that ker (λI −T )n is of the first category as a subset of N∞(λI −T ) and hence also
N∞(λI − T ) is of the first category. From this it then follows that N∞(λI − T ) is
not closed, a contradiction. Therefore p(λI − T ) <∞ for every λ /∈ σuw(T ). �
Theorem 5.36 If K(λI − T ) is finite-codimensional for all λ ∈ �a(T ) then a-
Browder’s theorem holds for T .

Proof We show that T has the SVEP at every λ /∈ σuw(T ). As in the proof of
Theorem 5.35 we can suppose that λ ∈ σap(T ) \ σuw(T ) = �a(T ). By assumption
K(λI − T ) has finite codimension, and hence, by Theorem 2.98, q(λI − T ) <∞,
from which it follows that ind (λI − T ) ≥ 0, see Theorem 1.22. On the other hand,
λI−T ∈ W+(X), so ind (λI−T ) ≤ 0, from which we obtain that ind (λI−T ) = 0.
Again by Theorem 1.22 we conclude that p(λI − T ) < ∞, and hence T has the
SVEP at λ. �

The reverse implication of that of Theorem 5.36, in general, does not hold. Later
we shall prove that the property ofK(λI−T ) being finite-codimensional for all λ ∈
�a(T ) is equivalent to property (b), which is stronger than a-Browder’s theorem.
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We now consider the operators T ∈ L(X) for which σubw(T ) = σld(T ). The
operators T which satisfy this property have been said in the literature to satisfy the
generalized a-Browder’s theorem. We shall show that a-Browder’s theorem and the
generalized a-Browder’s theorem are equivalent.

Theorem 5.37 Let T ∈ L(X). Then the following statements are equivalent:
(i) σubw(T ) = σld(T ), i.e., T satisfies the generalized a-Browder’s theorem;

(ii) T has the SVEP at every λ /∈ σubw(T ).
Analogously, the following statements are equivalent:

(iii) σlbw(T ) = σld(T );
(iv) T has the SVEP at every λ /∈ σlbw(T ).

Proof (i) ⇔ (ii) If σld(T ) = σubw(T ), then, by Theorem 2.97, T has the SVEP at
the points λ /∈ σubw(T ).

Conversely, assume that T has the SVEP at every point that does not belong to
σubw(T ). If λ /∈ σubw(T ) then, by Theorem 2.97, λ /∈ σld(T ), so σld(T ) ⊆ σubw(T ).
On the other hand, by Theorem 1.141 we have σubw(T ) ⊆ σld(T ), for all operators
T ∈ L(X), thus σubw(T ) = σld(T ).

(iii) ⇔ (iv) If σld(T ) = σlbw(T ), then, by Theorem 2.97, T has the SVEP at
the points λ /∈ σubw(T ). Conversely, assume that T has the SVEP at every point
that does not belong to σlbw(T ). If λ /∈ σlbw(T ) then, again by Theorem 2.97, λ /∈
σld(T ), so σld(T ) ⊆ σlbw(T ).

On the other hand, by Theorem 1.141 we have σlbw(T ) ⊆ σld(T ), for all
operators T ∈ L(X), thus σlbw(T ) = σld(T ). �
Theorem 5.38 If T ∈ L(X) then the following statements are equivalent:
(i) σuw(T ) = σub(T );

(ii) σubw(T ) = σld(T ).

Consequently, a-Browder’s theorem and the generalized a-Browder’s theorem
are equivalent.

Proof Suppose that σuw(T ) = σub(T ). Since, by Theorem 1.141, σubw(T ) ⊆
σld(T ) = for all T ∈ L(X), it suffices to show the opposite inclusion. Assume
that λ0 /∈ σubw(T ), i.e. that λ0I − T is upper semi B-Weyl. By Theorem 1.117,
there exists an open disc D such that λI − T is upper semi-Weyl and hence upper
semi-Browder for all λ ∈ D\{λ0}. The condition p(λI−T ) <∞ implies that T has
the SVEP at every λ ∈ D \ {λ0}, so both T has the SVEP at λ0. Since every semi B-
Fredholm operator has topological uniform descent, by Theorem 2.97, we then have
that λ0I − T is left Drazin invertible, i.e. λ0 /∈ σld(T ). Hence σubw(T ) = σld(T ).

Conversely, suppose that σubw(T ) = σld(T ). By Theorem 5.37 T has the SVEP
at every λ /∈ σubw(T ) and in particular T has the SVEP for every λ /∈ σuw(T ),
since σubw(T ) ⊆ σuw(T ), so, by Theorem 5.27, T satisfies a-Browder’s theorem
and hence σuw(T ) = σub(T ). �
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Let

�a(T ) := σap(T ) \ σld(T )

denote the set of all left poles of the resolvent. By Theorem 4.3 we have �a(T ) ⊆
iso σa(T ) for every T ∈ L(X).

Define �ga(T ) := σap(T ) \ σubw(T ).

Lemma 5.39 If T ∈ L(X) then

�
g
a(T ) = {λ ∈ C : λI − T is upper semi B-Weyl and 0 < α(λI − T )}. (5.10)

Furthermore,

�(T ) ⊆ �ga(T ), �(T ) ⊆ �g(T ) ⊆ σap(T ),

and�a(T ) ⊆ �ga(T ).
Proof The inclusion ⊇ in (5.10) is obvious. To show the opposite inclusion, suppose
that λ ∈ �ga(T ). There is no harm in assuming λ = 0. Then T is upper semi B-Weyl
and 0 ∈ σa(T ). Both conditions entail that α(T ) > 0, otherwise if α(T ) = 0, and
hencep(T ) = 0, by Corollary 1.101 we would have T (X) closed. Thus, 0 /∈ σap(T ),
a contradiction. Therefore equality (5.10) holds.

The inclusion�(T ) ⊆ �ga(T ) is evident: if λ ∈ σ(T )\σw(T ) then λI−T is Weyl
and hence upper semi B-Weyl. Moreover, α(λI − T ) > 0, otherwise α(λI − T ) =
β(λI − T ) = 0, in contradiction with the assumption λ ∈ σ(T ).

The inclusion �(T ) ⊆ �g(T ) is clear, since σbw(T ) ⊆ σw(T ). To show the
inclusion �g(T ) ⊆ σap(T ), observe that if λ ∈ �g(T ) then λI − T is B-Weyl.
This implies that α(λI − T ) > 0. Indeed, if α(λI − T ) = 0, then we would have
p(λI − T ) = 0 and hence T would have the SVEP by part (iii) of Theorem 1.143,
and so λI −T would be Drazin invertible. Therefore, p(λI −T ) = q(λI −T ) = 0,
so λ /∈ σ(T ), which is impossible.

To show the inclusion�a(T ) ⊆ �ga(T ), let us assume that λ ∈ �a(T ) = σa(T )\
σld(T ). Then λ ∈ σap(T ), and λI − T is left Drazin invertible, in particular, upper
semi B-Weyl. Therefore�a(T ) ⊆ �ga(T ). �

Obviously, we have �ga(T ) = �a(T ) exactly when T satisfies Browder’s theo-
rem or the generalized Browder’s theorem. The equivalence of a-Browder’s theorem
and the generalized a-Browder’s theorem produces a spectral picture of operators
satisfying a-Browder’s theorem, similar to that established in Theorem 5.31:

Theorem 5.40 For a bounded operator T ∈ L(X) the following statements are
equivalent:

(i) T satisfies the a-generalized Browder’s theorem;
(ii) Every λ ∈ �ga(T ) is an isolated point of σap(T );

(iii) �ga(T ) ⊆ ∂σap(T ), ∂σap(T ) the topological boundary of σ(T );
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(iv) int�ga(T ) = ∅;
(v) σap(T ) = σubw(T ) ∪ ∂σap(T );

(vi) σap(T ) = σubw(T ) ∪ iso σap(T ).

Proof (i) ⇒ (ii) We have�ga(T ) = �a(T ) ⊆ iso σap(T ).
(ii) ⇒ (iii) Obvious.
(iii) ⇒ (iv) Clear, since int ∂σap(T ) = ∅.
(iv) ⇒ (v) Suppose that int�ga(T ) = ∅. Let λ0 ∈ �ga(T ) = σa(T ) \ σubw(T )

and suppose that λ0 /∈ ∂σap(T ). Then there exists an open disc D centered at λ0
contained in σap(T ). Since λ0I − T is upper semi B-Fredholm there exists, by
Theorem 1.117, a punctured open disc D1 contained in D such that λI − T is upper
semi-Fredholm for all λ ∈ D1. Moreover, 0 < α(λI − T ) for all λ ∈ D1. In fact,
if 0 = α(λI − T ), then (λI − T )(X) being closed, we would have λ /∈ σap(T ),
a contradiction. By Lemma 5.39 λ0 belongs to int�ga(T ), and this contradicts
int�ga(T ) = ∅. This shows that σap(T ) = σubw(T ) ∪ ∂σap(T ), as desired.

(v) ⇒ (vi) Let λ0 ∈ ∂σap(T ) and λ0 /∈ σubw(T ). Let D be an open disc centered
at λ0 and suppose that (λI − T )f (λ) = 0 for all λ ∈ D. If μ ∈ D and μ /∈ σap(T )

then T has the SVEP at μ, so f ≡ 0 in an open disc U ⊆ D centered at μ. The
identity theorem for analytic function entails that f (λ) = 0 for all λ ∈ D, so T has
the SVEP at λ0. Since λ0I−T is upper semi B-Fredholm, from Theorem 2.97 it then
follows that λ0I − T is left Drazin invertible, and hence λ0 ∈ �a(T ) ⊆ iso σap(T ).
Therefore, σap(T ) = σubw(T ) ∪ iso σap(T ).

(vi) ⇒ (i) We show that σubw(T ) = σld(T ). Let λ /∈ σubw(T ). If λ /∈ σap(T )

then, since σld(T ) ⊆ σap(T ), λ /∈ σld(T ). Suppose that λ ∈ σap(T ). Then λ ∈
σap(T ) \ σubw(T ) and hence λ ∈ iso σap(T ). This implies that T has the SVEP
at λ. Since λI − T is upper semi B-Fredholm it then follows by Theorem 2.97
that λI − T is left Drazin invertible, so λ /∈ σld(T ). This proves the inclusion
σld(T ) ⊆ σubw(T ). The opposite inclusion is satisfied by every operator, so we
can then conclude that the equality σld(T ) = σubw(T ) holds and hence T satisfies
the a-generalized Browder’s theorem. �
Corollary 5.41 If T ∈ L(X) has the SVEP and iso σap(T ) = ∅ then σubw(T ) =
σap(T ).

Proof T satisfies the generalized a-Browder’s theorem and hence by Theorem 5.40
σap(T ) = σubw(T ) ∪ iso σap(T ) = σubw(T ). �
Theorem 5.42 For a bounded operator T ∈ L(X) the following statements are
equivalent:

(i) T satisfies the generalized a-Browder’s theorem;
(ii) For each λ ∈ �ga(T ) there exists a ν := ν(λ) ∈ N such that H0(λI − T ) =

ker(λI − T )ν;
(iii) H0(λI − T ) is closed for all λ ∈ �ga(T );
(iv) The mapping λ → ker(λI − T ) is discontinuous at every λ ∈ �ga(T ) in the

gap metric.
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Proof (i) ⇒ (ii) Assume that T satisfies the generalized a-Browder’s theorem, and
let λ0 ∈ �ga(T ). We may assume that λ0 = 0. Then T is upper semi B-Weyl, and by
Theorem 5.40 we have 0 ∈ iso σap(T ), thus T has the SVEP at 0. By Theorem 2.97
it then follows that H0(T ) = kerT ν for some ν ∈ N.

(ii) ⇒ (iii) Clear.
(iii) ⇒ (i) Suppose that H0(λI − T ) is closed for all λ ∈ �ga(T ). Then T has

the SVEP at every λ ∈ �ga(T ). Now, if λ /∈ σubw(T ) there are two possibilities: if
λ /∈ σap(T ) then T has the SVEP at λ. If λ ∈ σap(T ) then λ ∈ �ga(T ), so also in this
case T has the SVEP at λ. By Theorem 5.37, T satisfies the generalized a-Browder’s
theorem.

(i) ⇒ (iv) By Theorem 5.40 if T satisfies the generalized Browder’s theorem
then �ga(T ) ⊆ iso σap(T ). If λ0 ∈ �ga(T ) then, by Lemma 5.39, α(λ0I − T ) > 0
and since �a(T ) ⊆ iso σap(T ) there exists a punctured open disc D(λ0) centered
at λ0 such that α(λ0I − T ) = 0 for all λ ∈ D(λ0). Hence λ → ker(λI − T ) is
discontinuous at λ0 in the gap metric.

(iv) ⇒ (i) We show that �ga(T )(T ) ⊆ iso σap(T ), so Theorem 5.40 applies.
Let λ0 ∈ �

g
a(T )(T ) be arbitrary. Then λ0I − T is upper semi B-Fredholm with

ind (λ0I − T ) ≤ 0. By Theorem 1.117 we know that there exists an open disc
D(λ0, ε) such that λI − T is upper semi Fredholm for all λ ∈ D(λ0, ε) \ {λ0},
α(λI − T ) is constant as λ ranges over D(λ0, ε) \ {λ0},

ind(λI − T ) = ind(λ0I − T ) for all λ ∈ D(λ0, ε),

and

0 ≤ α(λI − T ) ≤ α(λ0I − T ) for all λ ∈ D(λ0, ε).

Since the mapping λ→ ker(λI − T ) is discontinuous at every λ ∈ �ga(T ),

0 ≤ α(λI − T ) < α(λ0I − T ) for all λ ∈ D(λ0, ε) \ {λ0}.

We claim that

α(λI − T ) = 0 for all λ ∈ D(λ0, ε) \ {λ0}. (5.11)

To see this, suppose that there exists a λ1 ∈ D(λ0, ε)\{λ0} such that α(λ1I−T ) > 0.
Clearly, λ1 ∈ �a(T ), so arguing as for λ0 we obtain a λ2 ∈ D(λ0, ε) \ {λ0, λ1} such
that

0 < α(λ2I − T ) < α(λ1I − T ),

and this is impossible since α(λI − T ) is constant for all λ ∈ D(λ0, ε) \ {λ0}.
Therefore (5.11) is satisfied and since λI − T is upper semi-Fredholm for all λ ∈
D(λ0, ε) \ {λ0}, the range (λI − T )(X) is closed for all λ ∈ D(λ0, ε) \ {λ0}, thus
λ0 ∈ iso σap(T ), as desired. �
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5.3 Property (b)

In this section we introduce a new property which implies a-Browder’s theorem. We
have seen in Theorem 5.27 that T ∈ L(X) satisfies a-Browder’s theorem exactly
when T has the SVEP at the points λ ∈ �a(T ). In this section we consider those
operators for which the dual T ∗ has the SVEP at the points λ ∈ �a(T ). We shall
see that this condition is stronger than the SVEP for T at the points λ ∈ �a(T ).

Define �s(T ) := σs(T ) \ σlw(T ). We easily have

�s(T ) = {λ ∈ C : λI − T ∈ W−(X), 0 < β(λI − T )}.

Lemma 5.43 For all T ∈ L(X) we have

p00(T ) ⊆ �a(T ) ∩�s(T ).

Furthermore,

�s(T ) = �a(T ∗).

Proof If λ ∈ p00(T ) then α(λI −T ) = β(λI −T ) > 0, since λ ∈ σ(T ). Moreover,
λI−T is both upper semi-Weyl and lower semi-Weyl, so p00(T ) ⊆ �a(T )∩�s(T ).
The equality �s(T ) = �a(T

∗) is a clear consequence of the equalities σs(T ) =
σap(T

∗) and σuw(T
∗) = σlw(T ). �

The following property was introduced by Berkani and Zariuoh in [74, 75].

Definition 5.44 T ∈ L(X) satisfies property (b) if �a(T ) = p00(T ).

Property (b) may be characterized by the SVEP of T ∗ at the points of �a(T ).
More precisely, we have:

Theorem 5.45 For a bounded operator T ∈ L(X) the following statements are
equivalent:

(i) T satisfies property (b);
(ii) T ∗ has the SVEP at every λ ∈ �a(T );

(iii) �a(T ) ⊆ iso σ(T ).
Dually, for every T ∈ L(X) the following statements are equivalent:

(iv) T ∗ satisfies property (b);
(v) T has the SVEP at every λ ∈ �s(T );

(vi) �s(T ) ⊆ iso σ(T ).

Proof (i) ⇔ (ii) Suppose that T satisfies property (b) and let λ ∈ �a(T ) = p00(T )

be arbitrarily given. Then λ is an isolated point of σ(T ) = σ(T ∗), so T ∗ has the
SVEP at λ.
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Conversely, assume (ii) and let λ ∈ �a(T ). Then λI − T ∈ W+(X), i.e., T ∈
�+(X) and ind (λI − T ) ≤ 0. The SVEP of T ∗ at λ implies, by Theorem 2.98, that
q(λI−T ) <∞, and hence ind (λI−T ) ≥ 0, by Theorem 1.22. Therefore, ind (λI−
T ) = 0 and, again by Theorem 1.22, we obtain p(λI − T ) < ∞. Consequently,
λ ∈ p00(T ). This shows the inclusion �a(T ) ⊆ p00(T ). The opposite inclusion is
true for every operator, so that �a(T ) = p00(T ).

(i) ⇒ (iii) Obvious, since p00(T ) ⊆ iso σ(T ).
(iii) ⇒ (ii) Obvious, since T ∗ has the SVEP at every isolated point of σ(T ).
The equivalence (iv)–(v)–(vi) concerning property (b) for T ∗ may be proved by

using dual arguments and Lemma 5.43:
(iv) ⇔ (v) If T ∗ has property (b) then p00(T ) = p00(T

∗) = �a(T ∗) = �s(T ),
so every λ ∈ �s(T ) is an isolated point of the spectrum of T and, consequently, T
has the SVEP at λ. Conversely, suppose (ii). To show that T ∗ has property (b) we
need only to prove�a(T ∗) ⊆ p00(T

∗). Let λ ∈ �a(T ∗) = �s(T ). Then λI − T ∈
W−(X). Since T has the SVEP at λ, p(λI − T ) <∞, by Theorem 2.97, and hence
ind (λI − T ) ≤ 0, by Theorem 1.22. But λI − T ∈ W−(X), thus ind (λI − T ) = 0,
and this implies that q(λI − T ) <∞, again by Theorem 1.22. Thus, λ ∈ p00(T ) =
p00(T

∗).
(iv) ⇔ (vi) From the equivalence (i) ⇔ (iii), T ∗ satisfies property (b) if and only

if �s(T ) = �a(T ∗) ⊆ iso σ(T ∗) = iso σ(T ). �
Corollary 5.46 If T ∗ has the SVEP then property (b) holds for T , and analogously
if T has the SVEP then property (b) holds for T ∗.

The previous corollary may be extended as follows:

Corollary 5.47 Suppose that T ,R ∈ L(X) commutes andR is a Riesz operator.

(i) If T ∗ has the SVEP then property (b) holds for T + R, and analogously if T
has the SVEP then property (b) holds for T ∗ + R∗.

(ii) If T ∗ has the SVEP and K ∈ L(X) is an algebraic operator which commutes
with T , then T + K satisfies property (b). If T has the SVEP, then T ∗ + K∗
satisfies property (b).

(iii) If T ∗ has the SVEP then f (T ) satisfies property (b) for every f ∈ H(σ (T ))
and analogously, if T has the SVEP then f (T ∗) satisfies property (b) for every
f ∈ H(σ (T )).

(iv) If T ∈ L(X) has the SVEP and T and S ∈ L(Y ) are intertwined by an injective
map A ∈ L(X, Y ) then S satisfies property (b).

Proof (i) follows from Theorem 2.129 and Corollary 5.46. Statement (ii) follows
from Theorem 2.145 and Corollary 5.46, once we observe thatK∗ is also algebraic.
Assertion (iii) immediately follows, since by Theorem 2.86 f (T ) or f (T ∗) has the
SVEP. (iv) The operator S has the SVEP by Lemma 2.141. �
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Property (b) entails a-Browder’s theorem (or equivalently the generalized a-
Browder’s theorem):

Corollary 5.48 If property (b) holds for T then a-Browder’s theorem holds for T .

Proof Every isolated point of the spectrum belongs to σap(T ). Consequently,
iso σ(T ) ⊆ iso σap(T ) and hence, combining Theorems 5.45 and 5.31, we conclude
that property (b) entails a-Browder’s theorem. �

The following example shows that the converse of the result of Corollary 5.48
does not hold in general. This example also shows that the SVEP for T does not
ensure, in general, that property (b) holds for T .

Example 5.49 Let R ∈ L(�2(N)) denote the right shift and let P ∈ L(�2(N)) be the
idempotent operator defined by P(x) := (0, x2, x3, . . . ) for all x = (x1, x2, . . . ) ∈
�2(N).

It is easily seen that if T := R ⊕ P then σ(T ) = σw(T ) = D(0, 1), where
D(0, 1), and σap(T ) = � ∪ {0}, where � denotes the unit circle. Since σuw(T ) = �,
we then have �a(T ) = {0}, while σ(T ) has no isolated points. Therefore, T does
not have property (b), while T inherits SVEP fromR and P , thus, by Theorem 5.27,
T satisfies a-Browder’s theorem.

Now, let us consider the condition that T ∗ has the SVEP at every λ /∈ σuw(T ).
Clearly,�a(T ) ⊆ C \ σuw(T ), so, from Theorem 5.45, we obtain:

T ∗ has the SVEP at every λ /∈ σuw(T )⇒ T has property (b).

Next we give an example of an operator T for which property (b) holds, while
T ∗ may fail SVEP at some points λ /∈ σuw(T ).

Example 5.50 Let T := R ⊕ S, where R is the right shift on �2(N) and S ∈
L(�2(N)) is defined as

S(x1, x2, x3, . . . ) :=
(

1

2
x2,

1

3
x3,

1

4
x4, . . .

)
for all (xk) ∈ �2(N).

Then σ(T ) = σw(T ) = D(0, 1). This implies that the set of poles is empty, in
particular p00(T ) = ∅. On the other hand,

σap(T ) = σuw(T ) = � ∪ {0},

� the unit circle of C, so T possesses property (b). Suppose now that T ∗ has the
SVEP at every λ /∈ σuw(T ). If λ /∈ σuw(T ) then λI − T is upper Weyl, and the
SVEP of T ∗ ensures, by Corollary 2.106, that ind (λI − T ) ≤ 0, hence λI − T
is Weyl, and since the inclusion σuw(T ) ⊆ σw(T ) is satisfied by every operator it
then follows that σw(T ) = σuw(T ), and this is not possible. Therefore there exists a
λ0 /∈ σuw(T ) such that T ∗ fails the SVEP at λ0. Hence, T ∗ does not have the SVEP
at every point λ /∈ σuw(T ). Now, set U := T ∗. Clearly U∗ = T has property (b),
but the SVEP fails at λ0 /∈ σuw(T ) = σuw(U).



390 5 Browder-Type Theorems

Theorem 5.51 Let T ∈ L(X). Then we have
(i) T ∗ has the SVEP at every λ /∈ σuw(T ) if and only if T has property (b) and
σuw(T ) = σw(T ).

(ii) T has the SVEP at every λ /∈ σlw(T ) if and only if T ∗ has property (b) and
σlw(T ) = σw(T ).

Furthermore, if T satisfies property (b) then

�a(T ) = �(T ) = p00(T ) = pa00(T ).

Proof

(i) As observed above the SVEP for T ∗ at the points λ /∈ σuw(T ) entails property
(b). If λ /∈ σuw(T ) then λI − T is upper semi-Fredholm with index less than or
equal to 0. The SVEP for T ∗ at λ implies, by Corollary 2.106, that ind (λI −
T ) ≥ 0, so λI − T is Weyl and hence λ /∈ σw(T ). The inclusion σuw(T ) ⊆
σw(T ) holds for every operator, thus σuw(T ) = σw(T ).

Conversely, suppose that T has property (b) and σuw(T ) = σw(T ). Let λ /∈
σuw(T ). Then λI − T is Weyl. There are two possibilities. If λ /∈ σap(T ) then
0 = α(λI − T ) = β(λI − T ), so λ /∈ σ(T ) = σ(T ∗), and, trivially, T ∗ has the
SVEP at λ. If λ ∈ σap(T ) then λ ∈ �a(T ) ⊆ iso σ(T ), thus T ∗ has the SVEP
at λ.

(ii) Suppose that T has the SVEP at every λ /∈ σlw(T ). We show first that T ∗
satisfies property (b). By Theorem 5.45 we need to show that �s(T ) ⊆
iso σ(T ). Let λ ∈ �s(T ) = σs(T ) \ σlw(T ). Then λI − T is lower semi-Weyl,
and hence ind (λI−T ) ≥ 0, while the SVEP for T implies, by Corollary 2.106,
that ind (λI − T ) ≤ 0. Therefore λI − T is Weyl, and another consequence of
the SVEP at λ is that p(λI − T ) < ∞. By Theorem 1.22 we then conclude
that λI − T is Browder, and hence λ is an isolated point of σ(T ). Therefore,
property (b) holds for T ∗. The above argument shows that σw(T ) ⊆ σlw(T ),
from which it follows that σlw(T ) = σw(T ).

Conversely, suppose that T ∗ has property (b) and σlw(T ) = σw(T ) and let
λ /∈ σlw(T ). If λ /∈ σs(T ) then λI − T is onto, and hence λ /∈ σlw(T ) = σw(T ),
consequently λI−T is injective, so λ /∈ σ(T ) = σ(T ∗) and hence T ∗ has the SVEP
at λ. Consider the other case where λ ∈ σs(T ). Then λ ∈ �s(T ) = p00(T ), hence
λ is an isolated point of σ(T ) = σ(T ∗), thus T ∗ has the SVEP at λ.

The last assertion is clear: property (b) entails a-Browder’s theorem, and hence
Browder’s theorem. �

It has been already observed in Theorem 5.36 that the condition that K(λI − T )
has finite codimension for all λ ∈ �a(T ) implies that T satisfies a-Browder’s
theorem. Since the quasi-nilpotent part of an operator is, in a sense, near to be
the topological complement of the analytic core, the result of Corollary 5.41 could
suggest that the converse of this implication holds. This is not true. Indeed, we next
shows that this condition characterizes property (b), which is a formally stronger
condition than a-Browder’s theorem.
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Theorem 5.52 For an operators T ∈ L(X) the following statements are equiva-
lent:

(i) T satisfies property (b);
(ii) K(λI − T ) has finite codimension for all λ ∈ �a(T ).

In this case there exists a natural ν := ν(λ) such that H0(λI − T ) =
ker (λI − T )ν andK(λI − T ) = (λI − T )ν(X) for all λ ∈ �a(T ).

Dually, the following statements are equivalent:
(iii) T ∗ satisfies property (b);
(iv) H0(λI − T ) has finite dimension for all λ ∈ �s(T ).

In this case there exists a natural ν := ν(λ) such thatH0(λI−T ) = ker (λI−T )ν
andK(λI − T ) = (λI − T )ν(X) for all λ ∈ �s(T ).
Proof (i) ⇔ (ii) Suppose first that T has property (b). Then, by Theorem 5.45, every
λ ∈ �a(T ) is an isolated point of σ(T ). Since T satisfies a-Browder’s theorem
we know, from Theorem 5.35, that H0(λI − T ) is finite dimensional. From the
decomposition X = H0(λI − T ) ⊕ K(λI − T ) we then conclude that K(λI − T )
has finite codimension.

Conversely, suppose that K(λI − T ) has finite codimension at every point λ ∈
�a(T ). If λ ∈ �a(T ) then λI − T ∈ W+(X) and hence, by Theorem 2.98, T ∗ has
SVEP at λ, so Theorem 5.45 implies that T satisfies property (b).

The last assertion holds since every λ ∈ �a(T ) = p00(T ) is a pole, and if
ν is the order of λ then, by Corollary 2.47, H0(λI − T ) = ker (λI − T )ν and
K(λI − T ) = (λI − T )ν(X).

(iii) ⇔ (iv) Suppose that T ∗ has property (b). From the equivalence (i) ⇔ (ii)
we know that K(λI − T ∗) has finite codimension for all λ ∈ �a(T ∗) = �s(T ).
Let λ ∈ �s(T ) arbitrary given. Then λ ∈ �a(T ∗) = p00(T

∗) = p00(T ). Hence λ
is a pole of the resolvent of T , as well a pole of the resolvent of T ∗, and it is well
known that the order of λ as a pole of T coincides with the order of λ as a pole of
T ∗. Let ν be the order of λ. By Corollary 2.47 we know that K(λI − T ∗) is closed
and K(λI − T ∗) = (λI − T ∗)ν(X∗), while H0(λI − T ) = ker (λI − T )ν . If M⊥
denote the annihilator ofM ⊆ X, from the classical closed range theorem we have:

K(λI − T ∗) = (λI − T ∗)ν(X∗) = [ker (λI − T )ν]⊥ = H0(λI − T )⊥,

so H0(λI − T )⊥ has finite codimension in X∗. But from a standard result of
functional analysis we know that the quotient X∗/H0(λI − T )⊥ is isomorphic to
[H0(λI − T )]∗, hence the latter space is finite dimensional and, consequently, also
H0(λI − T ) is finite dimensional, as desired.

Conversely, suppose that H0(λI − T ) has finite dimension for all λ ∈ �s(T ).
Let λ ∈ �s(T ) be arbitrary. Since λI − T ∈ W−(X) then T has SVEP at λ, by
Theorem 2.97, and hence by Theorem 5.45 T ∗ satisfies property (b).
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The last assertion is immediate. Since

�s(T ) = �a(T ∗) = p00(T
∗) = p00(T ),

every λ ∈ �s(T ) is a pole, and if ν is the order of λ, then H0(λI − T ) = ker
(λI − T )ν while K(λI − T ) = (λI − T )ν(X), again by Corollary 2.47. �

Note that in the statement (iv) of Theorem 5.52 the condition that H0(λI − T )
has finite dimension for all λ ∈ �s(T ) may be replaced by the formally weaker
condition that H0(λI − T ) is closed for all λ ∈ �s(T ). This is a consequence of
Theorem 2.97.

Theorem 5.53 If T ∈ L(X) the following equivalences hold:
(i) T satisfies property (b) if and only if (λI − T )∞(X) has finite codimension for

all λ ∈ �a(T ).
(ii) T ∗ satisfies property (b) if and only ifN∞(λI −T ) has finite dimension for all

λ ∈ �s(T ).
Proof

(i) Suppose that property (b) holds for T and let λ ∈ �a(T ). Since K(λI − T ) ⊆
(λI − T )∞(X) it then follows, by Theorem 5.52, that (λI − T )∞(X) has finite
codimension. Conversely, suppose that (λI − T )∞(X) has finite codimension
for all λ ∈ �a(T ). From the inclusions (λI − T )∞(X) ⊆ (λI − T )n+1(X) ⊆
(λI − T )n(X), it is evident that (λI − T )ν+1(X) = (λI − T )ν(X) for some
ν ∈ N, hence q(λI − T ) < ∞ and this implies that T ∗ has SVEP at λ, so, by
Theorem 5.45, T satisfies property (b).

(ii) We haveN∞(λI−T ) ⊆ H0(λI−T ), so, if T ∗ has property (b) and λ ∈ �s(T ),
Theorem 5.52 entails that N∞(λI − T ) has finite dimension. Conversely,
suppose that λ ∈ �s(T ) and that N∞(λI − T ) is finite dimensional. From
the inclusions ker (λI −T )n ⊆ ker (λI −T )n+1 ⊆ N∞(λI −T ), we easily see
that p(λI − T ) <∞, so T has SVEP at λ. By Theorem 5.45 we then conclude
that T ∗ satisfies property (b). �

Next we show the exact relation between property (b), Browder’s theorem and
a-Browder’s theorem:

Theorem 5.54 If T ∈ L(X) the following statements are equivalent:
(i) T satisfies property (b);

(ii) T satisfies a-Browder’s theorem and pa00(T ) = p00(T );
(iii) T satisfies Browder’s theorem and ind (λI − T ) = 0 for all λ ∈ �a(T ).
Proof (i) ⇔ (ii) Suppose (i). By Corollary 5.48 property (b) entails a-Browder’s
theorem and, by Theorem 5.51, pa00(T ) = p00(T ). Conversely, if (ii) holds, then T
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satisfies a-Browder’s theorem and

�a(T ) = pa00(T ) = p00(T ) ⊆ iso σ(T ),

thus, by Theorem 5.45, T has property (b).
(ii) ⇒ (iii) a-Browder’s theorem implies Browder’s theorem. Furthermore,

�a(T ) = pa00(T ) = p00(T ), so λI − T is Browder for all λ ∈ �a(T ). In particular,
λI − T has index 0.

(iii) ⇒ (i) Since T satisfies Browder’s theorem we have σw(T ) = σb(T ). Since
λI − T is Weyl for every λ ∈ �a(T ), we have�a(T ) = σap(T ) \ σw(T ) and hence

�a(T ) ⊆ σ(T ) \ σw(T ) = σ(T ) \ σb(T ) = p00(T ) ⊆ iso σ(T ),

and hence T has property (b), by Theorem 5.45. �
Corollary 5.55 If T ∈ L(X) is a-polaroid, then property (b) for T is equivalent to
a-Browder’s theorem for T .

Proof Property (b) entails a-Browder’s theorem. To prove the converse assume that
T satisfies a-Browder’s theorem. Then, by Corollary 5.41, �a(T ) ⊆ iso σap(T ) =
iso σ(T ), and hence by Theorem 5.45 T has property (b). �
Remark 5.56 The operator T defined in Example 5.49 shows that the equivalence
established in Theorem 5.54 does not hold if the assumption that T is a-polaroid is
replaced by the weaker assumption that T is polaroid. Indeed, T is polaroid (since
iso σ(T ) = ∅), and T satisfies a-Browder’s theorem, since it satisfies SVEP, but not
property (b).

Property (b) is invariant under nilpotent commuting perturbations.

Theorem 5.57 Let T ∈ L(X) satisfy property (b), and letN be a nilpotent operator
which commutes with T . Then T +N has property (b).

Proof We know that σ(T ) = σ(T +N) and σb(T ) = σb(T +N), by Corollary 3.9,
so p00(T ) = p00(T +N). On the other hand, we easily have�a(T ) = �a(T +N),
and property (b) for T gives p00(T +N) = p00(T ) = �a(T ) = �a(T +N), hence
T +N has property (b). �

The previous result does not extend to commuting quasi-nilpotent perturbations.
A simple counterexample is the following. Let T = 0 andQ be the quasi-nilpotent
operator defined as

Q(x1, x2, . . . ) :=
(

0,
1

2
x2,

1

3
x3, . . .

)
for all (xi) ∈ �2(N).

Then�a(T ) = �(T ) = ∅, while�(T +Q) = {0} �= �a(T +Q).
Recall that T is said to be finitely polaroid if every λ ∈ iso σ(T ) is a pole of finite

rank, i.e. α(λI − T ) <∞.
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Theorem 5.58 Suppose that T ∈ L(X) is finitely polaroid and has property (b). If
Q ∈ L(X) is a quasi-nilpotent operator which commutes with T , then T +Q has
property (b).

Proof We know that σap(T ) and σuw(T ) are invariant under commuting quasi-
nilpotent perturbations, so�a(T ) = �(T +Q). We show that�(T ) = �(T +Q).
Let λ ∈ �(T ) = σ(T ) \ σd(T ) be arbitrarily given. Then λI − T has both finite
ascent and descent, and since T is finitely polaroid we also have α(λI − T ) < ∞.
From Theorem 1.22 we then have that λI − T is Browder, hence λI − (T + Q)
is also Browder, by Theorem 3.8. Since σ(T ) = σ(T + Q), then λ ∈ σ(T +
Q) \ σb(T + Q) = p00(T + Q) ⊆ �(T + Q). Hence, �(T ) ⊆ �(T + Q). To
show the opposite inclusion, let λ ∈ �(T + Q). Then λI − (T + Q) is Drazin
invertible, and hence λ ∈ iso σ(T + Q) = iso σ(T ). Since T is finitely polaroid
then λ is a pole of the resolvent having finite rank. By Theorem 1.22, λI − T

is Browder and hence λI − (T + Q) is Browder, by Theorem 3.8. Therefore
λ ∈ σ(T + Q) \ σb(T + Q) = σ(T ) \ σb(T ) = p00(T ) ⊆ �(T ). Therefore,
�(T ) = �(T +Q), and consequently, since T has property (b),

�a(T +Q) = �a(T ) = �(T ) = �(T +Q),

which shows that T +Q has property (b). �
Theorem 5.59 If T ∈ L(X) has the SVEP, and iso σap(T ) = ∅, then T + Q has
property (b) for every commuting quasi-nilpotent operatorQ ∈ L(X).
Proof We have σap(T ) = σap(T +Q), so iso σap(T +Q) = ∅. Clearly,�(T +Q) =
∅, since every pole of an operator is an eigenvalue.

Suppose now that �a(T +Q) �= ∅, and λ ∈ �a(T +Q) = σap(T +Q) \ σuw
(T +Q). By Theorem 3.8 we know that T +Q has the SVEP, hence σap(T +Q)
does not cluster at λ, by Theorem 2.97. Since λ ∈ σap(T +Q), λ is an isolated point
of σap(T +Q), and this is impossible. Therefore,

�a(T +Q) = �(T +Q) = ∅,

so T +Q has property (b). �
We have seen that Browder’s theorem, as well as a-Browder’s theorem are

invariant under commuting Riesz perturbations. We now give a sufficient condition
for the permanence of property (b) under commuting perturbations K for which
some powerKn is finite-dimensional.

Theorem 5.60 Suppose that T ∈ L(X) and K ∈ L(X) is an operator which
commutes with T such thatKn is finite-dimensional for some n ∈ N. If iso σap(T ) =
iso σap(T +K) then property (b) for T implies property (b) for T +K .
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Proof The assumption iso σap(T ) = iso σap(T + K) implies that σap(T ) = σap
(T +K). Indeed, from our assumption and Theorem 3.26 we have

σap(T +K) = iso σap(T +K) ∪ accσap(T +K)
= iso σap(T ) ∪ acc σap(T ) = σap(T ).

Note that K is a Riesz operator and hence, by Corollary 3.18, σuw(T ) = σuw
(T + K), from which we conclude that �a(T ) = �a(T + K). To conclude the
proof it suffices to prove �(T ) = �(T + K). If λ ∈ �(T ) = σ(T ) \ σd(T )

then λI − T is Drazin invertible, and hence, by Theorem 3.78, λI − (T + K) is
Drazin invertible. Moreover, since λI − T is Drazin invertible, λ ∈ iso σap(T ), by
Theorem 4.3. Hence λ ∈ iso σap(T +K), and in particular λ ∈ σ(T +K). Therefore,

λ ∈ σ(T +K) \ σd(T +K) = �(T +K),

and this shows that �(T ) ⊆ �(T + K). A symmetric argument shows that the
opposite inclusion is also true, so �(T ) = �(T +K). If T has property (b) then

�(T ) = �a(T ) = �a(T +K) = �(T +K),

thus T +K has property (b). �

5.4 Property (gb)

Property (gb), which was also introduced by Berkani and Zariouh in [66], is defined
by generalizing property (b) in the sense of the B-Fredholm property. This property,
which is formally stronger that property (b), may also be characterized by means of
the localized single valued extension property at the point of a certain set.

Definition 5.61 T ∈ L(X) satisfies property (gb) if �ga(T ) = �(T ), i.e., every
point of �ga(T ) is a pole of the resolvent.

Property (gb) may be characterized by means of the localized SVEP as follows.

Theorem 5.62 For a bounded operator T ∈ L(X) the following statements are
equivalent:

(i) T satisfies property (gb);
(ii) �ga(T ) ⊆ iso σ(T );

(iii) �ga(T ) ⊆ iso σs(T );
(iv) T ∗ has the SVEP at every λ ∈ �ga(T );
(v) q(λI − T ) <∞ for all λ ∈ �ga(T ).
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Proof The implication (i) ⇒ (ii) is obvious, since�(T ) ⊆ iso σ(T ).
The implication (ii) ⇒ (iii) easily follows, once we observe that the isolated

points of the spectrum belong to σs(T ).
The implication (iii) ⇒ (iv) is clear: for every operator T , its dual T ∗ has the

SVEP at the points λ ∈ iso σs(T ).
(iv) ⇒ (v) If λ ∈ �ga(T ), then λI − T is upper semi B-Weyl, in particular quasi-

Fredholm. By Theorem 1.142 we then have q(λI − T ) <∞.
(v) ⇒ (i) If λ ∈ �ga(T ) then λI−T is upper semi B-Weyl and, by Theorem 1.143,

the condition q(λI−T ) <∞ entails that λ is a pole of the resolvent, thus�ga(T ) ⊆
�(T ). The opposite inclusion is always true for any operator, since for a pole λ we
have that λI−T is Drazin invertible, and in particular λI−T is upper semi B-Weyl.
Therefore,�ga(T ) = �(T ). �
Corollary 5.63 If T ∗ has the SVEP then T satisfies property (gb).

The next example shows that the SVEP for T does not ensure, in general, that
property (gb) holds for T .

Example 5.64 Let R ∈ L(�2(N)) denote the right shift and let P ∈ L(�2(N)) be the
idempotent operator defined by P(x) := (0, x2, x3, . . . ) for all x = (x1, x2, . . . ) ∈
�2(N). It is easily seen that if T := R ⊕ P then σ(T ) = D(0, 1), and σap(T ) =
�∪{0}, where � denotes the unit circle. Since σubw(T ) = �, we then have�ga(T ) =
{0}, while since σ(T ) has no isolated points, we have�(T ) = ∅. Therefore, T does
not have property (gb), while T inherits SVEP from R and P .

Corollary 5.65 If T ∈ L(X) has property (gb) then T satisfies property (b).

Proof Since σubw(T ) ⊆ σuw(T ), we have �a(T ) ⊆ �
g
a(T ), hence, by Theo-

rem 5.62, property (gb) entails that�a(T ) ⊆ iso σ(T ), and the last inclusion holds
precisely when T satisfies property (b), by Theorem 5.45. �

The converse of Corollary 5.65 does not hold in general, as is shown by the
following example.

Example 5.66 Let R denote the unilateral right shift on �2(N). Then σ(R) =
D(0, 1), and σap(R) is the unit circle �. Moreover, the set of eigenvalues of R is
empty, see [260]. Moreover, σuw(R) = � and obviously, the set �(R) of poles of
the resolvent is empty. Define T := 0 ⊕ R. Then ker T = �2(N)⊕ {0},

σuw(T ) = σap(T ) = � ∪ {0},

and σubw(T ) = �. We also have that the set of left poles�a(T ) = {0}, and�(T ) =
pa00(T ) = ∅. Hence �a(T ) = σap(T ) \ σuw(T ) = pa00(T ) = ∅, while σap(T ) \
σubw(T ) = {0} �= �(T ). Therefore T possesses property (b), but does not have
property (gb).
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We know that if λ ∈ iso σ(T ) then X = H0(λI − T ) ⊕ K(λI − T ), see
Theorem 2.45. Consequently, if T has property (gb) then

X = H0(λI − T )⊕K(λI − T ) for all λ ∈ �ga(T ) (5.12)

since �ga(T ) ⊆ �(T ). The following results show that property (gb) may be
characterized by some conditions that are formally weaker than the one expressed
by the decomposition (5.12).

Theorem 5.67 For an operator T ∈ L(X) the following statements are equiva-
lent:

(i) T satisfies property (gb);
(ii) X = H0(λI − T )+K(λI − T ) for all λ ∈ �ga(T );

(iii) there exists a natural ν := ν(λ) such that K(λI − T ) = (λI − T )ν(X) for all
λ ∈ �ga(T );

(iv) there exists a natural ν := ν(λ) such that (λI − T )∞(X) = (λI − T )ν(X) for
all λ ∈ �ga(T ).

Proof (i) ⇔ (ii) The implication (i) ⇒ (ii) is clear, as observed in (5.12).
To show the implication (ii) ⇒ (i) observe that the condition X = H0

(λI − T ) + K(λI − T ) is equivalent, by Theorem 2.41, to λ ∈ iso σs(T ). Hence
�
g
a(T ) ⊆ iso σs(T ) and from Theorem 5.62 it immediately follows that T satisfies

property (gb).
(i) ⇔ (iii) If T satisfies property (gb) then, by Theorem 5.62, q := q(λI −T ) <

∞ for all λ ∈ �ga(T ), so (λI − T )∞(X) = (λI − T )q(X). Since λI − T is upper
semi B-Fredholm, there exists a ν ∈ N such that (λI − T )n(X) is closed for all
n ≥ ν, so (λI − T )∞(X) is closed. Furthermore, by Theorem 1.79, the restriction
(λI − T )|(λI − T )∞(X) is onto, so

(λI − T )((λI − T )∞(X)) = (λI − T )∞(X).

From Theorem 1.39, part (i), it then follows that (λI −T )∞(X) ⊆ K(λI −T ), and,
since the reverse inclusion holds for every operator, we then conclude that

(λI − T )∞(X) = K(λI − T ) = (λI − T )q(X).

Conversely, let λ ∈ �ga(T ) be arbitrarily given and suppose that there exists a
natural ν := ν(λ) such that K(λI − T ) = (λI − T )ν(X). Then we have

(λI − T )ν(X) = K(λI − T ) = (λI − T )(K(λI − T )) = (λI − T )ν+1(X),

thus q(λI − T ) ≤ ν. By Theorem 5.62 we then conclude that property (gb) holds
for T .
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(i) ⇔ (iv) Suppose that T satisfies property (gb). By Theorem 5.62, q :=
q(λI − T ) <∞ for all λ ∈ �ga(T ), and hence (λI − T )∞(X) = (λI − T )q(X) for
all λ ∈ �ga(T ). Conversely, suppose that (v) holds and λ ∈ �ga(T ). Then

(λI − T )ν(X) = (λI − T )∞(X) ⊆ (λI − T )ν+1(X),

and since (λI − T )n+1(X) ⊆ (λI − T )n(X) for all n ∈ N, we then obtain that
(λI − T )ν(X) = (λI − T )ν+1(X). Hence q(λI − T ) ≤ ν, so T satisfies property
(gb) by Theorem 5.62. �

Property (gb) is related to Browder-type theorems as follows:

Theorem 5.68 If T ∈ L(X) the following statements are equivalent:
(i) T satisfies property (gb);

(ii) T satisfies a-Browder’s theorem and σbw(T ) ∩�ga(T ) = ∅;
(iii) T satisfies Browder’s theorem and σbw(T ) ∩�ga(T ) = ∅;
(iv) T has property (b) and�(T ) = �a(T ).
Proof (i) ⇔ (ii) Assume that T has property (gb), i.e., �ga(T ) = �(T ). Property
(gb) implies, by Corollary 5.65, property (b) and hence, by Corollary 5.48, a-
Browder’s theorem. Suppose that there exists a λ ∈ σbw(T ) ∩�ga(T ) = σbw(T ) ∩
�(T ). Then λI − T is Drazin invertible and hence λ /∈ σd(T ) = σbw(T ), since
the generalized Browder’s theorem holds. This is a contradiction, so σbw(T ) ∩ �ga
(T ) = ∅.

Conversely suppose that (ii) holds. Since T satisfies the generalized a-Browder’
s theorem, σubw(T ) = σld(T ). Let λ ∈ �(T ). Then λI − T is Drazin invertible,
in particular left Drazin invertible, and hence λ /∈ σubw(T ). Since a pole of the
resolvent is always an eigenvalue, λ ∈ σap(T ) \ σubw(T ) = �

g
a(T ). This shows

the inclusion �(T ) ⊆ �
g
a(T ). To show the reverse inclusion observe first that if

λ ∈ �ga(T ) then λ /∈ σbw(T ), by assumption. But σbw(T ) = σd(T ), since Browder’s
theorem holds for T , or equivalently the generalized Browder’s theorem. Therefore,
λ ∈ σap(T ) \ σd(T ) = �(T ).

The implication (ii) ⇒ (iii) is clear. We show the implication (iii) ⇒ (i). Let λ ∈
�
g
a(T ) be arbitrarily chosen. Then λI − T is B-Weyl, hence λ /∈ σbw(T ) = σd(T ),

since Browder’s theorem holds for T . Therefore λ is a pole and hence is an isolated
point of σ(T ). By Theorem 5.62 we conclude that T has property (gb).

(i) ⇒ (iv) We know that property (gb) implies property (b), i.e.,�ga(T ) = �(T ),
and �(T ) ⊆ �a(T ). If λ /∈ �a(T ) then λI − T is left Drazin invertible, or
equivalently, by Theorem 3.47, λI − T is upper semi B-Browder. Moreover, by
Theorem 4.3, λ ∈ σap(T ), so λ ∈ �ga(T ) = �(T ). Therefore,�(T ) = �a(T ).

Conversely, to show (iv) ⇒ (i), assume that T has property (b) and �(T ) =
�a(T ). Property (b) entails a-Browder’s theorem, and this is equivalent to the
generalized a-Browder’s theorem, by Theorem 5.38. By Theorem 5.38, we have

�
g
a(T ) = σap(T ) \ σubw(T ) = σap(T ) \ σld(T ) = �a(T ).
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From the assumption �(T ) = �a(T ) we then conclude that �ga(T ) = �(T ), thus
T possesses property (gb). �

From part (iii) of Theorem 5.68 we immediately obtain:

Corollary 5.69 T ∈ L(X) has property (gb) if and only if T satisfies Browder’s
theorem and ind (λI − T ) = 0 for all λ ∈ �ga(T ).
Corollary 5.70 If T ∈ L(X) is a-polaroid then the properties (b), (gb), and a-
Browder’s theorem for T , are equivalent.

Proof We know that for every T ∈ L(X) we have (gb) ⇒ (b) ⇒ a-Browder’s
theorem, so we have only to prove that a-Browder’s theorem for T implies property
(gb) for T . Since a-Browder’s theorem and the generalized a-Browder’s theorem
are equivalent we have σubw(T ) = σld(T ). Therefore �ga(T ) = σap(T ) \ σld(T ) =
�a(T ). From Theorem 4.3 we know that every left pole λ is an isolated point of
σap(T ). Our assumption that T is a-polaroid entails that λ ∈ �(T ), and hence
�
g
a(T ) ⊆ �(T ), from which we conclude that property (gb) holds for T . �

Corollary 5.71 Suppose that T ∈ L(X) is a-polaroid and has the SVEP. Then
property (gb) holds for T .

Proof T satisfies a-Browder’s theorem. �
We show now that the results of Corollaries 5.71 and 5.70 cannot be extended to

polaroid operators.

Example 5.72 Let R denote the unilateral right shift on �2(N). We have σ(R) =
D(0, 1), while σap(R) is the unit circle �. Define T := 0 ⊕ R. Clearly, T has the
SVEP, since T is the direct sum of operators having SVEP, σ(T ) = D(0, 1) and

σap(T ) = σap(R) ∪ {0} = � ∪ {0}.

We show that T is left Drazin invertible. Evidently,p := p(T ) = p(R)+p(0) = 1.
We have T (X) = {0} ⊕ R(X), so T (X) = T 2(X) is closed, since R(X) is closed.
Hence 0 /∈ σld(T ) and this implies that 0 /∈ σubw(T ), because σubw(T ) ⊆ σubb(T ) =
σld(T ), by Corollary 3.49. Therefore, 0 ∈ �ga(T ) but 0 /∈ iso σ(T ), since σ(T ) has
no isolated points. Consequently, T does not satisfy property (gb). Observe that T
is polaroid, and satisfies a-Browder’s theorem, since T has the SVEP.

Let us consider the set E(T ) of eigenvalues which are isolated points of the
spectrum, i.e.,

E(T ) := {λ ∈ iso σ(T ) : α(λI − T ) > 0}.

We have seen before that the SVEP for T does not ensure that property (gb) holds
for T . However, the following result shows that in the case of polaroid operators,
property (gb) holds for T ∗.
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Theorem 5.73 Suppose that T ∈ L(X) is polaroid. Then we have:
(i) T satisfies property (gb) if and only if �ga(T ) = E(T ).

(ii) If T has the SVEP then T ∗ satisfies property (gb).

Proof Clearly, �(T ) ⊆ E(T ) for every operator. The opposite inclusion is
immediate, since the polaroid condition entails that every λ ∈ E(T ) is a pole of
the resolvent. Hence�(T ) = E(T ), from which the equivalence (i) follows.

(ii) The SVEP for T entails a-Browder’s theorem for T ∗. Moreover, T ∗ is
polaroid and the SVEP for T implies, by Theorem 2.68, that σ(T ∗) = σ(T ) =
σs(T ) = σ(T ∗). Hence T ∗ is a-polaroid, so by Theorem 5.70 T ∗ has property
(gb). �

In the sequel we give some results concerning the stability of property (gb) under
some commuting perturbations. In order to transfer property (gb) from T to its
perturbation T +Q, by a commuting quasi-nilpotent operator Q, it is sufficient to
assume that T is finite-polaroid, i.e., every isolated point of the spectrum σ(T ) is a
pole of finite rank.

Theorem 5.74 Suppose that T is finite-polaroid and has the SVEP. Then T ∗ +Q∗
satisfies property (gb) for every quasi-nilpotent operatorQ commuting with T .

Proof We prove first that T + Q is polaroid. Let λ ∈ iso σ(T + Q). Then λ ∈
iso σ(T ) and hence is a pole of the resolvent of T (consequently, an eigenvalue of
T ). Therefore, p := p(λI − T ) = q(λI − T ) < ∞ and since by assumption
α(λI − T ) < ∞ we then have α(λI − T ) = β(λI − T ), by Theorem 1.22, so
λI −T is Browder. By Theorem 3.8, we know that the class of Browder operators is
stable under quasi-nilpotent commuting perturbations, so λI − (T +Q) is Browder,
and hence λ is a pole of the resolvent of T +Q. Therefore, T +Q is polaroid.

Now, by Theorem 2.129, the SVEP from T is transmitted to T + Q, and this
implies, by Theorem 4.15, that T ∗ + Q∗ is a-polaroid. Moreover, the SVEP for
T +Q implies that T ∗ +Q∗ satisfies a-Browder’s theorem. By Corollary 5.70, we
then conclude that property (gb) holds for T ∗ +Q∗. �
Theorem 5.75 Suppose that T ∈ L(X) has the SVEP and iso σap(T ) = ∅. Then
we have:

(i) T +Q satisfies property (gb) for every commuting quasi-nilpotent operatorQ.
(ii) T +K satisfies property (gb) for every commuting finite rank operatorK .

Proof

(i) We know that σap(T ) = σap(T + Q) for every commuting quasi-nilpotent
operator Q. Therefore iso σap(T + Q) = ∅, from which we conclude that
�(T +Q) is empty, since�(T +Q) ⊆ iso σap(T +Q).

It remains only to show that �ga(T +Q) = ∅. Suppose that �ga(T +Q) is
non-empty and let λ ∈ �ga(T +Q) = σap(T +Q) \ σubw(T +Q). The SVEP
for T is inherited by T + Q, and since λI − (T + Q) is upper semi B-Weyl,
the SVEP of T +Q at λ implies, by Theorem 2.97, that σap(T +Q) does not
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cluster at λ. But λ ∈ σap(T +Q), so λ is an isolated point of σap(T +Q) and
this is impossible. Therefore,�(T +Q) = �ga(T +Q) = ∅.

(ii) Observe first that, by Theorem 3.29, we have σap(T ) = σap(T +K), so σap(T +
K) has no isolated points. Furthermore, the SVEP for T is inherited by T +K ,
by Theorem 2.129. The statement may be proved by using the same arguments
as the proof of part (i). �

Both the conditions iso σap(T ) = ∅ and T has the SVEP are satisfied by every
non quasi-nilpotent unilateral right shift T on �p(N), with 1 ≤ p < ∞. As usual,
let H(σ (T )) denote the set of all analytic functions defined on a neighborhood of
σ(T ).

Theorem 5.76 Let T ∈ L(X) be such that there exists a λ0 ∈ C such that

K(λ0I − T ) = {0} and ker (λ0I − T ) = {0}. (5.13)

Then property (gb) holds for f (T ) for all f ∈ H(σ (f (T )).

Proof For all complex λ �= λ0 we have ker (λI − T ) ⊆ K(λ0I − T ), so that
ker (λI − T ) = {0} for all λ ∈ C. Therefore, the point spectrum σp(T ) is empty.

We also show that σp(f (T )) = ∅. To see this, let μ ∈ σ(f (T )) and write μ −
f (λ) = p(λ)g(λ), where g is analytic on an open neighborhood U containing σ(T )
and without zeros in σ(T ), p a polynomial of the form p(λ) = �nk=1(λk − λ)νk ,
with distinct roots λ1, . . . , λn lying in σ(T ). Then

μI − f (T ) = �nk=1(λkI − T )νkg(T ).

Since g(T ) is invertible, σp(T ) = ∅ implies that ker (μI − f (T )) = {0} for all
μ ∈ C, so σp(f (T )) = ∅.

To prove that property (gb) holds for f (T ), observe first that�(f (T )) is empty,
since each pole is an eigenvalue. So we need only to prove that�ga(f (T )) is empty.
Suppose that there exists a λ ∈ �ga(f (T )). Then λ ∈ σap(f (T )) and λI − f (T )
is upper semi B-Weyl. Since σp(f (T )) = ∅ we have that λI − f (T ) is injective,
hence, by Corollary 1.115, λI − f (T ) is bounded below, i.e. λ /∈ σap(f (T )), a
contradiction. Therefore f (T ) satisfies property (gb). �

The conditions of Theorem 5.76 are satisfied by any injective operator for which
the hyper-range T∞(X) is {0}, since K(T ) ⊆ T∞(X) for all T ∈ L(X). In
particular, the conditions of Theorem 5.76 are satisfied by every semi-shift.

Theorem 5.77 Let T ∈ L(X) and let K ∈ L(X) be a finite rank operator which
commutes with T such that σap(T ) = σap(T + K). If T has property (gb) then
T +K also has property (gb).

Proof Property (gb) entails a-Browder’s theorem for T , i.e., σuw(T ) = σub(T ).
By Corollary 3.18 and Theorem 3.8 we also have σuw(T ) = σuw(T + K) and
σub(T ) = σub(T + K), so a-Browder’s theorem holds for T + K , or equivalently
the generalized a-Browder’s theorem holds for T +K . From Theorem 5.31 it then
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follows that

�
g
a(T +K) ⊆ iso σap(T +K) = iso σap(T ).

Let λ ∈ �ga(T +K) be arbitrary chosen. Then T +K has the SVEP at λ, since λ ∈
iso σap(T +K), and hence, by Theorem 2.97, λI − (T +K) is left Drazin invertible.
From Theorem 3.78 it then follows that λI − (T + K) + K = λI − T is also left
Drazin invertible, in particular upper semi B-Weyl. Since λ ∈ σap(T )we then obtain
λ ∈ �ga(T ) = �(T ). Again by Theorem 3.78 we know that σd(T ) = σd(T + K),
so �(T ) = �(T + K), and hence λ ∈ �(T + K). This shows the inclusion
�
g
a(T + K) ⊆ �(T + K). The opposite inclusion is true for every operator, thus

�
g
a(T +K) = �(T +K), and the proof is complete. �
For hereditarily polaroid operators we can say much more:

Theorem 5.78 Suppose that T ∈ L(X) is a hereditarily polaroid operator which
satisfies SVEP andK ∈ L(X) an algebraic operator which commutes with T . Then
f (T ∗ +K∗) satisfies property (gb) for every f ∈ Hnc(σ (T )).

Proof Since T is hereditarily polaroid, then f (T +K) is polaroid, by Theorem 4.33.
Moreover, T + K satisfies SVEP, by Theorem 2.145, and hence f (T + K) also
has the SVEP, by Theorem 2.86. Therefore, the result of Theorem 5.73 applies to
f (T ∗ +K∗). �

5.5 Property (ab)

For every operator T ∈ L(X) define

!a(T ) := �(T ) ∪ pa00(T ).

Since �(T ) ⊆ σap(T ), !a(T ) is the set of all points λ ∈ σap(T ) for which either
λI − T is Weyl or λ is a left pole of finite rank.

The following property was introduced by Berkani and Zariuoh in [75].

Definition 5.79 T ∈ L(X) satisfies property (ab) if �(T ) = pa00(T ).

Property (ab) also entails Browder’s theorem:

Theorem 5.80 If T ∈ L(X) satisfies property (ab) then Browder’s theorem holds
for T .

Proof Suppose that�(T ) = pa00(T ). Let λ ∈ �(T ) = pa00(T ). Then λI −T is both
Weyl and upper semi-Browder, in particular p(λI − T ) < ∞. From Theorem 1.22
we deduce that q(λI − T ) < ∞, so λ is a pole of the resolvent and hence
λ ∈ iso σ(T ). The inclusion �(T ) ⊆ iso σ(T ) is equivalent, by Theorem 5.10,
to Browder’s theorem for T . �
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The next example shows that the converse of Theorem 5.80 does not hold, i.e.
property (ab) is stronger than Browder’s theorem.

Example 5.81 Let R and L be the right shift and the left shift defined on �2(N),
respectively. Define T : R⊕L⊕L. Recall that L is the adjoint of R. Since L′ = R
has the SVEP, by Theorem 2.68, σap(L) = σ(L). Since σ(R) = D(0, 1), we have
σ(T ) = D(0, 1) and

σap(T ) = σap(R) ∪ σap(L) = D(0, 1).

Now, it easily seen that α(T ) = 1, β(T ) = 2, so T is a Fredholm operator and,
consequently has closed range. Since ind T ≤ 0 then 0 /∈ σuw(T ). We also have
p(T ) = ∞, so 0 ∈ σub(T ). Hence T does not satisfies a-Browder’s theorem. On
the other hand σw(T ) = D(0, 1), so �(T ) = ∅, and hence T satisfies Browder’s
theorem. We claim that pa00(T ) is empty. Indeed, suppose that there exists a λ ∈
pa00(T ) = σap(T ) \ σub(T ). Then λ ∈ σap(T ) and λI − T is upper semi-Browder.
The condition p(λI − T ) < ∞ is equivalent, by Theorem 2.97, to saying that λ is
an isolated point of σap(T ), and this is impossible. Therefore,�(T ) = pa00(T ) = ∅,
so T satisfies property (ab).

The precise relationship between property (ab) and Browder’s theorem is
described by the following theorem.

Theorem 5.82 Let T ∈ L(X). Then the following statements are equivalent:
(i) T satisfies property (ab);

(ii) T ∗ has the SVEP at every λ ∈ pa00(T ) and�(T ) ⊆ pa00(T );
(iii) Browder’s theorem holds for T and every left pole of finite rank of T is a pole

of T , i.e. p00(T ) = pa00(T );
(iv) Browder’s theorem holds for T and pa00(T ) ⊆ iso σ(T );
(v) Browder’s theorem holds for T and pa00(T ) ⊆ ∂σ(T );

(vi) !a(T ) ⊆ iso σ(T );
(vii) !a(T ) ⊆ p00(T );

(viii) T ∗ has the SVEP at every point λ ∈ !a(T ).
Proof (i) ⇔ (ii) Suppose that T satisfies (ab), i.e.�(T ) = σ(T )\σw(T ) = pa00(T ).
Let λ /∈ pa00(T ) be arbitrary. Then λI − T is Weyl and p(λI − T ) < ∞. By
Theorem 1.22, we have q(λI − T ) < ∞, hence λ is a pole and in particular an
isolated point of σ(T ) = σ(T ∗). Consequently, T ∗ has the SVEP at λ.

Conversely, suppose that T ∗ has the SVEP at every λ /∈ pa00(T ) and �(T ) ⊆
pa00(T ). If λ ∈ pa00(T ) then λ /∈ σub(T ) and p(λI −T ) <∞. Since λI −T is semi-
Fredholm the SVEP of T ∗ at λ entails that q(λI − T ) < ∞. By Theorem 1.22 we
then conclude that λI − T is Browder, hence Weyl, and consequently pa00(T ) ⊆
�(T ). Since the reverse inclusion holds by assumption, we then have �(T ) =
pa00(T ).
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(ii) ⇒ (iii) We have only to show that p00(T ) = pa00(T ). Let λ ∈ pa00(T ).
Then λI − T ∈ B+(X) and the SVEP of T ∗ at λ entails that q(λI − T ) < ∞, by
Theorem 2.98. Since p(λI−T ) <∞ it then follows that λ is a pole of the resolvent.
But α(λI − T ) < ∞, thus λI − T ∈ B(X), by Theorem 1.22. Consequently,
pa00(T ) ⊆ p00(T ), and since the opposite inclusion is always true we then conclude
that p00(T ) = pa00(T ).

(iii) ⇒ (iv) Clear, since p00(T ) ⊆ iso σ(T ).
(iv) ⇒ (ii) T ∗ has the SVEP at every isolated point of σ(T ∗) = σ(T ). Browder’s

theorem implies that�(T ) = p00(T ) ⊆ pa00(T ).
(iv) ⇒ (v) Clear.
(v) ⇒ (ii) T ∗ has the SVEP at every λ ∈ ∂σ(T ∗) = ∂σ(T ), and as above

Browder’s theorem entails that�(T ) ⊆ pa00(T ).
(v) ⇔ (vi) By Theorem 5.10, T satisfies Browder’s theorem if and only if

�(T ) ⊆ iso σ(T ).
(vi) ⇔ (vii) If λ ∈ !a(T ) then λI − T is either Weyl or upper semi-Browder.

Since !a(T ) ⊆ iso σ(T ), then both T and T ∗ have the SVEP at λ. This implies, by
Theorems 2.97 and 2.98, that p(λI − T ) = q(λI − T ) <∞. By Theorem 1.22 we
then conclude that λI − T ∈ B(X), i.e., !a(T ) ⊆ p00(T ). The implication (vii) ⇒
(vi) is obvious.

(vi) ⇒ (viii) T ∗ has the SVEP at every point λ ∈ !a(T ) since λ ∈ iso σ(T ) =
iso σ(T ∗).

(viii) ⇒ (ii) Suppose that T ∗ has the SVEP at every point λ ∈ !a(T ). Then T ∗
has the SVEP at the points of �(T ), as well as at the points of pa00(T ). It is easily
seen that�(T ) ⊆ pa00(T ). Indeed, if λ ∈ �(T ) then λI − T is Weyl, and the SVEP
for T ∗ at λ entails by Theorem 2.98 that q(λI − T ) < ∞. By Theorem 1.22, then
λI − T is Browder, in particular upper semi-Browder, so λ ∈ pa00(T ). �

Every isolated point of the spectrum belongs to σap(T ) by Theorem 1.12. Hence
iso σ(T ) ⊆ iso σap(T ), from which we easily obtain:

Corollary 5.83 If T has property (ab) then !a(T ) ⊆ iso σap(T ).

Note that T always has the SVEP at the points λ ∈ pa00(T ), since λI − T ∈
B+(X), and hence p(λI − T ) < ∞. The next example shows that the condition
�(T ) ⊆ pa00(T ) does not ensure that T ∗ has the SVEP at λ ∈ pa00(T ).

Example 5.84 Let T be the operator defined in Example 5.49. Then T ∗ = R∗ ⊕P ∗
does not have the SVEP at 0, since R∗ is the left shift and this operator fails SVEP
at 0. On the other hand, �(T ) = ∅, while σuw(T ) = σub(T ) = �, since T has the
SVEP and hence a-Browder’s theorem holds for T , thus�(T ) ⊆ pa00(T ) = {0}.
Corollary 5.85 If T ∈ L(X) has property (b) then T has property (ab).

Proof From Lemma 5.25 we know that !a(T ) ⊆ �a(T ). The property (b) is
equivalent, by Theorem 5.45, to the inclusion �a(T ) ⊆ iso σ(T ), so, from part
(vi) of Theorem 5.82, we deduce that property (b) implies property (ab). �
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The following example shows that property (b) is in general stronger than
property (ab).

Example 5.86 Let R and L be the unilateral right and left shift, respectively, on
�2(N), and define T = L⊕R⊕R. Then α(T ) = 1, β(T ) = 2, and p(T ) = ∞. This
implies in particular 0 /∈ σuw(T ). Since p(T ) = ∞, T does not satisfy a-Browder’s
theorem. Therefore T does not have property (b), by Corollary 5.48. On the other
hand, σ(T ) = D(0, 1), hence, the set of left poles is empty, and σbw(T ) = D(0, 1),
and hence T has property (ab).

Observe that σw(T ) ∩�(T ) is trivially empty. The intersection σw(T ) ∩�a(T )
may be non-empty. For instance, let R and L denote the right shift and the left shift
on �2(N), respectively. Let T := L ⊕ R ⊕ R. It is easy to check that α(T ) = 1,
β(T ) = 2, so T is upper Weyl but not Weyl. Evidently, 0 ∈ σw(T ) ∩�a(T ).

The precise relationship between properties (b) and property (ab) is described in
the following theorem.

Theorem 5.87 If T ∈ L(X) then the following assertions are equivalent:
(i) T has property (b);

(ii) T has property (ab) and σw(T ) ∩�a(T ) = ∅;
(iii) T satisfies a-Browder’s theorem and σw(T ) ∩�a(T ) = ∅;
(iv) T satisfies Browder’s theorem and σw(T ) ∩�a(T ) = ∅.
Proof (i) ⇒ (ii) Suppose that T has property (b). Then �a(T ) = p00(T ) and
property (ab) holds for T , by Corollary 5.85. Moreover, a-Browder’s theorem holds
for T , by Corollary 5.48, and hence Browder’s theorem, so that σw(T ) = σb(T ).
Therefore, σw(T ) ∩�a(T ) = σb(T ) ∩ p00(T ) = ∅.

Conversely, assume (ii). Property (ab) entails Browder’s theorem so σw(T ) =
σb(T ). Let λ ∈ �a(T ). By assumption then λ /∈ σw(T ) = σb(T ), hence λ ∈
p00(T ). This shows that �a(T ) ⊆ p00(T ), and since, by Lemma 5.25, the reverse
inclusion holds for every operator it then follows that �a(T ) = p00(T ).

The implications (i) ⇒ (iii) ⇒ (iv) are clear, since property (b) entails a-
Browder’s theorem and this implies Browder’s theorem. To show the implication
(iv) ⇒ (i), suppose that λ ∈ �a(T ). Then λ /∈ σw(T ) = σb(T ), hence λ is an
isolated point of σ(T ), so T has property (b), by Theorem 5.45. �

The SVEP for T entails Browder’s theorem, so we have:

Corollary 5.88 If T has the SVEP then property (b) holds for T if and only if
σw(T ) ∩ �a(T ) = ∅. In this case, properties (b) and (ab), a-Browder’s theorem
and Browder’s theorem for T are equivalent.

Define

ps00(T ) := σs(T ) \ σlb(T ) = σap(T
∗) \ σub(T

∗)
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and by duality

!s(T ) := ps00(T ) ∪�(T ).

Evidently, !s(T ) = !a(T
∗), since �(T ) = �(T ∗). The next result shows that

property (ab) for T may also be characterized by means of the analytic core
K(λI − T ).
Theorem 5.89 For an operator T ∈ L(X) the following equivalences hold:
(i) T satisfies property (ab) ⇔ K(λI − T ) has finite codimension for all λ ∈
!a(T ). In this case, for all λ ∈ !a(T ) there exists a ν := ν(λ) ∈ N such that
K(λI − T ) = (λI − T )ν(X) and H0(λI − T ) = ker (λI − T )ν .

(ii) T ∗ satisfies property (ab)⇔K(λI−T ) has finite dimension for all λ ∈ �s(T ).
In this case, for all λ ∈ !s(T ) there exists a ν := ν(λ) ∈ N such that
K(λI − T ) = (λI − T )ν(X) and H0(λI − T ) = ker (λI − T )ν .

Proof

(i) Suppose that T has property (ab) and let λ ∈ !a(T ). Then λ ∈ p00(T ), by
Theorem 5.82, and hence λ is a pole of the resolvent, so thatX = H0(λI−T )⊕
K(λI−T ). Moreover, λ ∈ �(T ) or λ ∈ pa00(T ). If λ ∈ �(T ), thenH0(λI−T )
has finite dimension since T satisfies Browder’s theorem, by Theorem 5.35. If
λ ∈ pa00(T ), then λ is a left pole of finite rank and hence, by Theorem 4.3,
H0(λI −T ) has finite dimension. Therefore,K(λI −T ) has finite codimension
for all λ ∈ !a(T ).

Conversely, suppose that K(λI − T ) has finite codimension for all λ ∈
!a(T ) = �(T ) ∪ pa00(T ). Clearly, if λ ∈ !a(T ) then λI − T is either
Weyl or upper semi-Browder and hence, by Theorem 2.98, T ∗ has the SVEP
at λ. In particular, T ∗ has the SVEP at every λ ∈ pa00(T ). Let λ ∈ �(T ).
By Theorem 2.98, we have q(λI − T ) < ∞ and since λI − T is Weyl,
by Theorem 1.22 it then follows that λI − T is Browder. In particular, λ ∈
σap(T ) \ σub(T ) = pa00(T ) and hence, by Theorem 5.82, T satisfies property
(ab). The last assertion follows from Theorem 2.45, since every λ ∈ !a(T ) is
a pole of the resolvent.

(ii) We proceed by duality. Suppose that T ∗ has property (ab). By part (i) every
λ ∈ �s(T ) = �a(T

∗) is a pole of the resolvent of T ∗, hence a pole of the
resolvent of T , andK(λI − T ∗) has finite codimension. Clearly,

X∗ = H0(λI − T ∗)⊕K(λI − T ∗) = ker (λI − T ∗)p ⊕ (λI − T ∗)p(X∗),

and

X = H0(λI − T )⊕K(λI − T ) = ker (λI − T )p ⊕ (λI − T )p(X),
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where p is the order of the pole. By the closed range theorem we have:

K(λI − T ) = (λI − T )p(X) = ⊥[ker (λI − T ∗)p] = ⊥H0(λI − T ∗),

where ⊥M denotes the pre-annihilator of M ⊆ X∗, so K(λI − T ) has finite
codimension, since H0(λI − T ∗) has finite dimension. �

Theorem 5.90 If T ∈ L(X) we have
(i) T satisfies property (ab) ⇔ (λI − T )∞(X) has finite codimension for all λ ∈
!a(T ).

(i) T ∗ satisfies property (ab) ⇔ N∞(λI − T ) has finite dimension for all λ ∈
!s(T ).

Proof

(i) The proof is analogous to that of Theorem 5.53, just replace �a(T ) with
!a(T ) and use Theorem 5.89. In the part (⇐) of the proof we obtain that
q(λI − T ) <∞ for all λ ∈ !a(T ) = �(T ) ∪ pa00(T ). Consequently, T ∗ has
the SVEP at the points of pa00(T ) and the condition q(λI − T ) < ∞ at the
points of�(T ) entails p(λI − T ) = q(λI − T ) <∞, so λ ∈ p00(T ). Property
(ab) then follows from Theorem 5.82.

(ii) Analogous to part (ii) of Theorem 5.53. �

5.6 Property (gab)

Property (ab) also admits a generalization in the sense of B-Fredholm theory.

Definition 5.91 T ∈ L(X) is said to satisfy property (gab) if �g(T ) = �a(T ).
Property (gab) entails property (ab):

Theorem 5.92 Suppose that T ∈ L(X) has property (gab). Then T has property
(ab).

Proof If T has property (gab) then �g(T ) = �a(T ). If λ ∈ �(T ), then λ ∈
�g(T ), hence is a left pole of the resolvent. Since α(λI − T ) < ∞, we have λ ∈
pa00(T ). This proves the inclusion�(T ) ⊆ pa00(T ). Conversely, if λ ∈ pa00(T ), then
λ is upper semi-Browder, so α(λI − T ) < ∞ and p(λI − T ) < ∞. Since T has
property (gab), λ ∈ �g(T ) and ind(λI − T ) = 0. Since p(λI − T ) < ∞, by
Theorem 1.22 λI −T is Browder, in particular λI −T is Weyl. Hence λ ∈ �(T ) =
σ(T ) \ σw(T ). Therefore�(T ) = pa00(T ), so T has property (ab). �

The converse of the result of Theorem 5.92 does not hold:

Example 5.93 If R is the unilateral right shift on �2(N), then σ(R) = D(0, 1), and
σap(R) = �, the unit circle, and the set of eigenvalues of R is empty. Moreover,
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σw(T ) = � and p00(T ) = ∅. Define T = 0 ⊕ R. Then σ(T ) = D(0, 1),

ker T = �2(N)⊕ {0}, σap(T ) = � ∪ {0},

and σw(T ) = σbw(T ) = D(0, 1). Since�a(T ) = {0}, and pa00(T ) = ∅, we have

�(T ) = pa00(T ) and �g(T ) = ∅ �= �a(T ).

Therefore, T has property (ab) but not property (gab).

Set

!
g
a (T ) := �g(T ) ∪�a(T ).

Lemma 5.94 If T ∈ L(X) then !ga (T ) ⊆ �ga(T ).
Proof By Lemma 5.39 we have �a(T ) ⊆ �

g
a(T ). It remains only to prove that

�g(T ) ⊆ �
g
a(T ). If λ ∈ �g(T ) then λ ∈ σap(T ), again by Lemma 5.39. On

the other hand, we have λ /∈ σbw(T ) and hence λ /∈ σubw(T ), since σubw(T ) ⊆
σbw(T ). �

The set !ga (T ) may be empty. Indeed, in the case of the unilateral right shift
R ∈ L(�2(N)) it has been observed that �ga(R) = ∅, so, by Lemma 5.94, we have
!
g
a (T ) = ∅
Property (gab) may also be characterized by means of the localized SVEP as

follows.

Theorem 5.95 For a bounded operator T ∈ L(X) the following statements are
equivalent:

(i) T satisfies property (gab);
(ii) T ∗ has the SVEP at every λ ∈ �a(T ) and�g(T ) ⊆ �a(T );

(iii) T ∗ has the SVEP at every λ ∈ !ga (T );
(iv) Browder’s theorem holds for T and�(T ) = �a(T );
(v) Browder’s theorem holds for T and�a(T ) ⊆ iso σ(T );

(vi) Browder’s theorem holds for T and�a(T ) ⊆ ∂σ(T ), ∂σ(T ) the boundary of
σ(T );

(vii) !ga (T ) ⊆ iso σ(T );
(viii) !ga (T ) ⊆ iso σs(T );
(vii) !ga (T ) ⊆ �(T ).
Proof To show the equivalence (i) ⇔ (ii), suppose first that T has property (gab),
i.e. �g(T ) = �a(T ). If λ ∈ �a(T ) then λI − T is B-Weyl, in particular lower
semi B-Weyl. Since p(λI − T ) < ∞ then, by Theorem 1.143, λI − T is Drazin
invertible, in particular q(λI−T ) <∞ and hence T ∗ has the SVEP at λ. Obviously,
�g(T ) ⊆ �a(T ), by assumption.
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Conversely, suppose that T ∗ has the SVEP at every λ ∈ �a(T ) and �g(T ) ⊆
�a(T ). If λ ∈ �a(T ) then λ is a left pole, so p(λI − T ) < ∞, and λI − T

is left Drazin invertible, or equivalently, upper semi B-Browder. Since T ∗ has the
SVEP at λ, we have q(λI − T ) < ∞. Therefore, λI − T is Drazin invertible
and hence �a(T ) ⊆ �(T ). The opposite inclusion holds for every operator, so
�a(T ) = �(T ). If λ ∈ �a(T ) then λI − T is a Drazin invertible operator, and
hence B-Weyl. Now, λ ∈ σ(T ) so we have λ ∈ σ(T ) \ σbw(T ) = �g(T ). Thus,
�a(T ) ⊆ �g(T ), and since the opposite inclusion holds by assumption we then
conclude that �a(T ) = �g(T ).

(ii) ⇒ (iii) Since �g(T ) ⊆ �a(T ), we have !ga (T ) = �g(T ) ∪ �a(T ) =
�a(T ), hence T ∗ has the SVEP at every λ ∈ !ga (T ).

(iii) ⇒ (iv) Suppose that T ∗ has the SVEP at every λ ∈ !ga (T ). Let λ ∈ �a(T ).
Then λ is a left pole and hence λI −T is left Drazin invertible, so p(λI − T ) <∞.
Since �a(T ) ⊆ !

g
a (T ), the SVEP of T ∗ at λ implies q(λI − T ) < ∞, by

Theorem 2.98, thus λ ∈ �(T ) and consequently �a(T ) ⊆ �(T ). The opposite
inclusion holds for every T ∈ L(X), hence �(T ) = �a(T ). It remains to prove
Browder’s theorem for T . Let λ /∈ σw(T ). Clearly, we can suppose that λ ∈ σ(T ).
Then λ /∈ σbw(T ), since σbw(T ) ⊆ σw(T ), hence λ ∈ �g(T ). Since λI − T is
B-Weyl, the SVEP of T ∗ at λ, again by Theorem 2.98, implies that q(λI −T ) <∞
and hence, by Theorem 1.143, λI −T is Drazin invertible. But α(λI −T ) <∞, so,
by Theorem 1.22, λI−T is Browder, hence λ /∈ σb(T ). Therefore, σw(T ) = σb(T ).

(iv) ⇒ (v) If λ ∈ �a(T ) then λI − T is left Drazin invertible, hence upper semi
B-Weyl. Since T ∗ has the SVEP at λ then q(λI − T ) < ∞, by Theorem 2.98,
hence λI − T is Drazin invertible, by Theorem 1.143, and consequently λ ∈ �(T ).
Therefore,�a(T ) ⊆ �(T ) ⊆ iso σ(T ).

(iv) ⇒ (v) Clear, since�a(T ) = �(T ) ⊆ iso σ(T ).
(v) ⇒ (ii) T ∗ has the SVEP at every isolated point of σ(T ) = σ(T ∗), so T ∗ has

the SVEP at every λ ∈ �a(T ). Browder’s theorem is equivalent to the generalized
Browder’s theorem, and hence�g(T ) = �(T ) ⊆ �a(T ).

(v) ⇒ (vi) Obvious, since iso σ(T ) ⊆ ∂σ(T ).
(vi) ⇒ (ii) T ∗ has the SVEP at every λ ∈ ∂σ(T ) = ∂σ(T ∗) and, as above,

Browder’s theorem entails that�g(T ) ⊆ �a(T ).
(v) ⇔ (vii) Assume that T satisfies Browder’s theorem, or equivalently the

generalized Browder’s theorem, and that the inclusion �a(T ) ⊆ iso σ(T ) holds.
By Theorem 5.17 then �g(T ) ⊆ iso σ(T ), and consequently,!ga (T ) ⊆ iso σ(T ).

Conversely, if !ga (T ) ⊆ iso σ(T ) then �a(T ) ⊆ iso σ(T ) and �g(T ) ⊆
iso σ(T ). The last inclusion is equivalent to saying that T satisfies the generalized
Browder’s theorem, or equivalently Browder’s theorem, again by Theorem 5.17. �

An obvious consequence of Theorem 5.95 is that if T ∗ has the SVEP then T
satisfies property (gab). We can say more:

Corollary 5.96 Suppose that T ,K ∈ L(X) commute and K is a Riesz operator. If
T ∗ has the SVEP then T +K satisfies property (gab).
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Proof The dual of a Riesz operator is also a Riesz operator. The SVEP for T ∗ is
transferred to T ∗ +K∗ = (T +K)∗, by Theorem 2.129. �

Every operator T ∈ L(X) has the SVEP at the isolated points of the spectrum,
and, by Theorem 5.95, property (gab) is equivalent to the inclusion !ga (T ) ⊆
iso σ(T ). Therefore, if T has (gab) then T has the SVEP at every point of !ga (T ).
The converse is false. Next we give an example of an operator which has the SVEP
but the property (gab) fails for T .

Example 5.97 Let T be defined as in Example 5.72. Then T has the SVEP. Let
λ /∈ σbw(T ), and suppose that λ ∈ σ(T ). By Theorem 1.143, then λI − T is Drazin
invertible, and hence λ is a pole of the resolvent of T , in particular an isolated point
of σ(T ), which is impossible. Therefore

σbw(T ) = σ(T ) = D(0, 1).

On the other hand, we know that

σap(T ) = � ∪ {0}.

We know, see Example 5.72, that T is left Drazin invertible, and because 0 ∈ σap(T )

we then conclude that 0 is a left pole. Therefore,

�a(T ) = {0} �= �g(T ) = σ(T ) \ σbw(T ) = ∅,

i.e., T does not satisfy property (gab).

In the next theorem we establish the exact relationships between property (gab)
and some of the other properties introduced above.

Theorem 5.98 If T ∈ L(X) then the following statements are equivalent:
(i) T has property (gab);

(ii) T has property (ab) and�(T ) = �a(T );
(iii) T satisfies Browder’s theorem and�(T ) = �a(T ).
Proof (i) ⇔ (ii) If T has property (gab) then �g(T ) = �a(T ) and T has
property (ab). By Theorem 5.80, Browder’s theorem holds for T , or equivalently,
by Theorem 5.38, T satisfies the generalized Browder’s theorem, i.e., �g(T ) =
�(T ). Conversely, assume (ii). Since T satisfies Browder’s theorem, or equivalently
the generalized Browder’s theorem, then �g(T ) = �(T ). Since by assumption
�(T ) = �a(T ) it then follows that �g(T ) = �a(T ), thus property (gab) holds
for T .

The implication (ii) ⇒ (iii) is clear. We now prove (iii) ⇒ (i). Assume that (iii)
holds. Since Browder’s theorem is equivalent to the generalized Browder’s theorem,
�g(T ) = �(T ) and hence, from our assumption, �g(T ) = �a(T ), so T has
property (gab). �
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Property (gb) entails property (gab) and the precise relationship between these
two properties is given in the following theorem.

Theorem 5.99 If T ∈ L(X) has property (gb) then T has property (gab). T has
property (gb) precisely when T has property (gab) and ind (λI − T ) = 0 for all
λ ∈ �ga(T ).
Proof Assume that T has property (gb) and ind (λI − T ) = 0 for all λ ∈ �ga(T ).
Property (gb) entails Browder’s theorem, by Theorem 5.68, or equivalently the
generalized Browder’s theorem, so �g(T ) = �(T ). Again by Theorem 5.68 we
have �(T ) = �a(T ), so �g(T ) = �a(T ) and hence T has property (gab). To
show the second statement, observe that if T has property (gb) and λ ∈ �ga(T ) then
λ ∈ �(T ). Hence λI − T is B-Weyl, so ind (λI − T ) = 0. Conversely, if T has
property (gab) and ind (λI − T ) = 0 for all λ ∈ �ga(T ), then, since T satisfies
Browder’s theorem, from Corollary 5.69 we conclude that T has property (gb). �
Theorem 5.100 If T ∈ L(X) the following statements are equivalent:

(i) T has property (gb);
(ii) T has property (gab) and σbw(T ) ∩�ga(T ) = ∅;

(iii) T satisfies a-Browder’s theorem and σbw(T ) ∩�ga(T ) = ∅;
(iv) T satisfies Browder’s theorem and σbw(T ) ∩�ga(T ) = ∅.
Proof The equivalence (i) ⇔ (ii) follows from Theorem 5.99. The implications
(i) ⇒ (iii) ⇒ (iv) are clear, since property (gb) implies a-Browder’s theorem. To
show the implication (iv) ⇒ (i), suppose that λ ∈ �ga(T ). Then λ /∈ σbw(T ) by
assumption, and since Browder’s theorem is equivalent to the generalized Browder’s
theorem it then follows that λ /∈ σd(T ), so λI − T is Drazin invertible, and hence
λ ∈ iso σ(T ). The inclusion �ga(T ) ⊆ iso σ(T ) is equivalent, by Theorem 5.62, to
property (gb). �
Theorem 5.101 For an operator T ∈ L(X) the following statements are equiva-
lent:

(i) T satisfies property (gab);
(ii) X = H0(λI − T )+K(λI − T ) for all λ ∈ !ga (T );

(iii) there exists a natural ν := ν(λ) such that K(λI − T ) = (λI − T )ν(X) for all
λ ∈ !ga (T )(T );

(iv) there exists a natural ν := ν(λ) such that (λI − T )∞(X) = (λI − T )ν(X) for
all λ ∈ !ga (T ).

Proof (i) ⇒ (ii) Clear, as observed in (5.12).
(ii) ⇒ (i) By Theorem 2.41 the condition X = H0(λI − T ) + K(λI − T )

is equivalent to the inclusion λ ∈ iso σs(T ). Hence !ga (T ) ⊆ iso σs(T ). From
Theorem 5.95 it immediately follows that T satisfies property (gab).

(i) ⇔ (iii) If T satisfies property (gab) then, by Theorem 5.95, T ∗ has the
SVEP at every λ ∈ !

g
a (T ). For every λ ∈ !

g
a (T ), λI − T is quasi-Fredholm

so, by Theorem 2.98, q := q(λI − T ) < ∞ for all λ ∈ !
g
a (T ), and hence

(λI −T )∞(X) = (λI −T )q(X). Since for every λ ∈ !ga (T ) the operator λI −T is
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upper semi B-Fredholm, there exists a ν ∈ N such that (λI − T )n(X) is closed
for all n ≥ ν, hence (λI − T )∞(X) is closed. As observed above, for every
λ ∈ !ga (T ), λI − T is quasi-Fredholm and hence has topological uniform descent.
Furthermore, by Theorem 1.79, the restriction (λI − T )|(λI − T )∞(X) is onto, so
(λI − T )((λI − T )∞(X)) = (λI − T )∞(X). From Theorem 1.39 it then follows
that (λI − T )∞(X) ⊆ K(λI − T ), and, since the reverse inclusion holds for every
operator, we then conclude that

(λI − T )∞(X) = K(λI − T ) = (λI − T )q(X),

for all λ ∈ !ga (T ).
Conversely, let λ ∈ !ga (T ) be arbitrarily given and suppose that there exists a

natural ν := ν(λ) such that K(λI − T ) = (λI − T )ν(X). Then we have

(λI − T )ν(X) = K(λI − T ) = (λI − T )(K(λI − T )) = (λI − T )ν+1(X),

thus q(λI − T ) ≤ ν, so T ∗ has the SVEP at λ, and hence T satisfies (gab), by
Theorem 5.95.

(i) ⇔ (iv) Suppose that T satisfies property (gab). By Theorem 5.95 then T ∗ has
the SVEP at every λ ∈ !ga (T ), hence, by Theorem 2.98, q := q(λI − T ) < ∞ for
all λ ∈ !ga (T ). Therefore, (λI − T )∞(X) = (λI − T )q(X) for all λ ∈ !ga (T ).

Conversely, suppose that (iv) holds and λ ∈ !ga (T ). Then

(λI − T )ν(X) = (λI − T )∞(X) ⊆ (λI − T )ν+1(X),

and since (λI − T )n+1(X) ⊆ (λI − T )n(X) holds for all n ∈ N, we then
obtain that (λI − T )ν(X) = (λI − T )ν+1(X). Therefore, q(λI − T ) ≤ ν, and
hence, by Theorem 2.65, T ∗ has the SVEP at every λ ∈ !ga (T ). Consequently, by
Theorem 5.95, T ∗ satisfies property (gab). �

Property (gab) for T ∗ may be characterized by means of the quasi-nilpotent part
as follows:

Theorem 5.102 If T ∈ L(X) then T ∗ has property (gab) if and only ifH0(λI −T )
is closed for all λ ∈ !ga (T ∗).

Proof Suppose that T ∗ has property (gab). By Theorem 5.95 then

!
g
a (T

∗) ⊆ iso σ(T ∗) = iso σ(T ),

so both T and T ∗ have the SVEP at the points of !ga (T ∗). Let λ ∈ !
g
a (T

∗) =
�g(T ∗) ∪ �a(T ∗). If λ ∈ �g(T ∗) then λI − T ∗ is B-Weyl, and hence is quasi-
Fredholm. By Theorem 1.104 λI − T is also quasi-Fredholm and, since T has the
SVEP at λ, Theorem 2.97 entails that H0(λI − T ) is closed. If λ ∈ �a(T ∗) then
λI − T ∗ is left Drazin invertible and hence λI − T is right Drazin invertible, in
particular quasi-Fredholm, so the SVEP of T at λ entails, again by Theorem 2.98,
that H0(λI − T ) is closed.
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Conversely, suppose thatH0(λI−T ) is closed for all λ ∈ !ga (T ∗). If λ ∈ �g(T ∗)
then λI − T ∗ is B-Weyl, and hence, as above, λI − T is quasi- Fredholm. The
conditionH0(λI − T ) closed implies, again by Theorem 2.97, that T has the SVEP
at λ. By Theorem 1.143 we then conclude that λI−T is Drazin invertible, and hence
λ ∈ iso σ(T ) = iso σ(T ∗). If λ ∈ �a(T ∗) then λI − T ∗ is left Drazin invertible, so
λI − T is right Drazin invertible. SinceH0(λI − T ) is closed, then T has the SVEP
at λ, and hence λI −T is Drazin invertible, again by Theorem 1.143. Consequently,
λ ∈ iso σ(T ) = iso σ(T ∗). Therefore, !ga (T ∗) ⊆ iso σ(T ∗) and hence T ∗ has
property (gab) by Theorem 5.95. �
Theorem 5.103 Let T ∈ L(X) be finitely polaroid. Then T satisfies property (gab)
if and only if K(λI − T ) has finite codimension for all λ ∈ !ga (T ).
Proof By Theorem 5.95 property (gab) entails that !ga (T ) ⊆ iso σ(T ), so, if λ ∈
!
g
a (T ) then λI − T is Browder. Observe that β(λI − T ) <∞ implies that β(λI −
T )n <∞ for every n ∈ N. Since λ is a pole, thenK(λI − T ) = (λI − T )p(X) has
finite codimension, where p is the order of the pole.

Conversely, suppose that K(λI − T ) has finite codimension for all λ ∈ !ga (T ).
If λ ∈ !

g
a (T ) then either λ ∈ �g(T ) or λ ∈ �a(T ). If λ ∈ �g(T ), from the

inclusion K(λI − T ) ⊆ (λI − T )(X) we see that (λI − T )(X) also has finite
codimension, hence β(λI − T ) < ∞. Since λI − T is B-Weyl then α(λI − T ) =
β(λI −T ) <∞, so λI −T is Weyl. The condition codimK(λI −T ) <∞ entails,
by Theorem 2.105, that T ∗ has the SVEP at λ, or equivalently q(λI − T ) <∞. By
Theorem 1.22 it then follows that λ is a pole, hence �g(T ) ⊆ iso σ(T ). Consider
the other case that λ ∈ �a(T ). Then p(λI − T ) < ∞ and, as above, the inclusion
K(λI − T ) ⊆ (λI − T )(X) implies that β(λI − T ) < ∞. Therefore, λI − T is
lower semi-Fredholm and hence the condition K(λI − T ) has finite codimension
implies, again by Theorem 2.105, that q(λI − T ) < ∞, from which we conclude
that�a(T ) ⊆ iso σ(T ). Consequently,!ga (T ) ⊆ iso σ(T ) and by Theorem 5.95, it
then follows that T has property (gab). �
Theorem 5.104 Let T ∈ L(X) be a-polaroid. Then property (gab), property (ab)
and Browder’s theorem are equivalent for T .

Proof By Corollary 5.63, in order to show the equivalences we need only to show
that Browder’s theorem implies property (gab). If T satisfies Browder’s theorem,
or equivalently the generalized Browder’s theorem, then �g(T ) = �(T ). Since T
is a-polaroid,�a(T ) = �(T ), so �g(T ) = �a(T ), i.e., T has property (gab). �

The equivalences of Theorem 5.104 cannot be extended to polaroid operators.
Indeed, if T is defined as in Example 5.64, then T is polaroid and satisfies Browder’s
theorem, since T has the SVEP, while property (gab) does not hold for T .

Theorem 5.105 Suppose that T ,K ∈ L(X) commute and that Kn is a finite rank
operator for some n ∈ N. Furthermore, assume that iso σa(T ) = iso σa(T +K). If
T has property (gab) then T +K also has property (gab).
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Proof We know that σd(T ) = σd(T + K) and σld(T ) = σld(T + K). By
Theorem 3.27 we then obtain�(T ) = �(T +K) and�a(T ) = �a(T +K).

Now, assume that T has property (gab). Then Browder’s theorem holds for T and
since K is a Riesz operator, Browder’s theorem holds for T +K , by Corollary 5.5.
Furthermore, property (gab) for T entails, by Theorem 5.95, that �(T ) = �a(T ),
and hence�(T ) = �(T +K) = �a(T ) = �a(T +K), so, again by Theorem 5.95,
T +K has property (gab). �
Lemma 5.106 Suppose that for T ∈ L(X) we have iso σap (T ) = ∅. If K ∈ L(X)
is such that Kn is finite-dimensional for some n ∈ N, then iso σap(T + K) = ∅.
Consequently, σap(T +K) = σap(T ).

Proof We know that accσap(T ) = acc σap(T +K), so

σap(T ) = iso σap (T ) ∪ accσap (T ) = acc σap (T )

= acc σap (T +K) ⊆ σap(T +K).

On the other hand, σap(K) is a finite set, say σap(K) = {λ1, λ2, . . . λn}, so we have

iso σap(T +K) ⊆ iso (σap(T )+ σap(K)) = iso
n⋃
k=1

(λk + σap(T )) = ∅,

hence, by Theorem 3.26, we have

σap(T +K) = iso σap(T +K) ∪ accσap(T +K) = accσap(T +K)
= accσap(T ) = σap(T ),

so σap(T +K) = σap(T ) holds. �
Theorem 5.107 Suppose that T ,K ∈ L(X) commute and that Kn is a finite rank
operator for some n ∈ N. If iso σap(T ) = ∅ and T has (gab) then T +K has (gab).

Proof The condition iso σa(T ) = ∅ implies that also iso σa(T + K) = ∅. Thus,
we are in the situation of Theorem 5.105, hence T transfers property (gab) to
T +K . �

We have seen that the condition that R is Drazin invertible, which means that
0 belongs to the resolvent or it is a pole of the resolvent of its Drazin inverse
S, determines the spectral structure (or the local spectral structure) of its Drazin
inverse. We conclude this chapter by proving that all Browder-type theorems are
transmitted for a Drazin invertible operator R to its Drazin inverse. We begin with a
remark.

Remark 5.108 It should be noted that if R is Drazin invertible then

R is upper semi-Weyl ⇔ R is Weyl ⇔ R is Browder.
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Theorem 5.109 Suppose that R ∈ L(X) is Drazin invertible with Drazin inverse
S. Then

(i) R satisfies Browder’s theorem if and only if S satisfies Browder’s theorem.
(ii) R satisfies a-Browder’s theorem if and only if S satisfies a-Browder’s theorem.

Proof

(i) Suppose that R satisfies Browder’s theorem and let X = Y ⊕ Z, R = R1 ⊕ R2
and S = 0⊕S2, where S2 = R2

−1. Let λ /∈ σw(S) be arbitrarily given. To prove
that Browder’s theorem holds for S it suffices to show that S has the SVEP at
λ. If λ = 0 then T has the SVEP at 0, since either S is invertible or 0 is a pole
of the resolvent of S (recall that the Drazin inverse S is itself Drazin invertible),
and hence an isolated point of the spectrum. If λ �= 0 then 1/λ /∈ σw(R), and
sinceR satisfies Browder’s theorem,R has the SVEP at 1/λ. By Theorem 2.184
S has the SVEP at λ. Hence S satisfies Browder’s theorem. The converse may
be proved by similar arguments.

(ii) Suppose that R satisfies a-Browder’s theorem and let λ /∈ σuw(S). If λ = 0,
since S is Drazin invertible we have p(S) = q(S) <∞, hence S has the SVEP
at 0. If λ �= 0 then 1

λ
/∈ σuw(R), and since R satisfies a-Browder’s theorem,

R has the SVEP at 1/λ. By Theorem 2.184 S has the SVEP at λ, and hence S
satisfies a-Browder’s theorem. �

Properties (b) and (ab) are also transmitted from a Drazin invertible operator to
its Drazin inverse. To show this we need some preliminary results:

Theorem 5.110 Suppose that R ∈ L(X) is Drazin invertible with Drazin inverse
S. Then R is Browder if and only if S is Browder.

Proof If 0 /∈ σ(R) then R is invertible and the Drazin inverse is S = R−1 so the
assertion is trivial in this case. Suppose that 0 ∈ σ(R) and that R is Browder. Then
0 is a pole of the resolvent of R and is also a pole (of the first order) of the resolvent
of S. Let X = Y ⊕ Z such that R = R1 ⊕ R2, R1 = R|Y nilpotent and R2 = R|Z
invertible. Observe that

ker R = ker R1 ⊕ kerR2 = kerR1 ⊕ {0}, (5.14)

and, analogously, since S = 0 ⊕ S2 with S2 = R2
−1, we have

ker S = ker 0 ⊕ kerS2 = Y ⊕ {0}. (5.15)

Since R is Browder we have α(R) = dim ker R < ∞, and from the inclusion
ker R1 ⊆ ker R it then follows that α(R1) < ∞. Consequently, α(Rn1 ) < ∞ for
all n ∈ N. Let Rν1 = 0. Since Y = ker Rν1 we then conclude that the subspace Y is
finite-dimensional and hence ker S = Y ⊕ {0} is finite-dimensional, i.e. α(S) <∞.
Now, S is Drazin invertible, so p(S) = q(S) < ∞ and hence, by Theorem 1.22,
α(S) = β(S) <∞. Hence S is Browder.
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Conversely, suppose that S is Browder. Then α(S) < ∞ and hence by (5.15)
the subspace Y is finite-dimensional, from which it follows that ker R1 = ker R|Y
is finite-dimensional. From (5.14) we then have that α(R) < ∞ and since p(R) =
q(R) <∞ we then conclude that α(R) = β(R), again by Theorem 1.22. Therefore,
R is a Browder operator. �
Lemma 5.111 Let R ∈ L(X) be Drazin invertible with Drazin inverse S. We
have:

(i) 0 ∈ p00(R) ⇔ 0 ∈ p00(S). If λ �= 0 then λ ∈ p00(R) ⇔ 1
λ

∈ p00(S).

(ii) 0 ∈ pa00(R) ⇔ 0 ∈ pa00(S). If λ �= 0 then λ ∈ pa00(R) ⇔ 1
λ

∈ pa00(S).

Proof

(i) Since 0 ∈ σ(R) if and only if 0 ∈ σ(S) then the first assertion follows from
Theorem 5.110. The second assertion is clear from part (ii) of Theorem 3.126.

(ii) The proof is similar to part (i). �
Theorem 5.112 Suppose that R ∈ L(X) is Drazin invertible with Drazin inverse
S. Then

(i) R satisfies property (ab) and only if S satisfies property (ab).
(i) R satisfies property (b) and only if S satisfies property (ab).

Proof

(i) Suppose that R satisfies property (ab). Then R satisfies Browder’s theorem
and hence S also satisfies Browder’s theorem, by Lemma 5.110. Therefore,
σb(S) = σw(S). Let λ ∈ !a(S). By Theorem 5.82 it suffices to show that
λ ∈ iso σ(S).

We distinguish the two cases λ = 0 and λ �= 0.
If λ = 0 then 0 ∈ iso σ(S), since S is Drazin invertible. Suppose that λ �= 0.

Then either λ ∈ �(S) or λ ∈ p00(S). If λ ∈ �(S) = σ(S) \ σw(S) = σ(S) \
σb(S) = p00(S), then λI − S is Browder, so λ ∈ iso σ(S). If λ ∈ pa00(S) then,
by Lemma 5.111, 1

λ
∈ pa00(R). Property (ab) for R entails, by Theorem 5.82,

1
λ

∈ iso σ(R). Consequently, λ ∈ iso σ(S).
Therefore, S has property (ab). The converse may be proved by using similar

arguments.
(ii) Suppose that R satisfies property (b), or equivalently �a(R) ⊆ iso σ(R).

Then R satisfies a-Browder’s theorem and hence S also satisfies a- Browder’s
theorem, by Theorem 5.109, so that σub(R) = σuw(SR) and σub(S) = σuw(S).
Consequently,

�a(R) = pa00(R) and �a(S) = pa00(S).

To show property (b) for T it suffices to prove, by Theorem 5.82, the inclusion
�a(S) ⊆ iso σ(S). Let λ ∈ �a(S). If λ = 0 then 0 is an isolated point of σ(S),
since S is Drazin invertible. Suppose that λ �= 0. Since λ ∈ �a(S) = pa00(S)
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then, by Lemma 5.111 and Theorem 5.82, 1
λ

∈ pa00(R) = �a(R) ⊆ iso σ(R).
Consequently, λ ∈ iso σ(S). Thus, S has property (b). The converse may be
proved in a similar way. �

5.7 Comments

Browder’s theorem was introduced by Harte and Lee [173], while the concept of the
generalized Browder’s theorem was first introduced by Berkani and Koliha in [70].
The equivalence between Browder’s theorem and the generalized Browder’s theo-
rem was proved by Amouch and Zguitti [48] and was later proved in [36], by using
the methods adopted in the first section of this chapter. All the material concerning
the characterizations of Browder’s theorem and the generalized Browder’s theorem,
by means of the localized SVEP, as well as by means of the quasi-nilpotent part
H0(λI −T ) as λ belongs to certain subsets of C, is modeled after Aiena and Biondi
[10], and Aiena and Garcia [13]. However, most of the material of Sect. 5.2 of this
chapter is inspired by the works of Aiena et al. [35], and Aiena, and Miller [34].

Property (b), property (gb) and property (ab) were introduced by Berkani and
Zariuoh in various articles, for instance [74, 75]. In [73] and [76] Berkani, Sarih and
Zariouh established some other results concerning the stability of these properties
under commutative finite-rank perturbations, compact perturbations and nilpotent
perturbations. Related results may be found in Duggal and Kim [137]. Most of
the material concerning the characterizations of the properties by means of the
quasi-nilpotent part and the analytic core of λI − T is modeled after Aiena et
al. [43]. Property (gab) was introduced by Berkani and Zariouh in [75], but most
of the material of this chapter concerning this property may be found in Aiena
and Triolo [25]. The results concerning the transmission of Browder-type theorems
from a Drazin invertible operator to its Drazin inverse are modeled after Aiena and
Triolo [28].



Chapter 6
Weyl-Type Theorems

In the previous chapters we introduced several classes of operators which have their
origin in Fredholm theory. We also know that the spectrum of a bounded linear
operator T on a Banach space X can be split into subsets in many different ways. In
1908 Weyl [296] proved an important property of self-adjoint operators on Hilbert
spaces. He proved that if T ∈ L(H) is self-adjoint then the spectral points λ ∈ σ(T )
that do not belong to the intersection of all the spectra σ(T +K), whereK ∈ L(H)
are compact operators, are exactly the points of the set π00(T ) of all isolated points
λ of σ(T ) which are eigenvalues of finite multiplicity, i.e., 0 < α(λI − T ) <∞. In
our language, the intersection mentioned above coincides with what we called the
Weyl spectrum of T (see Corollary 3.37). Hence, Weyl proved the equality

σ(T ) \ σw(T ) = π00(T ) (6.1)

for self-adjoint operators in Hilbert spaces. In 1966 Coburn [97] extended Weyl’s
result from self-adjoint operators to nonnormal operators, in particular to Toeplitz
operators on Hardy spaces, and later this result was extended to several other classes
of operators and this, in more recent years, gave rise to an intense line of research
in spectral theory. Nowadays, an operator for which the equality (6.1) holds is said
to satisfy Weyl’s theorem.

Since for a self-adjoint operator T , the SVEP is satisfied by both T and T ∗
(indeed,T is decomposable), by Theorem 2.68 we then have σ(T ) = σap(T ) and, by
Theorem 3.44, we also have σuw(T ) = σw(T ). Therefore, for self-adjoint operators
we have:

π00(T ) = σ(T ) \ σw(T ) = σap(T ) \ σuw(T ) = πa00(T ), (6.2)

where πa00(T ) is the set of all isolated points of σap(T ) which are eigenvalues
of finite multiplicity. In [262], Rakočević introduced the operators for which the
equality σap(T ) \ σuw(T ) = πa00(T ) holds. These operators are said to satisfy
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a-Weyl’s theorem. From the equalities (6.2) it then follows that a-Weyl’s theorem
and Weyl’s theorem are equivalent for self-adjoint operators. We shall see that this is
true only assuming the SVEP for T ∗. But for operators which are not self-adjoint, a-
Weyl’s theorem is in general stronger than Weyl’s theorem. Moreover, there are also
examples of operators for which the equality σap(T ) \ σuw(T ) = π00(T ) holds, and
in this case we say that T satisfies property (w). We shall see that for any operator
a-Weyl’s theorem, as well as property (ω), entails Weyl theorem. Furthermore, a-
Weyl’s theorem and property (ω) are independent.

The Weyl-type theorems mentioned above admit an extension obtained by
replacing the classical Fredholm theory by the B-Fredholm theory introduced by
Berkani [64]. In the literature the versions of Weyl-type theorems obtained in the
framework of B-Fredholm theory are improperly called (because they are stronger
versions) the generalized Weyl’s theorem, the generalized a-Weyl’s theorem and
the generalized property (ω). Before studying all these Weyl-type theorems we
introduce, in the first two sections, the property (R) and the generalized property
(gR), which in some sense may be thought of as half property (ω) and property
(gω), respectively. After a rather detailed study of Weyl-type theorems we shall see
that if T is a polaroid-type operator then some of these theorems are equivalent.
Weyl-type theorems are also extended from a Drazin invertible operator R to its
Drazin inverse.

Weyl-type theorems are satisfied by several classes of operators defined on
Banach spaces, for instance Toeplitz operators on Hardy spaces, semi-shifts, and
symmetrizable operators. The two conditions of being polaroid and of T , or T ∗,
having the SVEP provide a useful tool for establishing Weyl-type theorems, but
the case of Toeplitz operators provide an example of operators that obey Weyl’s
theorem, even if neither T and T ∗ satisfy the SVEP.

We conclude this book by giving, in the last section of this chapter, a very
useful and unique theoretical framework from which we can deduce that the Weyl-
type theorems hold for many classes of operators which act on Hilbert spaces.
This framework is created by introducing the class of quasi totally hereditarily
normaloid operators and by proving that these operators are hereditarily polaroid.
Many common classes of operators T on Hilbert spaces are quasi totally hereditarily
normaloid, and this fact, together with SVEP, allows us to extend all Weyl-type
theorems to the perturbations f (T +K), where K is algebraic and commutes with
T and f is an analytic function, defined on an open neighbourhood of the spectrum
of T +K , such that f is non-constant on each of the components of its domain.

6.1 Property (R)

Recall that by p00(T ) := σ(T )\σb(T )we denote the set of all poles of the resolvent
having finite rank, while

pa00(T ) := σap(T ) \ σub(T )



6.1 Property (R) 421

denotes the set of all left poles having finite rank. Define

π00(T ) := {λ ∈ iso σ(T ) : 0 < α(λI − T ) <∞},

i.e., π00(T ) is the set of all eigenvalues of T which are isolated points of the
spectrum and have finite multiplicity. It is easily seen that

p00(T ) ⊆ π00(T ) for all T ∈ L(X).

Indeed, every λ ∈ p00(T ) is a pole of the resolvent and hence an isolated point of the
spectrum. Furthermore, α(λI−T ) <∞, since λI−T ∈ B(X), and α(λI−T ) > 0,
otherwise, if α(λI − T ) = 0 we would have, by Theorem 1.22, α(λI − T ) =
β(λI − T ) = 0, hence λ /∈ σ(T ).

We now consider the operators T ∈ L(X) on Banach spaces for which the
equality π00(T ) = p00(T ) holds. The next theorem shows that this condition may
be characterized in several ways:

Theorem 6.1 For a bounded operator T ∈ L(X) the following statements are
equivalent:

(i) π00(T ) = p00(T );
(ii) σw(T ) ∩ π00(T ) = ∅;

(iii) (λI − T )(X) is closed for all λ ∈ π00(T );
(iv) H0(λI − T ) is finite-dimensional for all λ ∈ π00(T );
(v) K(λI − T ) has finite codimension for all λ ∈ π00(T );

(vi) (λI − T )∞(X) has finite codimension for all λ ∈ π00(T );
(vii) β(λI − T ) <∞ for all λ ∈ π00(T );

(viii) q(λI − T ) <∞ for all λ ∈ π00(T );
(ix) The mapping λ → γ (λI − T ) is not continuous at each λ0 ∈ π00(T ), where

γ (λI − T ) denotes the minimal modulus of λI − T .
Proof (i) ⇒ (ii) If p00(T ) = π00(T ) then π00(T )∩ σb(T ) = ∅, and hence σw(T )∩
π00(T ) = ∅, since σw(T ) ⊆ σb(T ).

(ii) ⇒ (iii) If λ ∈ π00(T ) then λI − T is Weyl, so (λI − T )(X) is closed.
(iii) ⇒ (iv) If λ ∈ π00(T ) then α(λI − T ) < ∞, so λ0I − T ∈ �+(X). Since

T has the SVEP at every isolated point of σ(T ), by Theorem 2.105 it then follows
that H0(λI − T ) has finite dimension.

(iv) ⇒ (v) If λ ∈ iso σ(T ) then the decompositionX = H0(λI−T )⊕K(λI−T )
holds, by Theorem 2.45. Consequently, K(λI − T ) has finite codimension, since
H0(λI − T ) is finite-dimensional.

(v) ⇒ (vi) This follows from the inclusion K(λI − T ) ⊆ (λI − T )∞(X).
(vi) ⇒ (vii) Clear, since (λI − T )∞(X) ⊆ (λI − T )(X) for every λ ∈ C, and

this implies that β(λI − T ) <∞.
(vii) ⇒ (i) For every λ ∈ π00(T ) we have α(λI − T ) < ∞, so if β(λI −

T ) < ∞ then λI − T ∈ �(X). Since λ ∈ iso σ(T ), the SVEP of T and T ∗ at λ
ensures that p(λI − T ) and q(λI − T ) are both finite, by Theorems 2.97 and 2.98.
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Thus, π00(T ) ⊆ p00(T ) and hence, since the opposite inclusion is satisfied by every
operator, we may conclude that π00(T ) = p00(T ).

(i) ⇒ (viii) Clear.
(viii) ⇒ (vii) This is immediate. In fact, by Theorem 1.22, if q(λI − T ) < ∞

then β(λI − T ) ≤ α(λI − T ) <∞ for all λ ∈ π00(T ).
(iii) ⇔ (ix) Observe first that if λ0 ∈ π00(T ) then there exists a punctured open

disc D0 centered at λ0 such that

γ (λI − T ) ≤ |λ− λ0| for all λ ∈ D0. (6.3)

In fact, if λ0 is isolated in σ(T ) then λI−T is invertible, and hence has closed range
in an open punctured disc D centered at λ0. Take 0 �= x ∈ ker(λ0I − T ). Then

γ (λI − T ) ≤ ‖(λI − T )x‖
dist (x, ker(λI − T )) ] = ‖(λI − T )x‖

‖x‖
= ‖(λI − T )x − (λ0I − T )x‖

‖x‖ = |λ− λ0|.

From the estimate (6.3) it then follows that γ (λI − T ) → 0 as λ → λ0, so the
mapping λ → γ (λI − T ) is not continuous at a point λ0 ∈ π00(T ) precisely when
γ (λ0I − T ) > 0, or, equivalently, by Theorem 1.2, when (λ0I − T )(X) is closed.

�
Definition 6.2 We say that an operator T ∈ L(X) satisfies property (R) if the
equality pa00(T ) = π00(T ) holds.

The following example shows that property (R) for an operator T is not
transmitted to the dual T ∗.

Example 6.3 Let T ∈ �2(N) be the weighted right unilateral shift defined by

T (x1, x2, . . . ) :=
(

0,
x1

2
,
x2

3
, . . .

)
for all x = (x1, x2, . . . ) ∈ �2(N).

Clearly, T is quasi-nilpotent, σa(T ) = σub(T ) = {0}, and pa00(T ) = ∅, so T satisfies
property (R). On the other hand, it is easily seen that T ∗ does not satisfy property
(R).

By duality it is easy to see that T ∗ satisfies property (R) if and only if π00(T
∗)

coincides with the set of all right poles having finite rank.

Theorem 6.4 If T ∈ L(X) satisfies property (R), then π00(T ) = p00(T ). In
particular, every left pole of finite rank of T is a pole.

Proof Observe first that the inclusion p00(T ) ⊆ π00(T ) holds for all T ∈ L(X),
so we need only to show the opposite inclusion. Suppose that T satisfies (R) and
let λ ∈ π00(T ) = pa00(T ). Then p(λI − T ) < ∞, and since λ ∈ iso σ(T ) then
T ∗ has the SVEP at λ. By Theorem 2.98, since λI − T ∈ B+(X), the SVEP for
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T ∗ at λ is equivalent to saying that q(λI − T ) < ∞. Moreover, α(λI − T ) < ∞,
since λ ∈ π00(T ). From Theorem 1.22 it then follows that β(λI − T ) <∞, so that
λI − T ∈ B(X). Since α(λI − T ) > 0 we then conclude that λ ∈ σ(T ) \ σb(T ) =
p00(T ), thus π00(T ) = p00(T ). The last assertion is clear: p00(T ) = pa00(T ). �
Theorem 6.5 Let T ∈ L(H), H a Hilbert space. Then T ∗ has property (R) if and
only if its adjoint T ′ has property (R).

Proof By Theorem 3.1 we have

pa00(T
∗) = σap(T

∗) \ σub(T
∗) = σap(T ′) \ σub(T ′) = pa00(T

′)

and obviously, π00(T
∗) = π00(T ′). �

The equality π00(T ) = p00(T ) is strictly weaker than property (R) for T .
However, we have:

Theorem 6.6 T ∈ L(X) satisfies property (R) if and only if the following two
conditions hold:

(i) pa00(T ) ⊆ iso σ(T ).
(ii) π00(T ) = p00(T ).

Proof If T satisfies property (R) then pa00(T ) = π00(T ) ⊆ iso σ(T ) and, by
Theorem 6.4, we have π00(T ) = p00(T ). Conversely, suppose that both (i) and
(ii) hold. If λ ∈ pa00(T ) = σap(T ) \ σub(T ) then λI − T ∈ B+(X), hence
λI − T has closed range. Since λ ∈ σap(T ), we have 0 < α(λI − T ) < ∞,
from which we conclude that pa00(T ) ⊆ π00(T ). Since π00(T ) = p00(T ) we then
have π00(T ) ⊆ pa00(T ). Therefore pa00(T ) = π00(T ). �

Clearly, every polaroid operator T satisfies p00(T ) = π00(T ).

Theorem 6.7 Suppose that T ∈ L(X) is a-polaroid. Then T satisfies property (R).

Proof If λ ∈ pa00(T ) then λ is a left pole and hence an isolated point of σap(T ).
Since T is a-polaroid, λ is a pole of the resolvent of T and hence an isolated point
of the spectrum. Clearly, 0 < α(λI − T ) < ∞, thus λ ∈ π00(T ) and consequently
pa00(T ) ⊆ π00(T ).

To show the opposite inclusion π00(T ) ⊆ pa00(T ), let λ ∈ π00(T ) be arbitrarily
given. Since 0 < α(λI − T ), we have λ ∈ σap(T ) and, since λ ∈ iso σ(T ), we then
have λ ∈ iso σap(T ), and hence λ is a pole of the resolvent of T , or equivalently
λI −T has both ascent and descent finite. Since α(λI −T ) <∞ then β(λI −T ) <
∞, by Theorem 1.22, hence λI − T ∈ B(X), in particular λ /∈ σub(T ). Therefore
λ ∈ σa(T ) \ σub(T ) = pa00(T ), as desired. �

By Theorem 4.24 the a-polaroid condition is preserved under commuting
perturbationsK for which Kn is finite-dimensional for some n ∈ N, so we have:

Corollary 6.8 If T ∈ L(X) is a-polaroid andK ∈ L(X) commutes with T andKn

is finite-dimensional for some N ∈ N, then T +K satisfies property (R).
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The next example shows that under the weaker condition of T being polaroid the
result of Theorem 6.7 does not hold.

Example 6.9 Let R ∈ �2(N) be the unilateral right shift and

U(x1, x2, . . . ) := (0, x2, x3, · · · ) for all (xn) ∈ �2(N).

If T := R ⊕ U then σ(T ) = D(0, 1), so iso σ(T ) = π00(T ) = ∅. Therefore, T is
polaroid. Moreover,σap(T ) = �∪{0}, where � is the unit circle, so iso σa(T ) = {0}.
Since R is injective and p(U) = 1 it then follows that p(T ) = p(R) + p(U) = 1.
Furthermore, T ∈ �+(X) and hence T is upper semi-Browder, so 0 ∈ σa(T ) \
σub(T ) = pa00(T ), from which we conclude that pa00(T ) �= π00(T ).

The result of Theorem 6.7 may be extended as follows:

Theorem 6.10 Let T ∈ L(X) be polaroid and f ∈ Hnc(σ (T )).

(i) If T ∗ has the SVEP then property (R) holds for f (T ).
(ii) If T has the SVEP then property (R) holds for f (T ∗).

Proof

(i) From Theorem 4.19 we know that f (T ) is polaroid and, by Corollary 2.89,
f (T ∗) has the SVEP, hence, by Theorem 4.15, f (T ) is a-polaroid. From
Theorem 6.29 it then follows that property (R) holds for f (T ).

(ii) T ∗ is also polaroid and hence, again by Theorem 4.19, f (T ∗) is polaroid.
Moreover, again by Corollary 2.89, f (T ) has the SVEP, and hence, by
Theorem 4.15, f (T ∗) is a-polaroid. From Theorem 6.7 we then conclude that
property (R) holds for f (T ∗). �

We now investigate the permanence of property (R) under Riesz commuting
perturbations. Define

π0f (T ) := {λ ∈ iso σ(T ) : α(λI − T ) <∞}.

Obviously, π00(T ) ⊆ π0f (T ).
The following result gives useful information on π00(T +K).

Theorem 6.11 Let T ∈ L(X) and suppose that R ∈ L(X) is a Riesz operator that
commutes with T . Then we have

(i) π0f(T + R) ∩ σ(T ) ⊆ iso σ(T ).
(ii) π00(T + R) ∩ σap(T ) ⊆ iso σ(T ).

Proof

(i) Assume that λ ∈ π0f(T +K)∩σ(T ). Since λ ∈ iso σ(T +R), by Theorem 2.45
we have

X = H0(λI − (T + R)⊕K(T + R − λI).
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Write T = T1 ⊕ T2 and R = R1 ⊕ R2 with respect to this decomposition. We
claim that σ(T1) is a finite set. To show this, let us suppose that σ(T1) is infinite
and consider a sequence (λn) of distinct scalars in σ(T1) \ {λ}. Consider the
operator

Q := λI − (T1 + R1) = (λI − (T + R))|H0(λI − (T + R)).

Evidently, Q is quasi-nilpotent and ker Q is finite-dimensional, since λ ∈
π0f(T + R). Since λn − λ �= 0, we have

λI − λI + λnI − (T1 + R1) = λnI − (T1 + R1)

is invertible and hence Weyl. Since R1 = R|H0(λI − (T + R)) is Riesz, by
Theorem 3.7, so λnI −T1 is Weyl and hence ker (λnI −T1) is a non-zero finite-
dimensional subspace, because λnI − T1 is not invertible. From this we then
conclude that the restriction of Q to ker (λnI − T1) is nilpotent, so ker (λnI −
T1) ∩ ker Q is not trivial and hence it contains a non-zero element xn. Since
each xn is an eigenvector of T associated to λn, and the scalars λn are mutually
distinct, we can easily check that (xn) consists of linearly independent vectors.
Consequently, since xn ∈ ker Q for every n ∈ N, the subspace ker Q is infinite-
dimensional, a contradiction. Therefore σ(T1) is finite and hence there exists a
deleted neighborhood U1 of λ such that U1 ∩ σ(T1) = ∅. On the other hand,
since λI − (T2 +R2) is invertible, and hence Browder, λI − T2 is Browder, by
Theorem 3.8. Consequently there exists a deleted neighborhood U2 of λ such
that U2 ∩ σ(T2) = ∅. Now, if U := U1 ∩ U2 then U ∩ σ(T ) = ∅ and since
λ ∈ σ(T ) we then conclude that λ ∈ iso σ(T ).

(ii) Clearly, we have

π00(T + R) ∩ σap(T ) ⊆ π0f(T + R) ∩ σ(T ),

so, from part (i) we deduce that π00(T + R) ∩ σap(T ) ⊆ iso σ(T ). �
Theorem 6.12 Suppose that T ∈ L(X) has property (R) and R ∈ L(X) is a Riesz
operator for which T R = RT . If σap(T ) = σap(T +R) then π00(T ) ⊆ π00(T +R).
Proof Suppose that T has property (R). By assumption we have σap(T ) = σap(T +
R), hence

π00(T ) = σap(T ) \ σub(T ) = σap(T + R) \ σub(T + R) = pa00(T + R). (6.4)

Let λ ∈ π00(T ) be arbitrarily given. Taking into account that S := T +R commutes
with R, by part (ii) of Lemma 6.11 and recalling that the isolated point of the
spectrum belongs to the approximate point spectrum, we then have

λ ∈ π00(T ) ∩ σap(T + R) = π00(S − R) ∩ σap(S)

⊆ iso σ(S) = iso σ(T + R) ⊆ σap(T + R).
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Moreover, by Theorem 3.8 we know that λI − (T +R) is upper semi-Browder and
hence has closed range. Since λ ∈ σap(T +R) it then follows that λ is an eigenvalue,
so 0 < α(λI − (T + R)) <∞, i.e., λ ∈ π00(T + R), as desired. �
Remark 6.13 Recall that α(T ) < ∞ implies that α(T n) < ∞ for all n ∈ N.
Moreover, if there exists a finite-dimensional operator S ∈ L(Z) which has finite-
dimensional kernel, then the Banach space Z is necessarily finite-dimensional.

Theorem 6.14 Suppose that T ∈ L(X) is an isoloid operator for which property
(R) holds and let K ∈ L(X) be a bounded operator commuting with T such that
Kn is a finite rank operator for some n ∈ N. If σap(T ) = σap(T + K) then we
have:

(i) π00(T ) = π00(T +K).
(ii) T +K has property (R).

Proof

(i) Observe first that K is a Riesz operator, so, by Theorem 6.12, we need only to
prove the inclusion π00(T +K) ⊆ π00(T ).

Let λ ∈ π00(T + K). Then λ is an isolated point of σ(T + K), and since
α(λI − (T +K)) > 0 we then have λ ∈ σap(T +K) = σap(T ). Therefore, by
Lemma 6.11,

λ ∈ π00(T +K) ∩ σap(T ) ⊆ iso σ(T ).

Since T is isoloid we then have α(λI−T ) > 0. We show now that α(λI−T ) <
∞. Let U denote the restriction of (λI − (T + K))n to ker (λI − T ). Clearly,
if x ∈ ker (λI − T ) then

Ux = (−1)nKnx ∈ Kn(X),

thus U is a finite rank operator. Moreover, since λ ∈ π00(T + K) we have
α(λI − (T +K)) <∞ and hence

α(U) ≤ α(λI − (T +K))n <∞.

By Remark 6.13 it then follows that ker (λI − T ) is finite-dimensional, as
claimed. Therefore, λ ∈ π00(T ), and, consequently, π00(T +K) ⊆ π00(T ).

(ii) Since K is a Riesz operator we have, by Theorem 3.8, σub(T ) = σub(T +K),
thus

π00(T +K) = π00(T ) = σap(T ) \ σub(T ) = σap(T +K) \ σub(T +K),

hence T +K satisfies property (R). �
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Evidently Theorem 6.14 applies to the case of a commuting nilpotent perturba-
tion N . Indeed, in this case the equality σap(T ) = σap(T +N) is satisfied. The next
result shows that in the case of nilpotent perturbations the condition that T is isoloid
can be omitted.

Theorem 6.15 Suppose that T ∈ L(X) and let N ∈ L(X) be a nilpotent operator
which commutes with T . Then we have:

(i) π00(T +N) = π00(T ).
(ii) T satisfies property (R) if and only if T +N satisfies property (R).

Proof

(i) Suppose that Np = 0. We show first that

ker(λI − (T +N)) ⊆ ker(λI − T )p. (6.5)

Indeed, if x ∈ ker(λI − (T + N)) then (λI − T )x = Nx, hence

(λI − T )px = Npx = 0,

so x ∈ ker(λI − T )p. It is easily seen that

ker(λI − T ) ⊆ ker(λI − (T + N))p. (6.6)

Indeed, suppose that x ∈ ker(λI − T ), i.e. (λI − T )x = 0. Then for some
suitable binomial coefficients μj,p we have

(λI − (T +N))px =
p∑
j=0

μj,p(λI − T )jNp−j x = Npx = 0.

Finally, suppose that λ ∈ π00(T ). Then λ ∈ iso σ(T ) = iso σ(T + N).
Moreover, α(λI − T ) > 0 entails, by (1.38), that α(λI − (T + N))p > 0
and hence α(λI − (T + N)) > 0. From α(λI − T ) < ∞ we deduce that
α(λI − T )p < ∞ and hence, from the inclusion (1.38), we conclude that
α(λI − (T + N)) < ∞. Therefore λ ∈ π00(T + N). To show the opposite
inclusion just proceed by symmetry: since N commutes with T + N ,

π00(T +N) ⊆ π00(T +N −N) = π00(T ).

(ii) Suppose that T has property (R). Then

π00(T +N) = π00(T ) = σap(T ) \ σub(T )

= σa(T +N) \ σub(T + N)
= pa00(T +N),



428 6 Weyl-Type Theorems

therefore T + N has property (R). The converse follows by symmetry. �
Example 6.16 Generally, property (R) is not transmitted from T to a quasi-
nilpotent perturbation T +Q. In fact, ifQ ∈ L(�2(N)) is defined by

Q(x1, x2, . . . ) =
(x2

2
,
x3

3
, . . .

)
for all (xn) ∈ �2(N),

thenQ is quasi-nilpotent, so σap(Q) = σub(Q) = {0} and hence

{0} = π00(Q) �= σap(Q) \ σub(Q) = ∅.

Take T = 0. Clearly, T satisfies property (R) but T +Q = Q fails this property.

Recall that T ∈ L(X) is said to be finite-isoloid if every isolated point of σ(T )
is an eigenvalue of T having finite multiplicity.

Theorem 6.17 Suppose that T ∈ L(X) is a finite-isoloid operator which satisfies
property (R). If K is a Riesz operator which commutes with T and such that
σap(T ) = σap(T +K), then T +K has property (R).

Proof We show first that π00(T + K) = π00(T ). By Theorem 6.12 it suffices to
prove that π00(T + K) ⊆ π00(T ). Let λ ∈ π00(T + K) be arbitrarily given. Then
λ ∈ iso σ(T +K) and α(λI − (T +K) > 0 entails that λ ∈ σap(T +K) = σap(T ).
By Lemma 6.11 it then follows that

λ ∈ π00(T +K) ∩ σap(T ) ⊆ iso σ(T ).

Since T is finite-isoloid, 0 < α(λI − T ) < ∞, so λ ∈ π00(T ), and hence π00(T +
K) = π00(T ). Property (R) then follows from the following equalities:

pa00(T +K) = σap(T +K) \ σub(T +K) = σap(T ) \ σub(T )

= π00(T ) = π00(T +K).

�
Corollary 6.18 Suppose that T ∈ L(X) is a finite-isoloid operator which satisfies
property (R). IfQ ∈ L(X) is quasi-nilpotent operator which commutes with T then
T +Q has property (R).

Proof Since σap(T ) = σap(T +Q) the result follows directly from Theorem 6.17.
�

Theorem 6.19 If T is a-polaroid and finite-isoloid, and Q is a quasi-nilpotent
operator which commutes with T , then T +Q has property (R).

Proof If λ ∈ iso σap(T +Q) then λ ∈ iso σap(T ) and hence, since T is a-polaroid,
λ is a pole of the resolvent of T , in particular an isolated point of the spectrum.
Therefore,p := p(λI−T ) = q(λI−T ) <∞ and since by assumption α(λI−T ) <
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∞ we then have α(λI −T ) = β(λI − T ), by Theorem 1.22, so λI − T is Browder.
As observed in Chap. 3, Browder operators are invariant under Riesz commuting
perturbations, in particular under quasi-nilpotent commuting perturbations, hence
λI − (T +Q) is Browder, and consequently λ is a pole of the resolvent of T +Q.
Therefore T +Q is a-polaroid, thus Theorem 6.7 applies. �

It is natural to ask how to extend the results above to algebraic commuting
perturbations. In the following result we give a positive answer in the case when
the operator is hereditarily polaroid and has the SVEP.

Theorem 6.20 Suppose that T ∈ L(X) and K ∈ L(X) is an algebraic operator
which commutes with T .

(i) If T is hereditarily polaroid then T ∗ +K∗ satisfies property (R).
(ii) If T ∗ is hereditarily polaroid then T +K satisfies property (R).

Proof The statements are a direct consequence of Theorems 4.32 and 6.7. �
Remark 6.21 In the case of Hilbert space operators, the assertions of Theorem 6.20
are still valid if T ∗ is replaced with the Hilbert adjoint T ′.

The result of Theorem 6.20 may be considerably improved. As usual, let
Hnc(σ (T )) denote the set of all analytic functions, defined on an open neighborhood
of σ(T ), such that f is non-constant on each of the components of its domain.
Define, by the classical functional calculus, f (T ) for every f ∈ Hnc(σ (T )).

Theorem 6.22 Suppose that T ∈ L(X) and K ∈ L(X) is an algebraic operator
which commutes with T .

(i) If T is hereditarily polaroid and has the SVEP then f (T ∗ + K∗) satisfies
property (R) for all f ∈ Hnc(σ (T +K)).

(ii) If T ∗ is hereditarily polaroid and has the SVEP then f (T + K) satisfies
property (R) for all f ∈ Hnc(σ (T +K)).

Proof (i) As in the proof of Theorem 6.20, we have T ∗ +K∗ is polaroid, and hence
f (T ∗+K∗) is polaroid, by Theorem 4.19. Moreover the SVEP for T +K entails the
SVEP for f (T +K), by Corollary 2.89, and hence σap(f (T

∗ +K∗)) = σ(f (T ∗ +
K∗)), by Theorem 2.68. Therefore, f (T ∗ +K∗) is a-polaroid and property (R) for
f (T ∗ +K∗) then follows from Theorem 6.7.

The proof of part (ii) is analogous. �
In the proof of Theorem 4.32 it is shown that if T is hereditarily polaroid

then T + K is polaroid. The polaroid condition is stronger than the isoloid
condition. We call T ∈ L(X) hereditarily isoloid if every restriction T |M to a
closed invariant subspace of T is isoloid. Obviously, every hereditarily polaroid
is hereditarily isoloid. There is some interest in asking if the hereditarily isoloid
condition on T entails that T + K is isoloid, where K is algebraic and commutes
with T . The answer is positive. To show this we first need to prove the following
lemma.
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Lemma 6.23 If T ∈ L(X) is isoloid and if N ∈ L(X) is nilpotent and commutes
with T then T +N is isoloid.

Proof As observed in the proof of Theorem 6.15 we have ker(λI − T ) ⊆ ker(λI −
(T + N))p where Np = 0. If λ ∈ iso σ(T + N) = iso σ(T ), then the isoloid
condition entails that ker(λI−T ) �= {0}. Therefore, we have ker(λI−(T +N))p �=
{0}, and this obviously implies ker(λI − (T +N)) �= {0}. �
Theorem 6.24 If T ∈ L(X) is hereditarily isoloid and if K ∈ L(X) is algebraic
and commutes with T then T −K is isoloid.

Proof Using the same denotation of the proof of Theorem 4.32, if Ni := λiI −Ki
we have σ(Ti −Ki) = σ(Ti −Ki −Ni) = σ(Ti − λiI). Hence,

σ(T −K) =
n⋃
i=1

σ(Ti − λiI).

Now, let λ ∈ iso σ(T − K). Then λ ∈ iso σ(Tj − Kj) for some j , and hence
λ + λj ∈ iso σ(Tj ). Since Tj is isoloid, λ + λj is an eigenvalue of Tj . If pj
denotes the order of the nilpotent operator Nj then, from the inclusion (1.38), we
obtain

{0} �= ker((λ+ λj )I − Tj ) ⊆ ker((λ+ λj )I − (Tj +Nj ))pj
= ker(λI − (Tj −Kj ))pj ,

from which we deduce that λ is an eigenvalue of Ti −Kj . Since

ker(λI − (T −K)) =
n⊕
j=1

ker(λI − (Tj −Kj))

it then follows that ker(λI − (T −K)) �= {0}, i.e., λ is an eigenvalue of T −K . �

6.2 Property (gR)

In this section we consider the generalization of property (R) in the sense of B-
Fredholm theory. Recall that for every bounded operator T ∈ L(X) we set:

E(T ) := {λ ∈ iso σ(T ) : 0 < α(λI − T )}.
Obviously, π00(T ) ⊆ E(T ).

Definition 6.25 An operator T ∈ L(X) is said to satisfy the generalized property
(R), abbreviated (gR), if the equality σa(T ) \ σld(T ) = E(T ) holds, i.e., E(T )
coincides with the set �a(T ) of all left poles of T .
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By duality T ∗ satisfies property (gR) if and only if E(T ∗) coincides with the set
of right left poles of T .

Theorem 6.26 Property (gR) implies property (R).

Proof Let T ∈ L(X) and suppose that λ ∈ pa00(T ) = σap(T )\σub(T ). Then λI −T
is upper semi-Browder and hence α(λI − T ) <∞. Since λI − T has closed range
and λI − T is not bounded below then 0 < α(λI − T ). Trivially, every upper semi-
Browder is upper semi B-Browder, or equivalently, by Theorem 3.47, is left Drazin
invertible, hence λ ∈ σap(T )\σld(T ) = E(T ). Since α(λI−T ) <∞ it then follows
that λ ∈ π00(T ). This shows the inclusion pa00(T ) ⊆ π00(T ).

Conversely, suppose that λ ∈ π00(T ). Then λ ∈ E(T ) = σap(T ) \ σld(T ), so
λI − T is left Drazin invertible, and hence p := p(λI − T ) < ∞ and (λI −
T )p+1(X) is closed. Moreover, λ ∈ π00(T ) entails that α(λI − T ) <∞ and hence,
α(λI − T )p+1 <∞. Consequently, (λI − T )p+1 is upper semi-Fredholm and this,
by the classical Fredholm theory, implies λI − T ∈ �+(X). Therefore, λI − T is
upper semi-Browder, hence λ ∈ pa00(T ), and consequently pa00(T ) = π00(T ). �
Theorem 6.27 Let T ∈ L(X). Then we have:
(i) If T satisfies property (gR) then every left pole of T is a pole of the resolvent

of T .
(ii) If T ∗ satisfies property (gR) then every right pole of T is a pole of the resolvent

of T .

Proof

(i) Let λ ∈ �a(T ). Then λI−T is left Drazin invertible and hencep(λI−T ) <∞.
Since T satisfies property (gR) we have λ ∈ E(T ), so λ is an isolated point
of σ(T ). Consequently, T ∗ has the SVEP at λ and since λI − T is left Drazin
invertible, the SVEP of T ∗ at λ implies, by Theorem 2.98, that q(λI − T ) <
∞. Therefore, λ is a pole of the resolvent of T and hence �a(T ) ⊆ �(T ).
Since the opposite inclusion is true for every operator, we then conclude that
�a(T ) = �(T ).

(ii) Clear, by duality. �
An example of an operator with property (R) but not property (gR)may be easily

found:

Example 6.28 Let T := 0 ⊕ Q, where Q is any quasi-nilpotent operator acting
on an infinite-dimensional Banach space X such that Qn(X) is non-closed for all
n ∈ N. Clearly, σap(T ) = σub(T ) = {0}, so T has property (R), since pa00(T ) =
π00(T ) = ∅. Since T n(X) is non-closed for all n ∈ N, T is not left Drazin invertible,
so �a(T ) = ∅. On the other hand, E(T ) = {0}, so property (gR) does not hold for
T .

The next result improves Theorem 6.7.

Theorem 6.29 If T ∈ L(X) is a-polaroid then T satisfies property (gR).
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Proof Let λ ∈ σa(T ) \ σld(T ). Then λI − T is left Drazin invertible, hence λ
is a left pole of T and, consequently, an isolated point of σap(T ). Since T is a-
polaroid, λ is a pole of the resolvent of T and hence an isolated point of σ(T ).
From p(λI − T ) = q(λI − T ) < ∞ we deduce that α(λI − T ) = β(λI − T ),
see Theorem 1.22, and this excludes that α(λI − T ) = 0, otherwise λ /∈ σ(T ).
Therefore, λ ∈ E(T ).

Conversely, let λ ∈ E(T ). Then λ ∈ iso σ(T ) and the condition α(λI − T ) > 0
entails that λ ∈ σap(T ) and hence λ ∈ iso σap(T ). Therefore, λ is a pole, in particular
a left pole, so λ ∈ �a(T ) = σa(T ) \ σubb(T ). �
Example 6.30 Let R ∈ L(�2(N)) be the unilateral right shift and

U(x1, x2, . . . ) := (0, x2, x3, · · · ) for all (xn) ∈ �2(N).

If T := R ⊕ U we have T ∈ �+(X) and hence T 2 ∈ �+(X), so that T 2(X) is
closed. We also have p(T ) = 1 so that 0 is a left pole of T . Since σa(T ) = �∪{0}, �
the unit circle, it then follows that T is left polaroid. On the other hand, q(R) = ∞,
and hence q(T ) = q(R) + q(U) = ∞, so that T is not a-polaroid. This example
also shows that a left polaroid operator in general does not satisfy property (gR).

Theorem 6.31 Suppose that T ∈ L(X) is left polaroid.
(i) If T satisfies property (R) then Ea(T ) = �a(T ).

(ii) If T satisfies property (gR) then E(T ) = Ea(T ) = �a(T ).
Proof

(i) Trivially, for every left polaroid operator we have Ea(T ) ⊆ �a(T ). To show
the opposite inclusion, let λ ∈ �a(T ) arbitrarily given. Then λI − T is left
Drazin invertible, so p := p(λI − T ) <∞ and (λI − T )p+1(X) is closed.

Suppose now that α(λI − T ) = 0. Then α(λI − T )n = 0 for all n ∈ N,
and hence (λI − T )p+1 is bounded below, in particular upper semi-Browder.
From the classical Fredholm theory we then have that λI − T is upper semi-
Browder, thus λ ∈ σap(T ) \ σub(T ) = π00(T ), since T has property (R). From
the definition of π00(T ) we then have α(λI − T ) > 0, a contradiction.

Therefore, α(λI − T ) > 0. Now, every left pole of the resolvent is an
isolated point of σap(T ). Consequently,λ ∈ Ea(T ), and this shows the inclusion
�a(T ) ⊆ Ea(T ).

(ii) The equality Ea(T ) = �a(T ) holds by part (i), since (gR) implies (R). The
inclusion E(T ) ⊆ Ea(T ) holds for every operator, since every isolated point of
the spectrum lies in σap(T ), and, as already observed, the left polaroid condition
entails Ea(T ) ⊆ �a(T ) = E(T ). �

Recall that T ∈ L(X) is said to be finite a-isoloid if every isolated point of
σap(T ) is an eigenvalue of T having finite multiplicity.

In the sequel we need the following lemma.
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Lemma 6.32 Let T ∈ L(X) be such that α(T ) < ∞. Suppose that there exists
an injective quasi-nilpotent operator Q ∈ L(X) such that TQ = QT . Then T is
injective.

Proof Set Y := ker T . Clearly, Y is invariant underQ and the restriction (λI−Q)|Y
is injective for all λ �= 0. By assumption Y is finite-dimensional, so (λI −Q)|Y is
also surjective for all λ �= 0. Thus σ(Q|Y ) ⊆ {0}. On the other hand, from the
assumption, we know that Q|Y is injective and hence Q|Y is surjective. Hence
σ(Q|Y ) = ∅, from which we conclude that Y = {0}. �
Theorem 6.33 Suppose that T ∈ L(X) is a finite a-isoloid operator and suppose
that there exists an injective quasi-nilpotent operator Q which commutes with T .
Then T satisfies property (gR).

Proof Note first that E(T ) is empty. Indeed, suppose that λ ∈ E(T ). Then λ is an
isolated point of σ(T ) and hence belongs to σap(T ). Thus λ ∈ iso σap(T ), so that
0 < α(λI −T ) <∞, since T is finite a-isoloid. But, by Lemma 6.32, we also have
α(λI − T ) = 0, and this is impossible. Therefore, E(T ) = ∅.

In order to show that property (gR) holds for T we need to prove that σap(T ) \
σld(T ) is empty. Suppose that λ ∈ σap(T ) \ σld(T ). Then λ ∈ σap(T ) and λI − T is
left Drazin invertible. By Theorem 2.97 λ is an isolated point of σap(T ), and since
T is finite a-isoloid we then have α(λI − T ) < ∞. Again by Lemma 6.32 we then
conclude that λI − T is injective. On the other hand, by Theorem 1.114, we have
λI − T ∈ �+(X), so λI − T has closed range and hence λI − T is bounded below,
i.e. λ /∈ σap(T ), a contradiction. Therefore, σap(T ) \ σld(T ) = ∅, and consequently
T satisfies property (gR).

�
Theorem 6.34 Let T ∈ L(X) and suppose that N ∈ L(X) is a nilpotent operator
which commutes with T . Then we have:

(i) T has property (gR) if and only if T +N has property (gR).
(ii) T ∗ has property (gR) if and only if T ∗ +N∗ has property (gR).

Proof

(i) We show first that E(T ) ⊆ E(T +N). Note that iso σ(T ) = iso σ(T +N), so
we need only to show that if λ ∈ E(T ) then α(λI − (T + N)) > 0.

Suppose that Np = 0. It is easily seen that

ker(λI − T ) ⊆ ker(λI − (T + N))p. (6.7)

Indeed, suppose that x ∈ ker(λI − T ), i.e. (λI − T )x = 0. Then for some
suitable binomial coefficients μj we have

(λI − (T + N))px =
p∑
j=0

μj(λI − T )jNp−j x = Npx = 0.
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We know that the condition α(λI − T ) > 0 entails that α(λI − (T +N))p > 0
and hence α(λI − (T +N)) > 0, as desired.

By symmetry we have

E(T + N) ⊆ E((T +N)− N) = E(T ),
from which we conclude that the equality E(T + N) = E(T ) holds.

Finally, suppose that T has (gR). Since σap(T ) is invariant under commuting
nilpotent perturbations, by Theorem 3.78 we then have

E(T + N) = E(T ) = σap(T ) \ σld(T ) = σap(T +N) \ σld(T +N),
so T + N has property (gR). Clearly, the converse implication also holds by
symmetry.

(ii) Clearly, T ∗N∗ = N∗T ∗ and iso σ(T ∗) = iso σ(T ∗ +N∗). Proceeding as in the
proof of part (i) we then have α(λI − (T ∗ + N∗)) > 0 and hence E(T ∗) ⊆
E(T ∗ +N∗). By symmetry we then have E(T ∗) = E(T ∗ +N∗) and from this
it easily follows that T ∗ has property (gR) if and only if T ∗ +N∗ has the same
property. �

Example 6.35 Generally, property (gR) is not transmitted from T to a quasi-
nilpotent perturbationT+Q. In fact, ifQ ∈ L(�2(N)) is the quasi-nilpotent operator
defined in Example 6.16, then σap(Q) = σld(Q) = {0} and hence

{0} = E(Q) �= σap(Q) \ σld(Q) = ∅.

Take T = 0. Clearly, T satisfies property (gR) but T +Q = Q fails this property.

Theorem 6.36 If T is a-polaroid and finite-isoloid,Q is a quasi-nilpotent operator
which commutes with T , then T +Q has property (gR).

Proof If λ ∈ iso σap(T +Q) then λ ∈ iso σap(T ) and hence, since T is a-polaroid,
λ is a pole of the resolvent of T . Therefore, p := p(λI −T ) = q(λI−T ) <∞ and
hence λ is an isolated point in σ(T ). Our assumption that T is finite isoloid entails
that α(λI −T ) <∞, so we have α(λI −T ) = β(λI −T ), by Theorem 1.22, hence
λI − T is Browder. Since, by Theorem 3.8, Browder operators are invariant under
Riesz commuting perturbations, in particular under quasi-nilpotent commuting
perturbations, λI − (T + Q) is Browder, and, consequently, λ is a pole of the
resolvent of T +Q. Therefore T +Q is a-polaroid, thus Theorem 6.29 applies.

�

6.3 Weyl-Type Theorems

We observe first that the Weyl spectrum, in some sense, tends to be large. Indeed,
the set �(T ) = σ(T ) \ σw(T ) is either empty or consists of eigenvalues of finite
multiplicity. In fact, if λ ∈ �(T ) = σ(T ) \ σw(T ) then λI − T is not invertible,
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while 0 < α(λI − T ) = β(λI − T ) < ∞. This implies that λI − T cannot be
injective.

In 1981 Coburn [97], while trying to extend to non-normal operators some
properties already known for self-adjoint operators on Hilbert spaces, found that
there are some other classes of operators, defined on Banach spaces, which satisfy
the equality�(T ) := σ(T ) \ σw(T ) = π00(T ). He gave the following definition:

Definition 6.37 Given an operator T ∈ L(X), where X is a Banach space, we say
that Weyl’s theorem holds for T ∈ L(X) if

�(T ) = π00(T ) = {λ ∈ iso σ(T ) : 0 < α(λI − T ) <∞}. (6.8)

Theorem 6.38 If a bounded operator T ∈ L(X) satisfies Weyl’s theorem then

p00(T ) = π00(T ) = �(T ).

Proof Suppose that T satisfies Weyl’s theorem. By definition then�(T ) = π00(T ).
We show now that the equality p00(T ) = π00(T ) holds. It suffices to prove the
inclusion π00(T ) ⊆ p00(T ).

Let λ be an arbitrary point of π00(T ). Since λ is isolated in σ(T ), T has the
SVEP at λ and from the equality π00(T ) = σ(T ) \ σw(T ) we know that λI − T ∈
W(X). Hence λI − T ∈ �(X), and the SVEP at λ implies, by Theorem 2.97, that
p(λI − T ) <∞, so λ ∈ p00(T ). �

From Theorem 5.4 it then follows that

Weyl’s theorem for T ⇒ Browder’s theorem for T .

Example 6.39 It is not difficult to find an example of an operator satisfying
Browder’s theorem but not Weyl’s theorem. For instance, if T ∈ L(�2)(N) is
defined by

T (x0, x1, . . . ) :=
(

1

2
x1,

1

3
x2, . . .

)
for all (xn) ∈ �2(N),

then T is quasi-nilpotent, so T has the SVEP and consequently satisfies Browder’s
theorem. On the other hand T does not satisfy Weyl’s theorem, since σ(T ) =
σw(T ) = {0} and π00(T ) = {0}.

Let us define

�00(T ) := �(T ) ∪ π00(T ).

Weyl’s theorem for an operator T ∈ L(X) may be viewed as the conjunction of
two properties. The first one is that Browder’s theorem holds for T , and this may be
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considered, by Theorem 5.4, a local spectral property, and the second one is given
by the equality p00(T ) = π00(T ). Indeed, we have:

Theorem 6.40 Let T ∈ L(X). Then the following statements are equivalent:
(i) T satisfies Weyl’s theorem;

(ii) T satisfies Browder’s theorem and p00(T ) = π00(T );
(iii) the map λ→ γ (λI − T ) is not continuous at every λ ∈ �00(T ).

Proof The implication (i) ⇒ (ii) is clear, from Theorem 6.38, while the implication
(ii) ⇒ (i) follows immediately from Theorem 5.4, so the statements (i) and (ii) are
equivalent.

(i) ⇒ (iii) By Theorem 6.38 we have that �00(T ) = �(T ) and T satisfies
Browder’s theorem. Therefore, by Theorem 5.31, the mapping λ → γ (λI − T )
is not continuous at every point λ ∈ �00(T ).

(iii) ⇒ (ii) Suppose that λ → γ (λI−T ) is not continuous at everyλ ∈ �00(T ) =
�(T ) ∪ π00(T ). The discontinuity at the points of �(T ) entails, by Theorem 5.31,
that T satisfies Browder’s theorem, while the discontinuity at the points of π00(T )

is equivalent, by Theorem 6.1, to saying that π00(T )∩ σb(T ) = ∅. The last equality
obviously implies that π00(T ) ⊆ p00(T ), hence π00(T ) = p00(T ). �

From Theorems 5.31 and 6.40 we see that Browder’s theorem and Weyl’s
theorem are equivalent to the discontinuity of the mapping λ → γ (λI − T ) at
the points of two sets �(T ) and �00(T ), respectively, with �00(T ) larger than
�(T ). Note that the discontinuity of the mapping λ → ker(λI − T ) at every
λ ∈ �00(T ) = �(T ) ∪ π00(T ) does not imply Weyl’s theorem. In fact, since
every point of π00(T ) is an isolated point of σ(T ), it is evident that the map
λ→ ker(λI−T ) is not continuous at every λ ∈ πa00(T ) for all operators T ∈ L(X).
Therefore, the discontinuity of the mapping λ→ ker(λI − T ) at every λ ∈ �00(T )

is equivalent to the discontinuity of the same mapping at the points of �(T ), i.e., it
is equivalent to Browder’s theorem for T .

Theorem 6.41 Let T ∈ L(X). Then the following statements are equivalent:
(i) T satisfies Weyl’s theorem;

(ii) The quasi-nilpotent partH0(λI − T ) is finite-dimensional for all λ ∈ �00(T );
(iii) The analytic core K(λI − T ) is finite-codimensional for all λ ∈ �00(T ).

Proof

(i) ⇒ (ii) If T satisfies Weyl’s theorem then T satisfies Browder’s theorem and
π00(T ) = p00(T ) = �(T ). By Theorem 5.35 then H0(λI − T ) is finite-
dimensional for all λ ∈ �00(T ) = �(T ).

(ii) ⇒ (i) Since �(T ) ⊆ �00(T ), Browder’s theorem holds for T , by Theo-
rem 5.35. From the inclusion π00(T ) ⊆ �00(T ) we know that H0(λI − T ) is
finite-dimensional for every λ ∈ π00(T ). Since every λ ∈ π00(T ) is an isolated
point of σ(T )we haveX = H0(λI−T )⊕K(λI−T ) and henceK(λI−T ) has
finite codimension. From the inclusionK(λI − T ) ⊆ (λI − T )(X) we deduce
that β(λI − T ) <∞, hence λI − T is Fredholm. But both T and T ∗ have the
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SVEP at λ, hence p(λI − T ) = q(λI − T ) <∞, by Theorems 2.97 and 2.98,
hence λI − T is Browder, by Theorem 1.22. Therefore π00(T ) = p00(T ), so,
by Theorem 6.40 T satisfies Weyl’s theorem.

(iii) ⇔ (ii) The equivalence follows from Theorem 5.35 and from the fact that for
any point of λ ∈ π00(T ) we have X = H0(λI − T )⊕K(λI − T ). �

Remark 6.42 In contrast with Theorem 5.35, condition (ii) of Theorem 6.41 cannot
be replaced by the formally weaker condition that H0(λI − T ) is closed for all
λ ∈ �00(T ). Indeed, if T is defined as in Example 6.39 then 0 ∈ π00(T ), T does
not satisfy Weyl’s theorem, while H0(λI − T ) = �2(N) is closed, since T is quasi-
nilpotent.

Theorem 6.43 If T ∈ L(X) is polaroid and either T or T ∗ has the SVEP then both
T and T ∗ satisfy Weyl’s theorem.

Proof The SVEP of either T or T ∗ entails Browder’s theorem for T , or equivalently
Browder’s theorem for T ∗. The polaroid condition for T entails that p00(T ) =
π00(T ), so Weyl’s theorem holds for T , by Theorem 6.40. If T is polaroid then even
T ∗ is polaroid and hence p00(T

∗) = π00(T
∗), so Weyl’s theorem also holds for T ∗.

�
Later we shall see that the condition that either T or T ∗ has the SVEP is not a

necessary condition for a polaroid operator to satisfy Weyl’s theorem. Examples will
be given in the framework of Toeplitz operators. The Toeplitz operators are polaroid
and satisfy Weyl’s theorem, but there are examples for which the SVEP fails for
both T and T ∗.

Corollary 6.44 If T ∈ L(X) is polaroid and either T or T ∗ has the SVEP then
both f (T ) and f (T ∗) satisfy Weyl’s theorem for every f ∈ Hnc(σ (T )).

Proof If T is polaroid then f (T ) is polaroid, by Theorem 4.19, and f (T ) has the
SVEP by Theorem 2.86. So Theorem 6.43 applies. Analogously, if T ∗ has the SVEP
then f (T ∗) has the SVEP and f (T ∗) is polaroid. �

We now give a sufficient condition which ensures that Weyl’s theorem is
transmitted under commuting perturbationsK for which Kn is finite-dimensional.

Theorem 6.45 Let T ∈ L(X) be an isoloid operator which satisfies Weyl’s
theorem. If K ∈ L(X) commutes with T and Kn is a finite-dimensional operator
for some k ∈ N, then T +K satisfies Weyl’s theorem.

Proof Since K is a Riesz operator and T satisfies Browder’s theorem then T +
K satisfies Browder’s theorem, by Corollary 5.5. Therefore, by Theorem 6.40 it
suffices to prove p00(T +K) = π00(T +K).

Let λ ∈ π00(T +K). If λI−T is invertible then λI−T +K is Browder and hence
λ ∈ p00(T + K). Suppose that λ ∈ σ(T ). From Theorem 6.11 then λ ∈ iso σ(T ).
Furthermore, the restriction

(λI − T +K)| ker (λI − T ) = Kn| ker (λI − T )
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has both finite-dimensional kernel and range, so ker (λI − T ) is finite-dimensional
and consequently λ ∈ π00(T ), because T is isoloid. Since T satisfies Weyl’s
theorem we have π00(T ) ∩ σw(T ) = ∅, so λI − T is Weyl and hence λI − T +K
is also Weyl, by Theorem 3.17, and this implies that λ ∈ p00(T + K). This shows
that π00(T +K) ⊆ p00(T +K), and, since the opposite inclusion is true for every
operator, it then follows that p00(T +K) = π00(T +K). �

We show that in the preceding theorem it is essential to require that T is isoloid.

Theorem 6.46 Let T ∈ L(X) and suppose that there exists a finite rank operator
commuting with T which is not nilpotent. If Weyl’s theorem holds for T + K for
every finite rank operator which commutes with T , then T is isoloid.

Proof Assume that T is not isoloid and let λ ∈ iso σ(T ) be such that λI − T is
injective. By hypothesis there exists a finite rank operatorK that is not nilpotent and
commutes with T . Observe that K is not quasi-nilpotent, otherwise its restriction
K|K(X) is nilpotent and henceK is also nilpotent. The spectrum of K is finite and
contains 0, soX = H0(T )⊕K(T ), by Theorem 2.45. SinceK is not quasi-nilpotent
and the restrictionK|K(T ) is an invertible operator of finite rank it then follows that
K(T ) is a non-zero subspace of X having finite dimension. Let T = T1 ⊕ T2 be the
decomposition of T withX = H0(T )⊕K(T ) and letμ ∈ C such that λ−μ ∈ σ(T2).
Clearly, λ − μ is an eigenvalue of T2. The operator defined by S := 0 ⊕ μI is a
finite rank operator which commutes with T and

σ(T + S) = σ(T1) ∪ σ(μI + T2).

Since λ ∈ iso σ(T ) and λI − T is injective we then have λ /∈ σ(T2) and λ ∈
iso σ(T1) ⊆ iso σ(T + S). Moreover, ker (λI − T + S) = ker ((λ− μ)I − T2) is a
non-trivial subspace having finite dimension, so λ ∈ π00(T +S). On the other hand,
λ /∈ p00(T ), so λI − T is not Browder, and hence λI − T + S is not Browder, by
Theorem 3.8, and this implies that λ /∈ p00(T + S). Consequently, T + S does not
satisfy Weyl’s theorem, a contradiction with our assumptions. �
Remark 6.47 Suppose that every finite rank operator commuting with T is nilpo-
tent. This means precisely that X does not admit a decomposition X = X1 ⊕ X2,
X1 and X2 two closed T -invariant subspaces such that one of them has finite-
dimension. In particular, p00(T ) = ∅. If, in addition, T satisfies Weyl’s theorem
then, by Theorem 6.40, we have p00(T ) = π00(T ) = ∅. Therefore, the hypotheses
introduced in Theorem 6.46 are fulfilled by every operator for which p00(T ) is non-
empty, i.e., whenever σb(T ) is properly contained in σ(T ).

Theorem 6.48 Let T ∈ L(X) be a finite-isoloid operator which satisfies Weyl’s
theorem. If R ∈ L(X) is a Riesz operator that commutes with T then T +R satisfies
Weyl’s theorem.

Proof Since T satisfies Browder’s theorem, T + R satisfies Browder’s theorem, by
Corollary 5.5, so it suffices to prove, by Theorem 6.40, the equality p00(T + R) =
π00(T+R). Let λ ∈ π00(T +R). If λI−T is invertible then λI−(T +R) is Browder
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and hence λ ∈ p00(T + R). If λ ∈ σ(T ) then, by Theorem 6.11, λ ∈ iso σ(T ) and,
since T is finite-isoloid, we also have λ ∈ π00(T ). But Weyl’s theorem for T entails
that π00(T ) ∩ σb(T ) = ∅, therefore λI − T is Browder and hence λ ∈ p00(T +R).
The other inclusion is trivial, so T + R satisfies Weyl’s theorem. �

In the next result we give a necessary and sufficient condition under which Weyl’s
theorem is transmitted from T to the perturbation T + R by a commuting Riesz
operator R.

Theorem 6.49 Let T ∈ L(X) be an operator which satisfies Weyl’s theorem and let
R ∈ L(X) be a Riesz operator that commutes with T . Then the following conditions
are equivalent:

(i) T + R satisfies Weyl’s theorem;
(ii) π00(T + R) = p00(T + R);

(iii) π00(T + R) ∩ σ(T ) ⊆ π00(T ).

Proof (i) ⇒ (ii) is clear by Theorem 6.40. The reverse implication is again an easy
consequence of Theorem 6.40, once it is observed that Weyl’s theorem implies
Browder’s theorem for T and hence for T + R.

(ii)⇒ (i) Let λ0 ∈ π00(T +R)∩σ(T ) be arbitrary. Then λ0 ∈ p00(T +R)∩σ(T ),
so λ0 ∈ σ(T ) and λ0 /∈ σb(T + R) = σb(T ), by Corollary 3.9. Hence λ0 ∈
p00(T ) = π00(T ), since T satisfies Weyl’s theorem.

(iii) ⇒ (ii) The inclusion p00(T +R) ⊆ π00(T +R) is clear. To show the reverse
inclusion, let μ0 ∈ π00(T + R) be arbitrary. Then μo /∈ σ(T ) or μ0 ∈ σ(T ). If
μo /∈ σ(T ) then μ0 /∈ σb(T ) = σb(T + R), and since μ0 ∈ σ(T + R) it then
follows that μ0 ∈ p00(T + R). In the case where μ0 ∈ σ(T ) we have

μ0 ∈ π00(T + R) ∩ σ(T ) ⊆ π00(T ) = p00(T ),

since T satisfies Weyl’s theorem. Therefore μ0 /∈ σb(T ) = σb(T + R). Since μ0 ∈
σ(T + R) then μ0 ∈ p00(T + R). Hence the inclusion π00(T + R) ⊆ p00(T + R)
is proved. �

An obvious consequence of Theorem 6.48 is that for a finite-isoloid operator
T ∈ L(X), Weyl’s theorem from T is transmitted to T + Q, where Q ∈ L(X) is
a quasi-nilpotent operator which commutes with T . We now show that this result
remains true if we suppose only the weaker condition σp(T ) ∩ iso σ(T ) ⊆ π00(T ),
where σp(T ) is the point spectrum of T .

Theorem 6.50 Let T ∈ L(X) be such that σp(T )∩iso σ(T ) ⊆ π00(T ). If T satisfies
Weyl’s theorem and Q ∈ L(X) is a quasi-nilpotent operator which commutes with
T , then T +Q satisfies Weyl’s theorem.

Proof Since σ(T + Q) = σ(T ) and σb(T ) = σb(T + Q) we have p00(T ) =
p00(T + Q). By Theorem 6.40 we have p00(T ) = π00(T ), so it suffices to prove
that π00(T ) = π00(T + Q). Let λ ∈ π00(T ) = p00(T ). Then λI − T is Browder
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and hence λ ∈ iso σ(T ) = iso σ(T +Q). By Theorem 3.8 λI − (T +Q) is Browder
and hence λ ∈ π00(T +Q).

Conversely, suppose that λ ∈ π00(T + Q). Since Q is quasi-nilpotent and
commutes with T , the restriction of λI − T to the finite-dimensional subspace
ker (λI − (T + Q) is not invertible, hence ker (λI − T ) is non-trivial. Therefore,
λ ∈ σp(T ) ∩ iso σ(T ) ⊆ π00(T ), which completes the proof. �

We now show that Weyl’s theorem is extended from T to f (T ), where f ∈
H(σ (T )), in the case when T is isoloid and either T or T ∗ has the SVEP. First we
need the following lemma.

Lemma 6.51 For every T ∈ L(X), X a Banach space, and f ∈ H(σ (T )) we have

σ(f (T )) \ π00(f (T )) ⊆ f (σ(T ) \ π00(T )) . (6.9)

Furthermore, if T is isoloid then

σ(f (T )) \ π00(f (T )) = f (σ(T ) \ π00(T )) . (6.10)

Proof To show the inclusion (6.9) suppose that λ0 ∈ σ(f (T )) \ π00(f (T )). We
distinguish two cases:

Case I λ0 is not an isolated point of f (σ(T )). In this case there is a sequence (λn) ⊆
f (σ(T )) such that λn → λ0 as n → ∞. Since f (σ(T )) = σ(f (T )), there
exists a sequence (μn) in σ(T ) such that f (μn) = λn → λ0. The sequence (μn)
contains a convergent subsequence and we may assume that limn→∞ μn = μ0.
Hence

λ0 = lim
n→∞ f (μn) = f (μ0).

Since μ0 ∈ σ(T ) \ π00(T ) it then follows that λ0 ∈ f (σ(T ) \ π00(T )).
Case II λ0 is an isolated point of σ(f (T )), so either λ0 is not an eigenvalue of f (T )

or it is an eigenvalue for which α(λ0 − f (T )) = ∞. Set g(λ) := λ0 − f (λ).
The function g(λ) is analytic and has only a finite number of zeros in σ(T ), say
{λ1, . . . , λk}. Write

g(λ) = p(λ)h(λ) with p(λ) :=
k∏
i=1

(λi − λ)ni ,

where ni denotes the multiplicity of λi for every i = 1, . . . , k. Clearly,

λ0I − f (T ) = g(T ) = p(T )h(T ),

and h(T ) is invertible.
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Now, suppose that λ0 is not an eigenvalue of f (T ). Then none of the scalars
λ1, . . . , λk can be an eigenvalue of T , hence λ0 ∈ f (σ(T ) \ π00(T )).

Consider the other possibility, i.e., λ0 is an eigenvalue of T of infinite multi-
plicity. Then at least one of the scalars λ1, . . . , λk , say λ1, is an eigenvalue of T
of infinite multiplicity. Consequently, λ1 ∈ σ(T ) \ π00(T ) and f (λ1) = λ0, so
λ0 ∈ f (σ(T ) \ π00(T )). Thus, the inclusion (6.9) is proved.

To prove the equality (6.10) suppose that T is isoloid. We need only to prove the
inclusion

f (σ(T ) \ π00(T )) ⊆ σ(f (T )) \ π00(f (T )). (6.11)

Let λ0 ∈ f (σ(T ) \ π00(T )). From f (σ(T )) = σ(f (T )) we know that λ0 ∈
σ(f (T )). If possible, let λ0 ∈ π00(f (T )), in particular, λ0 is an isolated point of
σ(f (T )). As above we can write λ0I − f (T ) = p(T )h(T ), with

p(T ) =
k∏
i=1

(λiI − T )ni . (6.12)

From the equality (6.12) it follows that any of the scalars λ1, . . . , λk must be an
isolated point of σ(T ), hence an eigenvalue of T , since by assumption T is isoloid.
Moreover, λ0 is an eigenvalue of finite multiplicity, so any scalar λi must be an
eigenvalue of finite multiplicity, and hence λi ∈ π00(T ). This contradicts that λ0 ∈
f (σ(T ) \ π00(T )). Therefore, λ0 /∈ π00(f (T )), which completes the proof of the
equality (6.10). �
Theorem 6.52 Suppose that T ∈ L(X) is isoloid. Then f (T ) satisfies Weyl’s
theorem for every f ∈ H(σ (T )) if and only if T satisfies Weyl’s theorem and T
is of stable sign index on ρf(T ).

Proof Suppose that T satisfies Weyl’s theorem and T is of stable sign index on
ρf(T ). Since T is isoloid, by Lemma 6.51 we have

σ(f (T )) \ π00(f (T )) = f (σ(T ) \ π00(T )).

Since T is of stable sign index on ρf(T ) we also have f (σw(T )) = σw(f (T ))

for every f ∈ H(σ (T )), by Theorem 3.119. Weyl’s theorem for T then entails
σ(T ) \ π00(T ) = σw(T ), hence

σ(f (T )) \ σw(f (T )) = f (σ(T ) \ π00(T )) = f (σw(T )) = σw(f (T )),

from which we see that Weyl’s theorem holds for f (T ).
Conversely, if f (T ) satisfies Weyl’s theorem then f (T ), for every f ∈ H(σ (T )),

satisfies Browder’s theorem, by Theorem 6.40, and hence, by Theorem 5.7,
f (σw(T )) = σw(f (T )) for every f ∈ H(σ (T )). By Theorem 3.119 T is of stable
sign index on ρf(T ). Furthermore, by taking f (λ) := λ, we deduce that T satisfies
Weyl’s theorem. �



442 6 Weyl-Type Theorems

The next example shows that the transmission of Weyl’s theorem from T to f (T )
may fail if T is not isoloid, also if the equality f (σw(T )) = σw(f (T )) is satisfied.

Example 6.53 Define on �2(N) the operators:

T1(x1, x2, . . . ) :=
(
x1, 0,

x2

2
,
x3

2
, . . .

)
for all (xn) ∈ �2(N),

and

T2(x1, x2, . . . ) :=
(

0,
x1

2
,
x2

3
, . . .

)
for all (xn) ∈ �2(N).

Let T := T1 ⊕ T2. Then

σ(T ) = {1} ∪ D(0,
1

2
) ∪ {−1},

and

σw(T ) = D(0,
1

2
) ∪ {−1}.

Evidently, T satisfies Weyl’s theorem. Set f (t) = t2. Then

σ(T 2) = σw(T
2) = D(0,

1

4
) ∪ {1},

while π00(T
2) = {1}, so Weyl’s theorem does not hold for T 2. Note that

[(σw(T ))]2 = σw(T
2), and T is not isoloid.

Theorem 6.54 Suppose that T ∈ L(X) is isoloid and either T or T ∗ has the SVEP.
Then f (T ) satisfies Weyl’s theorem for every f ∈ H(σ (T )) if and only if T satisfies
Weyl’s theorem.

Proof If either T or T ∗ has the SVEP then f (σw(T )) = σw(f (T )), by Corol-
lary 3.120, or equivalently T is of stable sign index on ρf(T ). Hence Theorem 6.52
applies. �

From Corollary 3.120, if f ∈ H(σ (T )) is injective, then f (σw(T )) = σw(f (T )).
Thus we have:

Corollary 6.55 Let T ∈ L(X) be isoloid and suppose that f ∈ H(σ (T )) is
injective on σw(T ). If Weyl’s theorem holds for T then Weyl’s theorem holds for
f (T ).

The following example shows that without SVEP the result of Corollary 6.54
does not hold.
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Example 6.56 Let R be the right unilateral shift on �2(N) and define T in �2(N)⊕
�2(N) by

T =
(
R + I 0

0 R′ − I
)
,

where R′ is the adjoint of R, i.e., the left unilateral shift. We have σ(T ) = σw(T )

and π00(T ) = ∅, so T is isoloid. Weyl’s theorem holds for T , 1 /∈ σw(T
2), while

1 ∈ σ(T ) and 1 /∈ σw(T
2) ∪ π00(T

2), thus Weyl’s theorem does not hold for T 2.

It should be noted that if f (T ) satisfies Weyl’s theorem for every f ∈ H(σ (T ))
then T is isoloid. To see this we first need the following lemma:

Lemma 6.57 Suppose that f (T ) satisfies Weyl’s theorem for every f ∈ H(σ (T )).
If p00(T ) �= ∅ then iso σ(T ) ⊆ σp(T ).

Proof Suppose that the implication p00(T ) �= ∅ ⇒ iso σ(T ) ⊆ σp(T ) is not
satisfied. We show that there exists a g ∈ H(σ (T )) for which Weyl’s theorem does
not hold for g(T ). We can choose λ1 ∈ p00(T ) and λ2 ∈ iso σ(T ) with λ2 /∈ σp(T ).
Set σ := σ(T ) \ {λ1, λ2} and write X = P1(X) ⊕ P2(X) ⊕ Pσ (X), where P1,
P2 and Pσ are the spectral projections associated with {λ1}, {λ2}, and σ . If we set
Ti := T |Pi(X), i = 1, 2, and T3 := T |Pσ (X) then T = T1 ⊕ T2 ⊕ T3, with
σ(Ti) = {λi} i = 1, 2, and 0 < dimP1(X) < ∞, by Theorem 3.2. Note that
λ1, λ2 /∈ σ(T3) = σ . Since λ2 /∈ p00(T ), we have also dimP2(X) = ∞. If we
define g(λ) := (λ1 − λ)(λ2 − λ) we then have, with respect to the decomposition
X = P1(X)⊕ P2(X)⊕ Pσ (X),

g(T ) = g(T1)⊕ g(T2)⊕ g(T3).

It is easily seen that:

(a) σ(g(T1)) = g(σ(T1)) = {0} = g(σ(T2)) = σ(g(T2)) and 0 /∈ g((σ (T3)) =
σ(g(T3)),

(b) 0 ∈ iso σ(g(T3)), Pσ (T ) = P1(X)⊕ P2(X),
(c) 0 < α(g(T3) <∞, α(g(T2)) = 0 = α(g(T3)).

Hence α(g(T )) = α(g(T1)) + α(g(T2)) + α(g(T3)) = α(g(T1)) and 0 ∈
π00(g(T )). But 0 /∈ p00(g(T )), since the spectral projection associated with g(T )
and {0} is infinite-dimensional. Therefore, g(T ) does not satisfy Weyl’s theorem, by
Theorem 6.38. �
Theorem 6.58 If f (T ) satisfies Weyl’s theorem for every f ∈ H(σ (T )), then T is
isoloid.

Proof If λ ∈ iso σ(T ) then either λ ∈ p00(T ) or λ /∈ p00(T ). If λ ∈ p00(T ), then
p00(T ) �= ∅, so, by Lemma 6.57, λ ∈ σp(T ). If λ /∈ p00(T ) = σ(T ) \ σb(T ) then
λI − T is Browder and λ ∈ σ(T ). This implies α(λI − T ) = β(λI − T ) > 0,
otherwise λ /∈ σ(T ), so also in this case we have λ ∈ σp(T ). �
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Weyl’s theorem also admits a generalization by considering B-Fredholm theory.
The following concept was introduced by Berkani [65]. Recall that �g(T ) denotes
the set σ(T ) \ σbw(T ).

Definition 6.59 An operator T ∈ L(X) is said to satisfy the generalized Weyl’s
theorem if �g(T ) = E(T ).

The generalized Weyl’s theorem entails Weyl’s theorem:

Theorem 6.60 If T ∈ L(X) satisfies the generalized Weyl’s theorem then T
satisfies Weyl’s theorem.

Proof Suppose that the generalized Weyl’s theorem holds for T and let λ ∈ σ(T ) \
σw(T ). Then λI − T is Weyl and hence B-Weyl, so λ ∈ σ(T ) \ σbw(T ) = E(T ),
and hence α(λI − T ) > 0. Moreover, λ is an isolated point of σ(T ) and since
α(λI − T ) < ∞ we then have λ ∈ π00(T ). Therefore, σ(T ) \ σw(T ) ⊆ π00(T ).
To prove the opposite inclusion, let λ ∈ π00(T ). Obviously, π00(T ) ⊆ E(T ) =
σ(T ) \ σbw(T ), so λI − T is B-Weyl. Since T has the SVEP at λ, p(λI − T ) >∞,
by Theorem 2.97, and hence from Theorem 1.143 we conclude that λI −T has both
ascent and descent finite. Since α(λI − T ) < ∞ we then have, by Theorem 1.22,
that β(λI − T ) < ∞, so λ /∈ σw(T ), and hence λ ∈ σ(T ) \ σw(T ). Therefore,
σ(T ) \ σw(T ) = π00(T ). �

In the following example we show that there exist operators which satisfy Weyl’s
theorem but not the generalized Weyl’s theorem.

Example 6.61 Let T ∈ L(X), where X := �1(N), be defined for each x := (xk) ∈
�1(N)) as

T (x1, x2, . . . , xk, . . . ) := (0, α1x1, α2x2, . . . , αk−1xk−1, . . . ),

where the sequence of complex numbers (αk) is chosen such that 0 < |αk| ≤ 1
and

∑∞
k=1 |αk| < ∞. We have T n(X) �= T n(X) for all n = 1, 2, . . . . Indeed, for a

given n ∈ N, let x(n)k := (1, . . . , 1, 0, 0, . . . ) with the first (n + k)-terms equal to

1. Then y(n) := limk→∞ T x(n)k exists and lies in T n(X). On the other hand there
is no element x(n) ∈ �1(N) which satisfies the equation T nx(n) = y(n), since the
algebraic solution to this equation is (1, 1, . . . ) /∈ �1(N).

Define S := T ⊕ 0 on Y := �1(N)⊕ �1(N). Then ker S = {0} ⊕ �1(N), σ(S) =
σap(S) = {0}, and E(T ) = {0}. Since Sn(Y ) = T n(X) ⊕ {0}, the subspaces Sn(Y )
are not closed for all n, so S is not B-Weyl and σbw(S) = {0}. Furthermore, S is not
upper semi-Weyl and σuw(S) = {0}. Hence E(S) �= σ(S) \ σbw(S), from which we
see that S does not satisfy the generalized Weyl’s theorem. It is easily seen that S
satisfies Weyl’s theorem. Indeed, S∗ is quasi-nilpotent and hence has the SVEP. By
Theorem 3.44 we then have σw(S) = σuw(S) = {0}, so σ(S) \ σw(S) = ∅. Also,
π00(S) is empty, since 0 is the unique isolated point of σ(S) and α(S) = ∞.
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Define

�
g

1(T ) := �g(T ) ∪ E(T ),

where, as usual,�(T ) denotes the set of all poles of T .

Theorem 6.62 For a bounded operator T ∈ L(X) the following statements are
equivalent:

(i) T satisfies the generalized Weyl’s theorem;
(ii) T satisfies the generalized Browder’s theorem and E(T ) = �(T );

(iii) For every λ ∈ �g1(T ) there exists a p := p(λ) ∈ N such that H0(λI − T ) =
ker (λI − T )p.

Proof (i) ⇒ (ii) The generalized Weyl’s theorem entails Weyl’s theorem and hence
Browder’s theorem, or, equivalently, the generalized Browder’s theorem. To show
the equalityE(T ) = �(T ) it suffices to prove the inclusionE(T ) ⊆ �(T ). Let λ ∈
E(T ). Clearly, both T and T ∗ have the SVEP at λ, since λ ∈ isoσ(T ). Moreover,
λI − T is B-Weyl, and hence, by Theorems 2.97 and 2.98, we have that λI − T is
Drazin invertible, i.e., λ ∈ �(T ). Therefore, E(T ) = �(T ).

(ii) ⇒ (i) By Theorem 5.17 we have�g(T ) = �(T ) = E(T ).
(ii) ⇒ (iii) By Theorem 5.22 we have only to show that there exists a p :=

p(λ) ∈ N such that H0(λI − T ) = ker (λI − T )p for all λ ∈ E(T ). If λ ∈
E(T ) = �(T ) then λ is a pole of the resolvent so, by Theorem 2.45H0(λ0I−T ) =
ker (λ0I − T )p where p =: p(λ0I − T ) = q(λ0I − T ).

(iii) ⇒ (ii) Suppose that λ /∈ σbw(T ). To show the generalized Browder’s theorem
for T it suffices to prove, by Theorem 5.14, that T has the SVEP at λ. If λ /∈ σ(T )
there is nothing to prove. If λ ∈ σ(T ) then λ ∈ �g(T ) ⊆ �g1(T ), so H0(λI − T ) is
closed, and hence T has the SVEP at λ, by Theorem 2.39. Therefore, the generalized
Browder’s theorem holds for T . To show the equality E(T ) = �(T ) we have only
to prove that E(T ) ⊆ �(T ). Consider a point λ ∈ E(T ). Then λ ∈ �g1(T ) and
henceH0(λI − T ) = ker (λI − T )p for some p ∈ N. Since λ is an isolated point of
σ(T ), by Theorem 2.45 we have

X = H0(λI − T )⊕K(λI − T ) = ker (λI − T )p ⊕K(λI − T ).

Hence

(λI − T )p(X) = (λI − T )p(K(λI − T )) = K(λI − T ).

This shows thatX = ker (λI−T )p⊕(λI−T )p(X), so by Theorem 1.35, λ ∈ �(T ).
Consequently, E(T ) ⊆ �(T ), as desired. �

We conclude this section by giving a perturbation result concerning the general-
ized Weyl’s theorem.
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Theorem 6.63 Suppose that T ∈ L(X) is polaroid and that K ∈ L(X) is such
that TK = KT and Kn is a finite rank operator for some n ∈ N. If T satisfies the
generalized Weyl’s theorem then T +K satisfies the generalized Weyl’s theorem.

Proof T satisfies the generalized Browder’s theorem, or equivalently Browder’s
theorem, hence, by Corollary 5.5, T + K satisfies Browder’s theorem, or equiva-
lently, the generalized Browder’s theorem. By Theorem 6.62 it suffices to prove that
E(T + K) = �(T + K). Since the inclusion �(T + K) ⊆ E(T + K) holds for
every operator we need only to prove the reverse inclusion. Let λ ∈ E(T + K).
Then λ ∈ iso σ(T + K) and since, by Theorem 4.24, T + K is polaroid, then
λ ∈ �(T +K). Therefore, T +K satisfies the generalized Weyl’s theorem. �

We now show that the generalized Weyl’s theorem is transmitted from T to f (T ),
where f ∈ H(σ (T )), in the case where T is isoloid and either T or T ∗ has the SVEP.
First we need the following lemma.

Lemma 6.64 Suppose that T ∈ L(X) and either T or T ∗ has the SVEP, and f ∈
H(σ (T )). Then we have

σ(f (T )) \ E(f (T )) ⊆ f (σ(T ) \E(T )). (6.13)

Furthermore, if T is isoloid then

σ(f (T )) \ E(f (T )) = f (σ(T ) \E(T )). (6.14)

Proof To show the inclusion (6.13) suppose that λ0 ∈ σ(f (T )) \ π00(f (T )). We
distinguish two cases:

Case (I) λ0 is not an isolated point of f (σ(T )). In this case there is a sequence
(λn) ⊆ f (σ(T )) such that λn → λ0 as n → ∞. Since f (σ(T )) = σ(f (T )),
there exists a sequence (μn) in σ(T ) such that f (μn) = λn → λ0. The sequence
(μn) contains a convergent subsequence and we may assume that limn→∞ μn =
μ0. Hence λ0 = limn→∞ f (μn) = f (μ0). Since μ0 ∈ σ(T ) \ E(T ) it then
follows that λ0 ∈ f (σ(T ) \E(T )).

Case (II) λ0 is an isolated point of σ(f (T )). Since λ /∈ E(f (T )), λ is not an
eigenvalue of f (T ). Write g(λ) := λ0 − f (λ). The function g(λ) is analytic
and has only a finite number of zeros in σ(T ), say {λ1, . . . , λk}. Write

g(λ) = p(λ)h(λ) with p(λ) :=
k∏
i=1

(μi − λ)ni ,

where ni denotes the multiplicity of μi for every i = 1, . . . , k. Clearly, λ0I −
f (T ) = g(T ) = p(T )h(T ) and h(T ) is invertible. As λ0 /∈ E(f (T )), none of
μ1, . . . , μk can be an eigenvalue of T . Since λ0I − f (T ) is not invertible, there
exists a μ ∈ {μ1, . . . , μk} such that μI − T is not invertible. Hence f (μ) = λ0
and λ0 ∈ f (σ(T ) \ E(T )).



6.3 Weyl-Type Theorems 447

To prove the equality (6.14) suppose that T is isoloid. We need only to prove the
inclusion

f (σ(T ) \ E(T )) ⊆ σ(f (T )) \ E(f (T )). (6.15)

Let λ0 ∈ f (σ(T ) ∩ E(f (T )). Then we can write λ0I − f (T ) = p(T )h(T ), where
p(T ) =∏ki=1(μiI − T )ni , μi �= μj for i �= j , and h(T ) is invertible. Since λ0I −
f (T ) is not invertible, there exists a μ ∈ {μ1, . . . , μk} such that μ ∈ σ(T ). Since
λ0 ∈ iso σ(f (T )), μ is isolated in σ(T ). Hence λ0 = f (μ) /∈ f (σ(T ) \ E(T )),
from which we obtain the inclusion (6.15), and the proof is complete. �
Theorem 6.65 Suppose that T ∈ L(X) is isoloid and either T or T ∗ has the SVEP.
If T satisfies the generalized Weyl’s theorem then the generalized Weyl’s theorem
holds for f (T ) for every f ∈ H(σ (T )).

Proof The generalized Weyl’s theorem for T implies that σ(T ) \ E(T ) = σbw(T ).
Since T is isoloid, by Lemma 6.64 we have

f (σbw(T ) \ E(f (T ))) = σ(f (T ) \E(f (T ))).

But either T or T ∗ has the SVEP, so, by Corollary 3.123, f (σbw(T )) = σbw(f (T )).
Thus, σ(f (T )) \ E(f (T )) = σbw(f (T )). �

In the next example we show that the condition that T is isoloid is crucial in
Theorem 6.65. First we need a preliminary result.

Theorem 6.66 If T ∈ L(X) has no eigenvalues then T satisfies the generalized
Weyl’s theorem.

Proof Clearly, E(T ) = ∅. We show that σ(T ) = σbw(T ). Let λ ∈ σ(T ). We can
assume λ = 0. If 0 /∈ σbw(T ) then T is B-Weyl, and since ker T = {0} we have,
by Theorem 1.143, p(T ) = q(T ) = 0, i.e., T is invertible, a contradiction. Hence,
σ(T ) = σbw(T ) and T satisfies the generalized Weyl’s theorem. �

It should be noted that in the proof of Theorem 6.66 it has been proved that if T
is injective and non-invertible, then T cannot be B-Weyl.

Example 6.67 Let I1 and I2 denote the identities on C and �2, respectively. Define
S1 and S2 on �2(N) as follows:

S1(x1, x2, . . . ) :=
(

0,
1

3
x1,

1

3
x2, . . .

)
for all (xn) ∈ �2(N),

and

S2(x1, x2, . . . ) :=
(

0,
1

2
x1,

1

3
x2, . . .

)
for all (xn) ∈ �2(N).
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Let T1 := I1 ⊕S1 and T2 := S2 − I2. Since T2 has no eigenvalue, then, see the proof
of Theorem 6.66, σ(T2) = σbw(T2) = {−1}. Evidently,

σ(T1) =
{
λ ∈ C : |λ| ≤ 1

3

}
∪ {1}.

We claim that

σbw(T1) =
{
λ ∈ C : |λ| ≤ 1

3

}
. (6.16)

Since

T1 − (I1 ⊕ I2) = 0 ⊕ (S1 − I2)

and S1 −I2 is invertible then, by Theorem 1.119, T1 −(I1⊕I2) is B-Weyl. Thus, 1 /∈
σbw(T1). If there exists some 0 ≤ |λ| ≤ 1

3 such that T1 −λ(I1 ⊕ I2) is B-Weyl then,
by Theorem 1.127, we deduce that S1 − λI2 is B-Weyl, which is a contradiction,
since S1 − λI2 has no eigenvalue. Therefore, the equality (6.16) is proved. Now, let
T := T1 ⊕ T2. Then T has the SVEP and

σbw(T ) = {−1} ∪
{
λ ∈ C : |λ| ≤ 1

3

}
.

Since E(T ) = {1} we deduce that the generalized Weyl’s theorem holds for T . We
also have

σbw(T
2) = {1} ∪

{
λ ∈ C : |λ| ≤ 1

9

}
,

which is equal to σ(T 2). Since E(T 2) = {1}, the generalized Weyl’s theorem does
not hold for T 2.

6.4 a-Weyl’s Theorem

Let λ ∈ �a(T ) := σap(T ) \ σuw(T ). Then λI − T ∈ W+(X), so α(λI − T ) < ∞
and (λI − T )(X) is closed. Since λI − T is not bounded below, necessarily 0 <
α(λI − T ). Therefore, for every operator we have:

�a(T ) ⊆ {λ ∈ σap(T ) : 0 < α(λI − T ) <∞}.
The following approximate point version of Weyl’s theorem has been introduced by
Rakočević [262]. Set
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πa00(T ) := {λ ∈ iso σap(T ) : 0 < α(λI − T ) <∞}.

Definition 6.68 An operator T ∈ L(X) is said to satisfy a-Weyl’s theorem if

�a(T ) := σap(T ) \ σuw(T ) = πa00(T ).

Theorem 6.69 If a bounded operator T ∈ L(X) satisfies a-Weyl’s theorem then

pa00(T ) = πa00(T ) = �a(T ).
In particular, a-Weyl’s theorem for T implies a-Browder’s theorem for T .

Proof Suppose that T satisfies a-Weyl’s theorem. By definition then �a(T ) =
πa00(T ). We show now the equality pa00(T ) = πa00(T ). It suffices to prove the
inclusion πa00(T ) ⊆ pa00(T ). Let λ be an arbitrary point of πa00(T ). Since λ is
isolated in σap(T ) then T has the SVEP at λ and, from the equality πa00(T ) =
σap(T ) \ σuw(T ), we know that λI − T ∈ W+(X). The SVEP at λ by Theorem 2.97
implies that p(λI − T ) <∞, so λ ∈ pa00(T ).

The last assertion follows from Theorem 5.26. �
It is not difficult to find an example of an operator satisfying a-Browder’s

theorem but not a-Weyl’s theorem. For instance, ifQ ∈ L(�2) is defined by

Q(x0, x1, . . . ) :=
(

1

2
x1,

1

3
x2, . . .

)
for all (xn) ∈ �2,

then Q is quasi-nilpotent, so has the SVEP and consequently satisfies a-Browder’s
theorem. On the other hand, Q does not satisfy a-Weyl’s theorem, since σap(Q) =
σuw(Q) = {0} and πa00(Q) = {0}.

Note that the condition�a(T ) = ∅ does not ensure that a-Weyl’s theorem holds
for T . To describe the operators which satisfy a-Weyl’s theorem, let us define

�a(T ) := �a(T ) ∪ πa00(T ).

Clearly, if �(T ) = ∅ then a-Weyl’s theorem holds for T . In the following
theorem we shall exclude the trivial case �(T ) = ∅. As usual, γ (T ) denotes the
reduced minimal modulus of T .

Theorem 6.70 Let T ∈ L(X). Then the following statements are equivalent:
(i) T satisfies a-Weyl’s theorem;

(ii) T satisfies a-Browder’s theorem and pa00(T ) = πa00(T );
(iii) �a(T ) is a discrete set, i.e., all points of �a(T ) are isolated, and πa00(T ) ⊆

ρsf(T );
(iv) a-Browder’s theorem holds for T and (λI−T )(X) is closed for all λ ∈ πa00(T );
(v) the map λ→ γ (λI − T ) is not continuous at every λ ∈ �a(T ).
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Proof (i) ⇔ (ii) The implication (i) ⇒ (ii) is clear, from Theorem 6.69. The
implication (ii) ⇒ (i) follows immediately from Theorem 5.26.

(ii) ⇒ (iii) Evidently, πa00(T ) = pa00(T ) = σ(T ) \ σub(T ) ⊆ ρsf(T ), while, by
Theorem 5.31,�a(T ) ⊆ iso σap(T ), thus�a(T ) is discrete.

(iii) ⇒ (ii) Let λ ∈ πa00(T ). Then λI − T ∈ �±(X) and, since λ is isolated in
σap(T ), the ascent p(λI −T ) is finite, by Theorem 2.97. From Theorem 1.22 it then
follows that α(λI − T ) ≤ β(λI − T ), from which we obtain λI − T ∈ �+(X).
Consequently, λI − T is upper semi-Browder, and hence λ ∈ pa00(T ). The reverse
inclusion pa00(T ) ⊆ πa00(T ) holds for every operator, hence πa00(T ) = pa00(T ).
To show a-Weyl’s theorem for T it suffices to prove that T satisfies a-Browder’s
theorem, or equivalently, by Theorem 5.31, �a(T ) ⊆ iso σap(T ). Let λ0 ∈ �a(T ).
Then, by Lemma 5.25, λ0I − T ∈ W+(X) and hence, for some δ1 > 0, we have
λI − T ∈ W+(X) for all λ ∈ D(λ0, δ1). In particular, λI − T has closed range for
all λ ∈ D(λ0, δ1). But, by Lemma 5.25, we have

�a(T ) = [ρ−
sf (T ) ∪ ρw(T )] ∩ σp(T ),

from which the assumption that �a(T ) is discrete yields that there exists a δ2 > 0
for which α(λI − T ) = 0 for λ ∈ D(λ0, δ2). If δ := min{δ1, δ2} then λI − T is
bounded below for every λ ∈ D(λ0, δ), λ �= λ0. Thus, λ0 ∈ iso σap(T ).

(i) ⇒ (iv) If T satisfies a-Weyl’s theorem then T obeys a-Browder’s theorem.
Furthermore, πa00(T ) = pa00(T ) by Theorem 6.69, so λI − T ∈ B+(X) for all
λ ∈ πa00(T ), and hence (λ0I − T )(X) is closed.

(iv) ⇒ (i) The condition (λ0I − T )(X) closed for all λ ∈ πa00(T ) entails that
for these values of λ we have λI − T ∈ �+(X). Now, T has the SVEP at every
isolated point of σap(T ), and in particular T has the SVEP at every point of πa00(T ).
By Theorem 2.97 it then follows that p(λI − T ) < ∞ for all λ ∈ πa00(T ), from
which we deduce that πa00(T ) = pa00(T ).

(i) ⇒ (v) By Theorem 6.69 we have that �a(T ) = �a(T ) and T satisfies a-
Browder’s theorem, hence, by Theorem 5.31, the map λ → γ (λI − T ) is not
continuous at every λ ∈ �a(T ).

(v) ⇒ (iv) Suppose that λ→ γ (λI −T ) is not continuous at every λ ∈ �a(T ) =
�a(T )∪πa00(T ). The discontinuity at the points of�a(T ) entails, by Theorem 5.31,
that T satisfies a-Browder’s theorem. We show now that the discontinuity at a point
λ0 of πa00(T ) implies that (λ0I − T )(X) is closed. In fact, if λ0 ∈ πa00(T ) then
λ0 ∈ iso σap(T ) and 0 < α(λ0I − T ) < ∞. Clearly, λI − T is injective in an open
punctured disc D centered at λ0. Take 0 �= x ∈ ker(λ0I − T ). If λ ∈ D then

γ (λI − T ) ≤ ‖(λI − T )x‖
dist (x, ker(λI − T )) = ‖(λI − T )x‖

‖x‖
= ‖(λI − T )x − (λ0I − T )x‖

‖x‖ = |λ− λ0|.



6.4 a-Weyl’s Theorem 451

From this estimate it follows that

lim
λ→λ0

γ (λI − T ) = 0 �= γ (λ0I − T ),

so (λ0I − T )(X) is closed. �
From Theorems 5.31 and 6.70 we see that a-Browder’s theorem and a-Weyl’s

theorem are equivalent to the discontinuity of the mapping λ → γ (λI − T ) at the
points of the two sets �a(T ) and �a(T ), respectively, where �a(T ) is larger than
�a(T ). Comparing Theorems 6.70 and 5.31 one might expect that the discontinuity
of the mapping λ → ker(λI − T ) at every λ ∈ �a(T ) = �a(T ) ∪ πa00(T ) is
equivalent to a-Weyl’s theorem for T . This does not work. In fact, by definition of
πa00(T ) the map λ → ker(λI − T ) is not continuous at every λ ∈ πa00(T ) for all
operators T ∈ L(X), since every λ ∈ πa00(T ) is an isolated point of σap(T ). From
this it obviously follows that the discontinuity of the mapping λ → ker(λI − T ) at
every λ ∈ �a(T ) is equivalent to a-Browder’s theorem for T .

Analogously, the inclusion �a(T ) ⊆ σap(T ) is equivalent to a-Browder’s
theorem for T , since the inclusion πa00(T ) ⊆ iso σap(T ) holds by definition of
πa00(T ).

Theorem 6.71 Let T ∈ L(X) and let N be a nilpotent operator commuting with
T . If a-Weyl’s theorem holds for T , then it also holds for T +N .

Proof First we prove that πa00(T ) = πa00(T + N). It is enough to prove that 0 ∈
πa00(T ) if and only if 0 ∈ πa00(T +N). Suppose that 0 ∈ πa00(T ), so 0 < α(T ) <∞.
We prove that α(T + N) < ∞. Let x ∈ ker (T + N). Then (T + N)x = 0, so
T x = −Nx, and hence

T kx = (−1)kNkx for n ∈ N.

Let ν be such that Nν = 0. Then x ∈ ker T ν , and hence ker (T + N) ⊆ ker T ν .
From α(T ν) < ∞ we then have α(T + N) < ∞. We prove that α(T + N) > 0.
Since α(T ) > 0, there exists an x �= 0 such that T x = 0. Then (T + N)νx = 0, so
x ∈ ker(T +N)ν and α(T +N)ν > 0. This, obviously, implies that α(T +N) > 0.
Hence 0 ∈ πa00(T +N), thus

πa00(T ) ⊆ πa00(T +N).

The reverse inclusion follows by symmetry. To show that a-Weyl’s theorem holds
for T + N , observe that

πa00(T +N) = πa00(T ) = σap(T ) \ σuw(T ) = σap(T +N) \ σuw(T + N),

so a-Weyl’s theorem holds for T + N . �
In the sequel we shall need the following elementary lemma
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Lemma 6.72 Let Q ∈ L(X) be a quasi-nilpotent operator having finite-
dimensional kernel. If R ∈ L(X) is a Riesz operator that commutes with Q
thenQ+ R has a finite spectrum.

Proof Suppose on the contrary that there exists a sequence {λn} of distinct numbers
in σ(Q + R) \ {0}. Then λnI − Q is invertible for all n ∈ N, and since R
commutes with Q we have, by Theorem 3.8, that λnI − (Q + R) is Browder.
Therefore, ker (λnI − (Q+R)) is a non-zero finite-dimensional subspace, because
λnI−(Q+R) is non-invertible and hence the restriction ofQ to ker (λnI−(Q+R))
is nilpotent. Consequently, ker (λnI − (Q+R))∩ ker Q is non-trivial and contains
a non-zero element xn. Every xn is an eigenvector ofQ+R associated to λn and the
numbers λn are mutually distinct, and it is easily seen that {xn} consists of linearly
independent vectors of ker Q. Hence ker Q has infinite dimension, a contradiction.

�
For a bounded operator T ∈ L(X) we set

πaf (T ) := {λ ∈ σap(T ) : α(λI − T ) <∞}.

Evidently,

p00(T ) ⊆ π00(T ) ⊆ πaf (T ).

Theorem 6.73 If T ∈ L(X) and R ∈ L(X) is a Riesz operator that commutes with
T , then

πaf (T + R) ∩ σap(T ) ⊆ iso σap(T ).

Proof Let λ ∈ πaf (T + R). Then there exists a deleted neighborhood U of λ such
that μI − (T + R) is bounded below for all μ ∈ U . In particular, μI − (T + R) is
upper semi-Browder and henceμI−T is also upper semi-Browder, by Theorem 3.8.
By Theorem 2.97 it then follows that H0(μI − T ) ∩ K(μI − T ) = {0} for all
μ ∈ U . On the other hand, the closed subspaces H0(μI − T ) + K(μI − T ) =
H0(μI −T )⊕K(μI −T ) are constant on U , by Corollary 2.121. Let Z denote one
of them and set T0 := T |Z and R0 := R|Z. We claim that λ is not an accumulation
point of T0. To see this, let μ ∈ U . Since the restriction (μI − T )|K(μI − T ) is
invertible, then the restriction (μI − (T + R))|K(μI − T ) is Browder, again by
Theorem 3.8, and hence μI − (T0 + R0) is also Browder, since H0(μI − T ) is
finite-dimensional. Moreover,μI−(T +R) is injective, from which we deduce that
μI − (T0 + R0) is invertible and this shows that λ /∈ acc (T0 + R0). Consequently,

Z = H0(λI − (T0 + R0))⊕K(λI − (T0 + R0)). (6.17)

Now, write T0 = T1+T2 andR0 = R1+R2 with respect to the decomposition (6.17).
Since λI − (T1 + R1) is a quasi-nilpotent operator having a finite-dimensional
kernel, from Lemma 6.72 we obtain that σ(T1) is finite, hence there exists a deleted
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neighborhood V1 of λ such that V1 ∩ σ(T1) = ∅. Moreover, since λI − (T2 + R2)

is invertible, λI − T2 is Browder, by Theorem 3.8, and hence λ is an isolated point
of σ(T2), so there exists a deleted neighborhood V2 of λ such that V2 ∩ σ(T2) = ∅.
Set V := V1 ∩ V2 ∩ U . Clearly, V ∩ σ(T0) = ∅. Finally, since

ker (μI − T ) ⊆ H0(μI − T ) ⊆ Z,

we have

ker (μI − T ) = ker (μI − T0) = {0} for μ ∈ V.

But μI −T is semi-Fredholm, hence μI − T is bounded below. This completes the
proof. �
Theorem 6.74 Suppose that T ∈ L(X) is a-isoloid and that it satisfies a-Weyl’s
theorem. If K ∈ L(X) is an operator that commutes with T and such that there
exists an n ∈ N such that Kn is a finite rank operator then a-Weyl’s theorem holds
for T +K .

Proof Since K is a Riesz operator and T satisfies a-Browder’s theorem, T + K
satisfies a-Browder’s theorem, by Corollary 5.29. By Theorem 6.70 it suffices to
prove the equality pa00(T +K) = πa00(T +K). Let λ ∈ πa00(T +K) be arbitrarily
given. If λI − T is bounded below, in particular upper semi-Browder, then λI −
(T +K) is upper semi-Browder, by Theorem 3.8, so λ ∈ pa00(T +K). Consider the
other case that λ ∈ σap(T ). By Theorem 6.73, λ ∈ iso σap(T ). Since the restriction
of the operator λI − (T + K) to ker (λI − T ) has both finite-dimensional range
and kernel, ker (λI − T ) is also finite-dimensional, so that λ ∈ πa00(T ), since T is
a-isoloid. On the other hand, a-Weyl’s theorem for T entails that πa00(T ) = πa00(T ),
so πa00(T ) ∩ σub(T ) = ∅. Consequently, λI − T is upper semi-Browder, and hence
λI−(T +K) is also upper semi-Browder, by Theorem 3.8, from which we conclude
that λ ∈ pa00(T +K). This shows the inclusion πa00(T +K) ⊆ pa00(T +K) and since
the opposite inclusion is trivial we then conclude that πa00(T +K) = pa00(T +K),
so the proof is complete. �

Notice that in the preceding result it is essential to require that T is a-isoloid.
Indeed, we have:

Theorem 6.75 Let T ∈ L(X) and suppose that there exists a finite rank operator
commuting with T which is not nilpotent. If a-Weyl’s theorem holds for T + K for
every finite rank operator which commutes with T , then T is a-isoloid.

Proof Assume that T is not a-isoloid and let λ ∈ iso σap(T ) such that λI − T is
injective. By hypothesis there exists a finite rank operator K that is not nilpotent
and commutes with T . The operator K cannot be quasi-nilpotent, otherwise its
restriction K|K(X) is nilpotent and hence K is also nilpotent. The spectrum of
K is finite and contains 0, so X = H0(T ) ⊕ K(T ), by Theorem 2.45. Since K
is not quasi-nilpotent and the restriction K|K(T ) is an invertible operator of finite
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rank, it then follows thatK(T ) is a non-zero subspace ofX having finite dimension.
Represent T = T1 ⊕ T2 with respect to the decomposition X = X1 ⊕ X2, where
X1 = H0(K) and X2 is the analytic core of K . Since K is not quasi-nilpotent then
K|X2 is an invertible operator having finite rank, and this implies that X2 is a non-
zero subspace of finite dimension. Let T := T1 ⊕ T2 with respect to X = X1 ⊕X2,
and let μ ∈ C such that λ− μ ∈ σ(T2). Clearly, λ − μ is an eigenvalue of T2. The
operator S := 0 ⊕ μI is a finite-rank operator which commutes with T and

σap(T + S) = σap(T1) ∪ σap(μI + T2).

Since λ ∈ iso σap(T ) and λI − T is injective we then have λ /∈ σap(T2) and λ ∈
iso σap(T1) ⊆ iso σap(T + S). Moreover,

ker (λI − T + S) = ker ((λ− μ)I − T2)

is a non-trivial subspace having finite dimension, so λ ∈ πa00(T + S). On the
other hand, λ /∈ pa00(T ), so λI − T is not upper semi-Browder, and hence
λI − T + S is not upper semi-Browder, by Theorem 3.8, and this implies that λ /∈
pa00(T + S). Consequently, T + S does not satisfy a-Weyl’s theorem, contradicting
our assumptions. �
Theorem 6.76 Let T ∈ L(X) be a finite a-isoloid operator which satisfies a-Weyl’s
theorem. If R ∈ L(X) is a Riesz operator that commutes with T then T +R satisfies
a-Weyl’s theorem.

Proof Since T satisfies a-Browder’s theorem, T +R satisfies a-Browder’s theorem,
by Corollary 5.29, so it suffices to prove, by Theorem 6.70, the equality pa00(T +
R) = πa00(T + R). Let λ ∈ πa00(T + R). If λI − T is bounded below then λI −
(T + R) is upper semi-Browder and hence λ ∈ pa00(T + R). If λ ∈ σap(T ) then,
by Theorem 6.73, λ ∈ iso σap(T ), and since T is finite a-isoloid it then follows that
λ ∈ πa00(T ). But a-Weyl’s theorem for T entails that πa00(T )∩σub(T ) = ∅, therefore
λI − T is upper semi-Browder and hence λ ∈ pa00(T + R). The other inclusion is
trivial, so T + R satisfies a-Weyl’s theorem. �

The proof of the following theorem is omitted, since it is very similar to the proof
of Theorem 6.49, just take into account Theorem 6.70 and that σub(T ) is invariant
under Riesz commuting perturbations.

Theorem 6.77 Let T ∈ L(X) be an operator which satisfies a-Weyl’s theorem
and let R ∈ L(X) be a Riesz operator that commutes with T . Then the following
conditions are equivalent:

(i) T + R satisfies a-Weyl’s theorem;
(ii) πa00(T + R) = pa00(T + R);

(iii) πa00(T + R) ∩ σap(T ) ⊆ πa00(T ).

An obvious consequence of that for a finite a-isoloid operator T ∈ L(X) a-
Weyl’s theorem from T is transmitted to T + Q, where Q ∈ L(X) is a
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quasi-nilpotent operator which commutes with T . We now show that this result
remains true if we suppose only the following weaker condition

σp(T ) ∩ iso σap(T ) ⊆ πa00(T ).

Theorem 6.78 Let T ∈ L(X) be such that σp(T ) ∩ iso σap(T ) ⊆ π00(T ). If T
satisfies a-Weyl’s theorem and Q ∈ L(X) is a quasi-nilpotent operator which
commutes with T , then T +Q satisfies a-Weyl’s theorem.

Proof We already know that σap(T + Q) = σap(T ) and σb(T ) = σb(T + Q)

so pa00(T ) = pa00(T + Q). Since pa00(T ) = πa00(T ), it then suffices to prove
the equality πa00(T ) = πa00(T + Q). Let λ ∈ πa00(T ) = p00a(T ). Then
λI − T is upper semi-Browder and hence λ ∈ iso σap(T ) = iso σap(T + Q).
Theorem 3.8 then entails that λI − (T +Q) is upper semi-Browder, and hence λ ∈
πa00(T +Q).

Conversely, suppose that λ ∈ πa00(T + Q). Since Q is quasi-nilpotent and
commutes with T , the restriction of λI − T to the finite-dimensional subspace
ker (λI − (T + Q) is not invertible, hence ker (λI − T ) is non-trivial. Therefore,
λ ∈ σp(T ) ∩ iso σap(T ) ⊆ πa00(T ), which completes the proof. �

In the sequel we need the following lemma.

Lemma 6.79 For every T ∈ L(X), X a Banach space, and f ∈ H(σ (T )) we have

σap(f (T )) \ πa00(f (T )) ⊆ f (σap(T ) \ πa00(T )
)
. (6.18)

Furthermore, if T is a-isoloid then

σap(f (T )) \ πa00(f (T )) = f (σap(T ) \ πa00(T )
)
. (6.19)

Proof Suppose that λ ∈ σap(f (T )) \ πa00(f (T )) ⊆ f (σap(T )). We consider three
cases.

Case (I) Suppose that λ /∈ iso f (σap(T )). Then there is a sequence (μn) which
converges to a scalar μ0 ∈ σap(T ) such that f (μn) → λ. Hence, λ = f (μ0) ∈
f
(
σap(T ) \ πa00(T )

)
.

Case (II) Suppose that λ ∈ iso f (σap(T )) and λ is not an eigenvalue of f (T ). Write

λI − f (T ) = (μ1I − T ) · · · (μnI − T )g(T ), (6.20)

where μ1 ∈ σap(T ), μ2, . . . , μn ∈ σ(T ), and g(T ) is invertible. Obviously, the
operators on the right-hand side of (6.20) mutually commute. Since λ is not an
eigenvalue of f (T ), none of the scalars μ1, . . . , μn can be an eigenvalue of T .
Hence λ = f (μ1) ∈ f (σap(T ) \ πa00(T )

)
.

Case (III) Suppose that λ is an eigenvalue of f (T ) having infinite multiplicity.
According to the equality (6.20) there exists some μi such that μi is an
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eigenvalue of T having infinite multiplicity. Then μi ∈ σap(T ) \ πa00(T ) and
λ ∈ f (σap(T ) \ πa00(T )

)
.

To show the equality (6.19), let

λ ∈ f (σap(T ) \ πa00(T )
) ⊆ f (σap(T )) = σap(f (T )).

Suppose that λ ∈ πa00(f (T )). Then λ ∈ iso σap(f (T )) and, in the equality (6.20),
we see that if some μi belongs to σap(T ), then μi is isolated in σap(T ), and hence an
eigenvalue of T . Since λ is an eigenvalue of finite multiplicity, then all μi ∈ σa(T )

are eigenvalues of T of finite multiplicity. Therefore all μi ∈ σap(T ) are in πa00(T )

and this contradicts our assumption that λ ∈ f (σap(T ) \ πa00(T )
)
. �

Theorem 6.80 Let T ∈ L(X) be a-isoloid and suppose that either T or T ∗ has
the SVEP. If T satisfies a-Weyl’s theorem then f (T ) satisfies a-Weyl’s theorem f ∈
H(σ (T )).

Proof If T or T ∗ has the SVEP then the spectral mapping theorem holds for σuw(T ),
by Corollary 3.120. Since T satisfies a-Weyl’s theorem we have σuw(T ) = σap(T )\
πa00(T ). By Lemma 6.79 we then have

σuw(f (T )) = f (σuw(T )) = f (σap(T ) \ πa00(T )) = σap(f (T )) \ πa00(f (T )),

thus a-Weyl’s theorem holds for f (T ). �
a-Weyl’s theorem also admits a generalization in the sense ofB-Fredholm theory.

Define first

Ea(T ) := {λ ∈ iso σa(T ) : 0 < α(λI − T )},

and recall that by �ga(T ) we denote the set σap(T ) \ σubw(T ).

Definition 6.81 An operator T ∈ L(X) is said to satisfy the generalized a-Weyl’s
theorem if �ga(T ) = Ea(T ).

The generalized a-Weyl’s theorem entails a-Weyl’s theorem and the generalized
Weyl’s theorem:

Theorem 6.82 Suppose that T ∈ L(X) satisfies the generalized a-Weyl’s theorem.
Then we have:

(i) T satisfies a-Weyl’s theorem.
(ii) T satisfies the generalized Weyl’s theorem.

Proof

(i) Because T satisfies the generalized a-Weyl’s theorem we have σap(T ) \
σubw(T ) = Ea(T ). Let λ ∈ σap(T )\σbw(T ). Then λI −T is not upper semi B-
Weyl and hence λ ∈ σap(T ) \ σubw(T ) = Ea(T ). Since α(λI − T ) < ∞,
we have λ ∈ πa00(T ). Conversely, suppose that λ ∈ πa00(T ). Obviously,
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λ ∈ Ea(T ) = σap(T ) \ σubw(T ), so λI − T is upper semi B-Weyl. Since
α(λI − T ) < ∞, λI − T is upper semi-Weyl, by Theorem 1.114, hence
λ ∈ σap(T ) \ σuw(T ). Therefore, σap(T ) \ σuw(T ) = πa00(T ), and T satisfies
a-Weyl’s theorem.

(ii) Suppose that λ ∈ σ(T ) \ σbw(T ). Then λI − T is B-Weyl, in particular upper
semi B-Weyl, and λ ∈ σ(T ). Observe that λ ∈ σap(T ), otherwise if λI − T
were bounded below we would have, by Theorem 1.143, p(λI − T ) = q(λI −
T ) = 0, hence λ /∈ σ(T ), a contradiction. Therefore, λ ∈ σap(T ) \ σubw(T ) =
Ea(T ) and consequently μI − T is injective in a deleted neighborhood U1
of λ ∈ σap(T ). Since λI − T is B-Weyl, by Theorem 1.117 then μI − T is
Weyl in a deleted neighborhood U2 of λ. If U =:= U1 ∩ U2 then μI − T is
invertible for all μ ∈ U , so λ ∈ iso σ(T ). Consequently, λ ∈ E(T ) and hence
σ(T ) \ σbw(T ) ⊆ E(T ).

Conversely, if λ ∈ E(T ) then λ is an isolated point of σap(T ), since the boundary
of the spectrum belongs to the approximate-point spectrum. Hence, λ ∈ Ea(T ) =
σap(T ) \ σubw(T ) and λI − T is upper semi B-Weyl. Because λ ∈ iso σ(T ), both
T and T ∗ have the SVEP at λ, so, by Theorems 2.97 and 2.98, λI − T is Drazin
invertible. By Theorem 1.141 it then follows that λ /∈ σbw(T ), so σ(T ) \ σbw(T ) =
E(T ), as desired. �

We show now that in general, a-Weyl’s theorem does not imply the generalized
Weyl’s theorem, nor does it imply the generalized a-Weyl’s theorem.

Example 6.83 Let S ∈ L(X) as in Example 6.61. Then πa00(S) = σap(S)\σuw(S) =
∅, so S satisfies a-Weyl’s theorem, but does not satisfy the generalized Weyl’s
theorem. Furthermore, by Theorem 6.82, S does not satisfy the generalized a-Weyl’s
theorem.

Recall that �ga(T ) = σap(T ) \ σubw(T ). Define

�
g
2(T ) := �ga(T ) ∪ Ea(T ).

By Theorem 6.82, the generalized a-Weyl’s theorem entails a-Weyl’s theorem
and hence a-Browder’s theorem, or equivalently, the generalized a-Browder’s
theorem. The exact relationship between the generalized a-Weyl’s theorem and the
generalized a-Browder’s theorem is described in the following theorem.

Theorem 6.84 For a bounded operator T ∈ L(X) the following statements are
equivalent:

(i) T satisfies the generalized a-Weyl’s theorem;
(ii) T satisfies the generalized a-Browder’s theorem and Ea(T ) = �a(T );

(iii) For every λ ∈ �g2(T ) there exists a p := p(λ) ∈ N such that H0(λI − T ) =
ker (λI − T )p and (λI − T )n(X) is closed for all n ≥ p.
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Proof (i) ⇒ (ii) We have only to show the equality Ea(T ) = �a(T ). Suppose that
�
g
a(T ) = Ea(T ). To prove the equality Ea(T ) = �a(T ) it suffices to prove the

inclusion Ea(T ) ⊆ �a(T ).
Let λ ∈ Ea(T ). Clearly, T has the SVEP at λ, because λ ∈ iso σap(T ).

Since σap (T ) \ σubw(T ) = Ea(T ), λI − T is upper semi B-Weyl and hence,
by Theorem 2.97, λI − T is left Drazin invertible, i.e., λ ∈ �a(T ). Therefore,
Ea(T ) = �a(T ).

(ii) ⇒ (i) The generalized a-Browder’s theorem entails that �ga(T ) = �a(T ) =
Ea(T ), so T satisfies the generalized a-Weyl’s theorem.

(ii) ⇒ (iii) If T satisfies the generalized a-Browder’s theorem then �ga(T ) =
�a(T ) and from the assumption Ea(T ) = �a(T ) we have �g2(T ) = �a(T ) =
�a(T ). Let λ ∈ �

g
2(T ). From Theorem 5.42 there exists an m ∈ N such that

H0(λI − T ) = ker (λI − T )m. Clearly, p := p(λI − T ) is finite, and H0(λI −
T ) = ker (λI − T )p. Since λ ∈ �a(T ) then λI − T is left Drazin invertible, thus
(λI − T )p+1(X) is closed and hence, by Corollary 1.101, (λI − T )n(X) is closed
for all n ≥ p.

(iii) ⇒ (ii) Since �ga(T ) ⊆ �g2(T ), from Theorem 5.42 we know that T satisfies
the generalized a-Browder’s theorem. To show that Ea(T ) = �a(T ) it suffices to
prove that Ea(T ) ⊆ �a(T ). Suppose that λ ∈ Ea(T ). Then there exists a ν ∈ N

such that H0(λI − T ) = ker (λI − T )ν and this implies that λI − T has ascent
p = p(λI − T ) ≤ ν. Thus, from our assumption, we obtain that λI − T )p+1(X) is
closed and hence λ ∈ �a(T ). �
Corollary 6.85 Suppose that T is left polaroid and either T or T ∗ has the SVEP.
Then T satisfies the generalized a-Weyl’s theorem.

Proof T satisfies the generalized a-Browder’s theorem and the left polaroid condi-
tion entails that Ea(T ) = �a(T ). �
Theorem 6.86 If T ∗ has the SVEP then the generalized a-Weyl’s theorem holds for
T if and only if the generalized Weyl’s theorem holds for T .

Proof Suppose that T satisfies the generalized Weyl’s theorem. Since T ∗ has
the SVEP, by Theorem 2.68 σ(T ) = σap(T ), and hence E(T ) = Ea(T ). By
Theorem 3.44 we also have σubw(T ) = σbw(T ), so that

E(T ) = σ(T ) \ σbw(T ) = σap(T ) \ σubw(T ) = Ea(T ),

and hence the generalized a-Weyl’s theorem holds for T . �

6.5 Property (ω)

The following variant of Weyl’s theorem was introduced by Rakočević in a short
note [261] and studied extensively by Aiena and Peña in [22]. Evidently, for any
operator T ∈ L(X) we have �(T ) ⊆ {λ ∈ σ(T ) : 0 < α(λI − T ) <∞}.
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Definition 6.87 A bounded operator T ∈ L(X) is said to satisfy property (ω) if

�a(T ) = π00(T ) = {λ ∈ iso σ(T ) : 0 < α(λI − T ) <∞}.

Property (ω) entails a-Browder’s theorem:

Theorem 6.88 Suppose that T ∈ L(X) satisfies property (ω). Then a-Browder’s
holds for T and

σap(T ) = σuw(T ) ∪ iso σap(T ).

Proof By Theorem 5.27 it suffices to show that T has the SVEP at every λ /∈
σuw(T ). Let λ /∈ σuw(T ). If λ /∈ σap(T ) then T has the SVEP at λ, while if
λ ∈ σap(T ) then λ ∈ �a(T ) = π00(T ) and hence λ is an isolated point of σ(T ), so
also in this case T has the SVEP at λ.

The inclusion σuw(T ) ∪ iso σap(T ) ⊆ σap(T ) holds for every operator, since
σuw(T ) ⊆ σap(T ). To show the opposite implication, suppose that λ ∈ σap(T ). If
λ /∈ σuw(T ) then λ ∈ σap(T )\σuw(T ) = �a(T ) = π00(T ) and hence λ ∈ iso σ(T ),
in particular λ ∈ iso σap(T ), since every isolated point of the spectrum belongs
to the approximate point spectrum. Therefore, σap(T ) ⊆ σuw(T ) ∪ iso σap(T ), as
desired. �

The next result shows that, roughly speaking, property (R) may be thought of as
half of the property (ω):

Theorem 6.89 If T ∈ L(X) the following statements are equivalent:
(i) T satisfies property (ω);

(ii) a-Browder’s theorem holds for T and T has property (R).

Proof (i) ⇒ (ii) Suppose that T has property (ω). By Theorem 6.88 we need only
to show that property (R) holds for T , i.e. pa00(T ) = π00(T ). If λ ∈ π00(T ) =
σap(T ) \ σuw(T ) then λ ∈ iso σ(T ) and λI − T is upper semi-Weyl. The SVEP for
T at λ is equivalent to saying that p(λI − T ) < ∞, by Theorem 2.97. Therefore
λI − T is upper semi-Browder and hence λ ∈ pa00(T ). This shows the inclusion
π00(T ) ⊆ pa00(T ).

To show the opposite inclusion, suppose that λ ∈ pa00(T ). Since T satisfies
a-Browder’s theorem, by Theorem 6.88, then σub(T ) = σuw(T ), and hence λ ∈
σap(T ) \ σuw(T ) = π00(T ), so the equality pa00(T ) = π00(T ) is proved.

(ii) ⇒ (i) If λ ∈ �a(T ) = σap(T ) \ σuw(T ), a-Browder’s theorem entails that
λ ∈ σap(T ) \ σub(T ) = pa00(T ). Since T has property (R), it then follows that
λ ∈ π00(T ), so �a(T ) ⊆ π00(T ). On the other hand, if λ ∈ π00(T ) then property
(R) entails that λ ∈ pa00(T ) = σap(T ) \ σub(T ) = σap(T ) \ σuw(T ). Therefore,
�a(T ) = π00(T ). �

It is not surprising that without the SVEP the equivalence observed in the
previous theorem fails. Indeed, the next example shows that property (R) is weaker
than property (ω).
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Example 6.90 Let R ∈ L(�2(N)) denote the classical unilateral right shift, let Q
denote a quasi-nilpotent operator. Define T := R ⊕ R′ ⊕Q, R′ the Hilbert adjoint
of R. It is well-known that R′ is a unilateral left shift. Clearly, σap(T ) = σub(T ) =
D(0, 1), where D(0, 1) denotes the closed unit disc. Since π00(T ) = ∅, T satisfies
property (R), while T does not satisfy property (ω), since σuw(T ) = �∪{0}, where
� denotes the unit circle of C, so σap(T ) \ σuw(T ) �= ∅ = π00(T ).

Property (ω) entails Weyl’s theorem:

Theorem 6.91 If T ∈ L(X) satisfies property (ω) then Weyl’s theorem holds for T .

Proof T satisfies a-Browder’s theorem by Theorem 6.88, and hence Browder’s
theorem. To show Weyl’s theorem holds for T it suffices to prove that π00(T ) =
p00(T ). If λ ∈ π00(T ) then λ ∈ σap(T ), since α(λI − T ) > 0, and from
λ ∈ iso σ(T ) we know that both T and T ∗ have the SVEP at λ. Since π00(T ) =
σap(T )\σuw(T ), λI−T is upper semi-Weyl and hence, by Theorems 2.97 and 2.98,
we have p(λI −T ) = q(λI −T ) <∞. Since α(λI −T ) <∞, from Theorem 1.22
we then obtain that λI − T is Browder, i.e. λ ∈ p00(T ). Hence, π00(T ) ⊆ p00(T )

and since the reverse inclusion holds for every operator we conclude that π00(T ) =
p00(T ). �

The following examples show that property (ω) is not intermediate between
Weyl’s theorem and a-Weyl’s theorem. The first example provides an operator
satisfying property (w) but not a-Weyl’s theorem.

Example 6.92 Let T ∈ L(�2(N)) denote the unilateral right shift andQ ∈ L(�2(N))

the quasi-nilpotent operator defined as

Q(x1, x2, . . . ) :=
(x2

2
,
x3

3
, . . .

)
for all (xk) ∈ �2(N).

Consider on X := �2(N)⊕ �2(N) the operator S := T ⊕Q. Then σ(S) = σw(S) =
D(0, 1), while σap(S) = σuw(S) = � ∪ {0}, � the unit circle. Moreover, πa00(S) =
{0} and since π00(S) = ∅ we then see that σap(S) \ σuw(S) = π00(S), so S satisfies
property (ω). On the other hand, σap(S) \ σuw(S) = ∅ �= πa00(S) = {0}, so S does
not satisfy a-Weyl’s theorem.

The following example provides an operator that satisfies a-Weyl theorem but
not property (ω).

Example 6.93 Let R ∈ �2(N) be the unilateral right shift and

U(x1, x2, . . . ) := (0, x2, x3, · · · ) for all (xn) ∈ �2(N).

If T := R ⊕ U then σ(T ) = D(0, 1) so iso σ(T ) = π00(T ) = ∅. Moreover,
σap(T ) = � ∪ {0} and σuw(T ) = �, from which we see that T does not satisfy
property (ω), since �a(T ) = {0}. On the other hand, we also have πa00(T ) = {0},
so T satisfies a-Weyl’s theorem.
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Define

�(T ) := {λ ∈ �a(T ) : ind (λI − T ) < 0}.

Clearly,

�a(T ) = �(T ) ∪�(T ) and �(T ) ∩�(T ) = ∅. (6.21)

The next result relates Weyl’s theorem and property (w).

Theorem 6.94 If T ∈ L(X) satisfies property (w) then �(T ) = ∅. Furthermore,
the following statements are equivalent:

(i) T satisfies property (ω);
(ii) T satisfies Weyl’s theorem and�(T ) = ∅;

(iii) T satisfies Weyl’s theorem and�a(T ) ⊆ iso σ(T );
(iv) T satisfies Weyl’s theorem and �a(T ) ⊆ ∂σ(T ), ∂σ(T ) the topological

boundary of σ(T ).

Proof Suppose that T satisfies property (ω) and that �(T ) is non-empty. Let λ ∈
�(T ). Then λ ∈ �a(T ) = π00(T ), so λ ∈ iso σ(T ) and hence T ∗ has the SVEP
at λ. Since λ /∈ σuw(T ), λI − T is upper semi-Weyl, so ind (λI − T ) ≤ 0. By
Corollary 2.106 the SVEP for T ∗ implies that ind (λI − T ) ≥ 0, hence ind (λI −
T ) = 0, and this contradicts our assumption that λ ∈ �(T ).

To show the equivalence (i) ⇔ (ii) observe first that the implication (i) ⇒ (ii) is
clear from the first part of the proof and from Theorem 6.91. Conversely, if�(T ) =
∅ and T satisfies Weyl’s theorem then �a(T ) = �(T ) = π00(T ), so property (ω)
holds.

(iii) ⇒ (ii) Suppose that T satisfies Weyl’s theorem. If �a(T ) ⊆ iso σ(T ) then
both T and T ∗ have the SVEP at λ and, as above, this implies that ind (λI −T ) = 0
for every λ ∈ �a(T ), so �(T ) = ∅. Hence property (ω) holds for T .

(i) ⇒ (iii) If property (ω) holds then�a(T ) = π00(T ) ⊆ iso σ(T ).
(iii) ⇒ (iv) Obvious.
(iv) ⇒ (ii) Both T and T ∗ have the SVEP at the points λ ∈ ∂σ(T ) = ∂σ(T ∗). If

λ ∈ �a(T ) then, by Corollary 2.106, ind (λI − T ) = 0, hence�(T ) = ∅. �
We give now two sufficient conditions under which a-Weyl’s theorem for T

(respectively, T ∗) implies property (ω) for T (respectively, T ∗). Observe that these
conditions, see Theorem 5.48, are a bit stronger than the assumption that T satisfies
a-Browder’s theorem.

Theorem 6.95 If T ∈ L(X) then the following statements hold:
(i) If T has property (b) and T satisfies a-Weyl’s theorem then property (ω) holds

for T .
(ii) If T ∗ has property (b) and T ∗ satisfies a-Weyl’s theorem then property (ω)

holds for T ∗.
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Proof

(i) If T has property (b) then�a(T ) ⊆ iso σ(T ), by Theorem 5.45. Consequently,
�a(T ) ⊆ σap(T ). Let λ ∈ �a(T ). Then λI −T is upper semi-Weyl, so α(λI −
T ) < ∞ and λI − T has closed range. Since λ ∈ σap(T ) it then follows that
α(λI − T ) > 0, so λ ∈ π00(T ). To show the inclusion π00(T ) ⊆ �a(T ) it
suffices to observe that π00(T ) ⊆ πa00(T ) = �a(T ), since T satisfies a-Weyl’s
theorem. Hence, π00(T ) = �a(T ).

(ii) If T ∗ has property (b) then

�s(T ) = σs(T ) \ σlw(T ) ⊆ iso σ(T ) = iso σ(T ∗),

again by Theorem 5.45, from which we easily obtain that �s(T ) ⊆ σs(T ). Let
λ ∈ �s(T ) = �a(T ∗). Then β(λI − T ) = α(λI − T ∗) > 0 and since λI − T
is lower semi-Weyl we also have β(λI − T ) = α(λI − T ∗) < ∞. Therefore,
λ ∈ π00(T

∗). To show the reverse inclusion π00(T
∗) ⊆ �a(T

∗), observe that
since T ∗ satisfies a-Weyl’s theorem then π00(T

∗) ⊆ πa00(T
∗) = �a(T

∗), so
�a(T

∗) = πa00(T
∗), as desired. �

Theorem 6.96 If T ∈ L(X), then the following equivalences holds:
(i) If T ∗ has the SVEP, property (ω) holds for T if and only if Weyl’s theorem holds

for T , and this is the case if and only if a-Weyl’s theorem holds for T .
(ii) If T has the SVEP, property (ω) holds for T ∗ if and only if Weyl’s theorem holds

for T ∗, and this is the case if and only if a-Weyl’s theorem holds for T ∗.

Proof

(i) We know that if T ∗ has the SVEP then property (b) holds for T , by Corol-
lary 5.46. From part (i) of Theorems 6.95 and 6.91, the following implications
hold for T :

a-Weyl ⇒ (ω)⇒ Weyl. (6.22)

Assume now that T satisfies Weyl’s theorem. The SVEP for T ∗ implies, by
Theorem 2.68, that σ(T ) = σap(T ), so πa00(T ) = π00(T ) = σ(T ) \ σw(T ). By
Theorem 3.44 we also have that σw(T ) = σub(T ), from which we obtain that

πa00(T ) = σap(T ) \ σub(T ) = pa00(T ).

Since the SVEP for T ∗ entails a-Browder’s theorem for T , by Theorem 5.27,
then a-Weyl’s theorem holds for T , by Theorem 6.70.

(ii) The argument is similar to that used in the proof of part (i). If T has the SVEP,
the implications (6.22) hold for T ∗, again by Theorems 6.95 and 6.91. If T has
the SVEP then σ(T ∗) = σap(T

∗), by Theorem 2.68, and hence πa00(T
∗) =

π00(T
∗). By Theorem 3.44 we also have that σw(T

∗) = σw(T ) = σlb(T ) =
σub(T

∗), from which it easily follows that πa00(T
∗) = pa00(T

∗). The SVEP
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for T also implies that T ∗ satisfies a-Browder’s theorem, by Theorem 5.27, so
a-Weyl’s theorem holds for T ∗, by Theorem 6.70. �

Theorem 6.97 Suppose that T ∈ L(H), H a Hilbert space. Then property (ω)
holds for T ∗ if and only if property (ω) holds for the Hilbert adjoint T ′.

Proof From Theorem 3.1 we have σuw(T
′) = σuw(T ∗), so

σap(T
′) \ σuw(T

′) = σap(T ∗) \ σuw(T ∗) = σap(T ∗) \ σuw(T ∗)

= π00(T ∗) = π00(T
′),

so T ′ satisfies property (ω). The opposite implication follows in a similar way. �
Remark 6.98 The operator T considered in Example 6.92 shows that in the
statement (i) of Theorem 6.96 the SVEP for T ∗ cannot be replaced by the SVEP
for T . Indeed, S = T ⊕ Q has the SVEP, since every right shift operator has the
SVEP and Q has the SVEP, since it is quasi-nilpotent. But S satisfies property (w)
while a-Weyl’s theorem does not hold for S.

Analogously, in the statements (ii) of Theorem 6.96 the assumption that T has
the SVEP cannot be replaced by the assumption that T ∗ has the SVEP. Indeed, let us
consider the left shift L ∈ L(�2(N)), and let U ′ be the adjoint of the quasi-nilpotent
operator U defined in Example 6.93. We have L′ = R, R the unilateral right shift.
If we define S := L ⊕ U ′ then, as observed in Example 6.93, the Hilbert adjoint
S′ = T = R ⊕ U has the SVEP (and hence the dual S∗ has the SVEP). We also
know that σ(S) = σ(S′) = D(0, 1), and S′ = T does not have property (ω), or
equivalently, S∗ does not have property (ω).

Theorem 6.99 Suppose that T is a-polaroid. Then a-Weyl’s theorem holds for T if
and only if T satisfies property (ω).

Proof If T is a-polaroid then πa00(T ) = p00(T ). Indeed, if λ ∈ πa00(T ) then
λI − T has both ascent and descent finite. Since α(λI − T ) < ∞ then, by
Theorem 1.22, λI − T is Browder, and hence λ ∈ p00(T ). The reverse inclusion
is obvious, so πa00(T ) = p00(T ). Now, if T satisfies a-Weyl’s theorem then
�a(T ) = πa00(T ) = p00(T ). Moreover, since a-Weyl’s theorem entails Weyl’s
theorem, by Theorem 6.40 we then have p00(T ) = π00(T ), thus �a(T ) = π00(T ),
and hence T has property (ω).

Conversely, if T has property (ω) then �a(T ) = π00(T ). Property (ω) entails
that T satisfies Weyl’s theorem. By Theorem 6.40 then p00(T ) = π00(T ) = πa00(T ),
thus T satisfies a-Weyl’s theorem. �

The operator defined in Example 6.30 shows that a similar result to that of
Theorem 6.99 does not hold for polaroid operators, i.e. if T ∈ L(X) is polaroid
Weyl’s theorem for T and property (ω) for T in general are not equivalent.
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Theorem 6.100 Suppose that T ∈ L(X) is polaroid. Then the following statements
hold:

(i) If T ∗ has the SVEP then f (T ) has property (ω) for all f ∈ Hnc(σ (T )).
(ii) If T has the SVEP then f (T ∗) has property (ω) for all f ∈ Hnc(σ (T )).

Proof

(i) If T is polaroid then f (T ) is polaroid, by Theorem 4.19 and f (T ∗) = (f (T ))∗
has the SVEP, by Theorem 2.86. From Theorem 4.15 then f (T ) is a-polaroid.
Since, by Theorem 6.43, f (T ) satisfies Weyl’s theorem it then follows, by
Theorem 6.96, that f (T ) has property (ω).

(ii) The proof is analogous: f (T ) is polaroid and hence if f (T ∗ is polaroid. The
SVEP for T is transmitted to f (T ), so f (T ∗) is a-polaroid. By Theorem 6.43
then f (T ∗) satisfies Weyl’s theorem and hence, by Theorem 6.96, f (T ∗)
satisfies property (ω). �

We consider now the transmission of property (ω) from T ∈ L(X) to T + K ,
whereK is a suitable commuting perturbation.

Theorem 6.101 Suppose that T ∈ L(X) is isoloid and property (ω) holds for T .
Let K ∈ L(X) be such that TK = KT and Kn is a finite rank operator for some
n ∈ N. If iso σap(T ) = iso σap(T +K) then T +K has property (ω).

Proof By Theorem 3.27 we have σap(T ) = σap(T + K). Suppose that T
has property (ω). Then T satisfies a-Browder’s theorem and property (R). By
Theorem 6.14 T +K has property (R) and a-Browder’s theorem holds for T +K ,
by Corollary 5.29. Hence, T +K has property (ω). �

Generally, property (ω) is not transmitted from T to a quasi-nilpotent perturba-
tion T +Q. In fact, ifQ ∈ L(�2(N)) is defined by

Q(x1, x2, . . . ) =
(x2

2
,
x3

3
, . . .

)
for all (xn) ∈ �2(N),

thenQ is quasi-nilpotent and

{0} = π00(Q) �= σap(Q) \ σuw(Q) = ∅.

Take T = 0. Clearly, T satisfies property (ω) but T + Q = Q fails this property.
Note thatQ is not injective.

Theorem 6.102 Suppose that for T ∈ L(X) there exists an injective quasi-
nilpotent Q operator commuting with T . Then both T and T +Q satisfy property
(ω), a-Weyl’s and Weyl’s theorem.

Proof We show first property (ω) for T . It is evident, by Lemma 6.32, that π00(T )

is empty.
Suppose that σap(T ) \ σuw(T ) is not empty and let λ ∈ σap(T ) \ σuw(T ). Since

λI − T ∈ W+(X), α(λI − T ) < ∞ and λI − T has closed range. Since λI − T
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commutes with Q it then follows, by Lemma 2.189, that λI − T is injective, so
λ /∈ σap(T ), a contradiction. Hence σa(T ) \ σuw(T ) is also empty, and property (ω)
holds for T .

To show that a-Weyl’s theorem holds for T observe that by Lemma 6.32, πa00(T )

is also empty, hence

σap(T ) \ σuw(T ) = πa00(T ) = ∅.

Analogously, a-Weyl’s theorem also holds for T + Q, since the operator T + Q
commutes with Q. Weyl’s theorem is obvious: property (ω), as well as a-Weyl’s
theorem, entails Weyl’s theorem. Property (ω), as well as a-Weyl’s theorem and
Weyl’s theorem, for T +Q is clear, since T +Q commutes withQ. �

Obviously, by Theorem 6.102 any injective quasi-nilpotent operator satisfies
property (ω).

Example 6.103 In Theorem 6.102 the condition quasi-nilpotent cannot be replaced
by the condition of being compact. For example, consider the following operators
T := U ⊕ I and K := V ⊕ Q on �2(N) ⊕ �2(N), where, Q ∈ L(�2(N)) is an
injective compact quasi-nilpotent operator,

Ux :=
(

0,
x2

2
,
x3

3
, . . .

)
, x := (xn)n=1,2,... ∈ �2(N),

and

V x :=
(

1,−x2

2
,−x3

3
, . . .

)
, x := (xn)n=1,2,... ∈ �2(N).

The operator U is compact, so T = U ⊕ I and T ∗ have the SVEP since both
operator have discrete spectrum. Consequently, by Theorem 2.68, σap(T ) = σ(T )

and σuw(T ) = σw(T ) = {0, 1}. Clearly,

σap(T ) \ σuw(T ) = σ(T ) \ σw(T ) = π00(T ) =
{

1

n
: n = 2, 3, . . .

}
,

thus property (ω) holds for T . Note that K is an injective compact operator, TK =
KT and

σ(T +K) = σw(T +K) = {0, 1} and π00(T +K) = {1}. (6.23)

Clearly, T ∗ +K∗ has the SVEP, since it has finite spectrum. Moreover,

σ(T +K) = σap(T +K) and σuw(T +K) = σw(T +K),

from which we deduce that property (ω) does not hold for T +K .



466 6 Weyl-Type Theorems

From Lemma 2.189 we deduce that if 0 < α(T ) < ∞ then there exists no
injective quasi-nilpotent operator Q which commutes with T . Theorem 6.102 has
the following interesting consequence:

Corollary 6.104 Suppose that T does not satisfy Browder’s theorem. Then there
exists no injective quasi-nilpotent operator commuting with T .

Proof If T does not satisfy Browder’s theorem then T does not satisfy Weyl’s
theorem, so the assertion follows from Theorem 1.70. �
Remark 6.105 For a finite rank operator K and any T ∈ L(X), it is known that
α(T ) = ∞ if and only if α(T +K) = ∞.

Theorem 6.106 Suppose that Q ∈ L(X) is quasi-nilpotent and K ∈ L(X) is a
finite rank operator commuting with Q. If Q satisfies property (ω) then Q + K

satisfies property (w).

Proof IfQ is injective thenQ+K satisfies property (ω) by Theorem 6.102. Suppose
thatQ is non-injective and satisfies property (ω). Clearly, {0} = σuw(Q) = σap(Q)

since both σuw(Q) and σap(Q) are non-empty, and from Corollary 6.120 and
Theorem 3.17, we know that

{0} = σuw(Q) = σuw(Q+K)

and σap(Q+K) = σap(K), so σap(Q+K) \ σuw(Q+K) is the set of all non-zero
eigenvalues of K . Say λ1, . . . , λn.

We show that π00(Q + K) = {λ1, . . . , λn}. Since Q satisfies property (ω) we
have

∅ = σap(Q) \ σuw(Q) = π00(Q),

and since α(Q) > 0 this implies that α(Q) = ∞. As observed in Remark 6.105,
this implies that α(Q +K) = ∞, so that 0 /∈ π00(Q+K). Therefore,

π00(Q+K) ⊆ σap(Q+K) = σap(K) \ {0} = {λ1, . . . , λn}.

We show the opposite inclusion. For every i = 1, . . . , n the operators λiI − Q
are invertible, in particular Fredholm operators, so λiI − (Q + K) is a Fredholm
operator. Therefore, α(λiI − (Q+K)) <∞ and λiI − (Q+K) has closed range.

Now, suppose that α(λiI − (Q + K)) = 0. Then λi /∈ σap(Q + K) = σap(K),
hence λiI −K is injective. Since K is a finite-rank operator it then follows that

α(λiI −K) = β(λiI −K) = 0,

i.e. λi /∈ σ(K), a contradiction. Therefore λi ∈ π00(Q + K), and consequently
property (ω) holds forQ+K . �

Property (ω) may also be extended in the sense of B-Fredholm theory.
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Definition 6.107 An operator T ∈ L(X) is said to satisfy the generalized property
(ω), in symbols (gω), if �ga = E(T ).

Property (gω) is stronger than property (ω):

Theorem 6.108 If T ∈ L(X) has property (gω) then T has property (ω).

Proof Assume property (gω) for T and let λ ∈ �a(T ) = E(T ). Clearly, λ ∈
�
g
a(T ), because σubw(T ) ⊆ σuw(T ), hence 0 < α(λI − T ) and since λI − T is

Weyl we then have α(λI − T ) <∞, so λ ∈ π00(T ).
Conversely, if λ ∈ π00(T ) then λ ∈ E(T ) = �

g
a(T ) and hence λI − T is upper

semi B-Fredholm. But α(λI − T ) < ∞ and this implies, by Theorem 1.114, that
λI − T is upper semi-Fredholm. Therefore, λ ∈ σap(T ) \ σuw(T ) = �a(T ). Thus,
property (ω) holds for T . �

The next example shows that the converse of the previous theorem does not hold
in general.

Example 6.109 Denote by Q any quasi-nilpotent operator, acting on an infinite-
dimensional Banach space, for which all the ranges Qn(X) are non-closed for all
n ∈ N. Let T := 0 ⊕ Q. Since T n(X) = Qn(X) is non-closed for all n ∈ N, T
is not semi B-Fredholm, so σubw(T ) = {0}. Since σap(T ) = {0} and E(T = {0},
T does not satisfy property (gω), while, since π00(T ) = ∅ and σuw(T ) = {0}, T
satisfies property (ω).

Property (gω) is related to the generalized Weyl’s theorem as follows:

Theorem 6.110 Let T ∈ L(X). Then the following statements are equivalent:
(i) T satisfies property (gω);

(ii) T satisfies the generalized Weyl’s theorem and ind (λI − T ) = 0 for all λ ∈
�
g
a(T ).

Proof (i) ⇒ (ii) Suppose that T satisfies property (gω) and let λ ∈ �g(T ) =
σ(T ) \ σbw(T ). Then λ /∈ σubw(T ). If α(λI − T ) = 0 then λI − T is invertible,
and this is impossible. Hence α(λI − T ) > 0 and λ ∈ σap(T ). Since T has property
(gω) it then follows that λ ∈ E(T ), from which we obtain that �g(T ) ⊆ E(T ). To
show the converse inclusion, let λ ∈ E(T ) be arbitrary. Since T has property (gω),
λ /∈ σubw(T ) and hence ind (λI − T ) ≤ 0. On the other hand, since λ ∈ E(T ) then
λ ∈ iso σ(T ), hence T ∗ has the SVEP at λ and, consequently, ind (λI − T ) ≥ 0,
from which we obtain ind (λI − T ) = 0 and λ /∈ σbw(T ). Hence �g(T ) = E(T )

and ind (λI − T ) = 0 for all λ ∈ �ga(T ).
(ii) ⇒ (i) Conversely, assume that T satisfies the generalized Weyl’s theorem

ind (λI − T ) = 0 for all λ ∈ �ga(T ) and ind (λI − T ) = 0 for all λ ∈ �ga(T ). If
λ ∈ �ga(T ), then λI − T is upper semi B-Weyl, and since ind (λI − T ) = 0 we
then have that λI −T is B-Weyl. But T satisfies the generalized Weyl’s theorem, so
λ ∈ E(T ) and hence �ga(T ) ⊆ E(T ). To show the reverse inclusion, let λ ∈ E(T ).
Then λI −T is B-Weyl and α(λI −T ) > 0, since λ ∈ σ(T ). Thus λ ∈ �ga(T ), and
consequently T satisfies property (gω). �
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In the following theorem we give the exact relationship between property (ω)
and property (gω).

Theorem 6.111 Let T ∈ L(X). Then the following statements are equivalent:
(i) T satisfies property (gω);

(ii) T satisfies property (ω) and has property (gR);
(iii) T satisfies Weyl’s theorem and has property (gR);
(iv) T satisfies Browder’s theorem holds and has property (gR).

Proof (i) ⇒ (ii) Assume that T has property (gω). By Theorem 6.108 T has
property (ω) and, by Theorem 6.110, T satisfies the generalized Weyl’s theorem.
Hence E(T ) = �(T ). If λ ∈ �a(T ) then λI − T is left Drazin invertible and since
T ∗ has the SVEP at λ it then follows that q(λI − T ) < ∞, by Theorem 2.98, so
λ ∈ �(T ). This shows that �(T ) ⊆ �a(T ) and hence �a(T ) = E(T ), i.e., T has
property (gR).

(ii) ⇒ (iii) Clear, since property (ω) entails Weyl’s theorem for T , by Theo-
rem 6.91.

(iii) ⇒ (iv) Clear: indeed Weyl’s theorem entails Browder’s theorem.
(iv) ⇒ (i) Suppose that T satisfies Browder’s theorem, or equivalently the

generalized Browder’s theorem, and suppose that �a(T ) = E(T ). Then �a(T ) =
�a(T ) = E(T ), so T has property (gω). �
Theorem 6.112 Let T ∈ L(X). If T ∗ has the SVEP then the following statements
are equivalent.

(i) T has property (gω);
(ii) T satisfies the generalized a-Weyl’s theorem;

(iii) T satisfies the generalized Weyl’s theorem.
Dually, if T has the SVEP then the following statements are equivalent.

(iv) T ∗ has property (gω);
(v) T ∗ satisfies the generalized Weyl’s theorem;

(vi) T ∗ satisfies the generalized a-Weyl’s theorem.

Proof The implications (i) ⇒ (ii) is clear, by Theorem 6.110. To show that (ii) ⇔
(iii), observe first that, by Theorem 2.68, the SVEP for T ∗ entails that σ(T ) =
σap(T ), so Ea(T ) = E(T ). By Theorem 3.53 we also have σbw(T ) = σubw(T ),
hence �ga(T ) = �g(T ), so the statements (ii) and (iii) are equivalent. To show the
implication (ii) ⇒ (i), suppose that T satisfies the generalized Weyl’s theorem and
let us consider λ ∈ �ga(T ). Then λI−T is upper semiB-Weyl, so ind (λI−T ) ≤ 0.
On the other hand, the SVEP for T ∗ ensures, by Theorem 2.98, that q(λI−T ) <∞
and hence, by Theorem 1.22, ind (λI − T ) ≥ 0. Therefore, ind (λI − T ) = 0 for all
λ ∈ �ga(T ). By Theorem 6.110 then T has property (gω).

The proof of the equivalences (iv) ⇔ (v) ⇔ (vi) is analogous, just use
Theorem 2.97 instead of Theorem 2.98. �
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Theorem 6.113 Let T ∈ L(X) be polaroid and f ∈ Hnc(σ (T )).

(i) If T ∗ has the SVEP, then f (T ) has property (gω).
(ii) If T has the SVEP, then f (T ∗) has property (gω).

Proof

(i) f (T ∗) has the SVEP, by Theorem 2.86, and f (T ) is polaroid by Theorem 4.19.
The SVEP for f (T ∗) entails that Browder’s theorem, or equivalently the
generalized Browder’s theorem, holds for f (T ). Since f (T ) is polaroid then
E(f (T )) = �(f (T )), so f (T ) satisfies the generalized Weyl’s theorem. By
Theorem 6.112 we then conclude that f (T ) satisfies property (gω).

Since T ∗ has the SVEP, Browder’s theorem holds for T , or equivalently
the generalized Browder’s theorem holds for T , by Theorem 5.15. Since T is
polaroid, E(T ) = �(T ), so T satisfies the generalized Weyl’s theorem. Since
T ∗ has the SVEP, by Theorem 6.112 then property (gω) holds for T .

(ii) The proof is analogous to the proof of part (i), taking into account that T is
polaroid if and only if T ∗ is polaroid. �

Recall that, by Theorem 3.78, ifK ∈ L(X) commutes with T ∈ L(X) andKn is
a finite rank operator for some n ∈ N then σubw(T +K) = σubw(T ).

Theorem 6.114 Suppose that T ∈ L(X) is polaroid and that K ∈ L(X) is such
that TK = KT and Kn is a finite rank operator for some n ∈ N. If T satisfies
property (gω) then T + K satisfies property (gω) if and only if �a(T + K) ⊆
E(T +K).
Proof Assume that T has property (gω) and �a(T + K) ⊆ E(T + K). Property
(gω) entails property (w) and hence a-Browder’s theorem. Then T + K satisfies
a-Browder’s theorem, by Corollary 5.29, or equivalently, T satisfies the generalized
a-Browder’s theorem by Theorem 5.38. Hence �ga(T ) = �a(T + K), and from
the assumption we then have �ga(T ) ⊆ E(T + K). Conversely, suppose that λ ∈
E(T +K). Then λ ∈ iso σ(T +K), and since T +K is polaroid, by Theorem 4.24,
we then have

λ ∈ �(T +K) ⊆ �a(T +K) = �ga(T ).

Thus,�ga(T ) = E(T +K) and hence T +K has property (gω).
Conversely, if T + K has property (gω) then �ga(T + K) = E(T + K). Since

�a(T +K) ⊆ �ga(T +K), we have�a(T +K) ⊆ E(T +K). �
We consider now the special case of nilpotent perturbations. Recall that σubw(T+

N) = σubw(N) for every nilpotent operator N that commutes with T .

Theorem 6.115 Suppose that T ∈ L(X) is polaroid and that N ∈ L(X) is a
nilpotent operator that commutes with T . If T satisfies property (gω) then T + N
satisfies property (gω).
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Proof First note that

�
g
a(T ) = σap(T ) \ σubw(T ) = σap(T + N) \ σubw(T + N) = �ga(T + N).

Now, if λ ∈ E(T ) then λ ∈ iso σ(T ) = iso σ(T +N), and since T +N is polaroid,
by Theorem 4.24, then λ is a pole of the resolvent of T + N . In particular, λ ∈
E(T + N). This shows that E(T ) ⊆ E(T + N) and the converse of this inclusion
may be obtained by a symmetric argument. Hence E(T ) = E(T + N). Finally,
since T satisfies (gω),

�
g
a(T + N) = �ga(T ) = E(T ) = E(T +N),

so T + N has property (gω). �
Lemma 6.116 Suppose that for a bounded operator T ∈ L(X) there exists a λ0 ∈
C such that K(λ0I − T ) = {0} and ker (λ0I − T ) = {0}. Then σp(T ) = ∅.
Proof For all complex λ �= λ0 we have ker (λI − T ) ⊆ K(λ0I − T ), so that
ker (λI − T ) = {0} for all λ ∈ C. �
Theorem 6.117 Let T ∈ L(X) be such that there exists a λ0 ∈ C such that

K(λ0I − T ) = {0} and ker (λ0I − T ) = {0}. (6.24)

Then property (gω) holds for f (T ) for all f ∈ H(σ (f (T )).

Proof We know from Lemma 6.116 that σp(T ) = ∅, so T has the SVEP. We show
that also σp(f (T )) = ∅. Letμ ∈ σ(f (T )) and writeμ−f (λ) = p(λ)g(λ), where g
is analytic on an open neighborhood U containing σ(T ) and without zeros in σ(T ),
p a polynomial of the form p(λ) = �nk=1(λk − λ)νk , with distinct roots λ1, . . . , λn
lying in σ(T ). Then

μI − f (T ) = �nk=1(λkI − T )νkg(T ).

Since g(T ) is invertible, σp(T ) = ∅ implies that ker (μI − f (T )) = {0} for
all μ ∈ C, hence σp(f (T )) = ∅ and, consequently, f (T ) has the SVEP. This
implies that a-Browder’s theorem holds for f (T ), or equivalently, the generalized
a-Browder’s theorem holds for f (T ), i.e., σubw(f (T )) = σld(f (T )). Clearly,
Ea(f (T )) = E(f (T )) = ∅. Now, suppose that λ /∈ σubw(f (T )), so λI − f (T ) is
upper semi B-Weyl. Since α(λI − f (T )) = 0 then, by Corollary 1.115, λI − f (T )
is bounded below, so λ /∈ σa(f (T )). Therefore, σa(f (T )) ⊆ σubw(f (T )), and
since the opposite inclusion holds for every operator, we then have σap(f (T )) =
σubw(f (T )), so �ga(T ) = ∅. Hence f (T ) has property (gω). �

In the last part of this section we show that Weyl-type theorems are transferred
from a Drazin invertible operator to its Drazin inverse.
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Lemma 6.118 Let R ∈ L(X) be Drazin invertible with Drazin inverse S. Then we
have:

(i) 0 ∈ π00(R)⇔ 0 ∈ π00(S). If λ �= 0 then λ ∈ π00(R) ⇔ 1
λ

∈ π00(S).

(ii) 0 ∈ πa00(R)⇔ 0 ∈ πa00(S). If λ �= 0 then λ ∈ πa00(R) ⇔ 1
λ

∈ πa00(S).

Proof

(i) Suppose first that 0 ∈ π00(R). Then 0 ∈ iso σ(R), and this implies 0 ∈
iso σ(S). Obviously, with respect to the usual decomposition X = Y ⊕ Z,
R = R1 ⊕R2 we have α(R) = α(R1)+α(R2) = α(R1), since R2 is invertible.
Since α(R) < ∞, α(R1) < ∞ and hence α(Rν1 ) < ∞, where Rν1 = 0. But
ker Rν1 = Y , so Y is finite-dimensional.

On the other hand, ker (S) = ker 0 ⊕ ker S2 = Y ⊕ {0}, thus α(S) < ∞. It
remains to prove that 0 < α(S). By assumption we have α(R) = α(R1) > 0,
so α(Rν1 ) = dimY > 0, since ker R1 ⊆ ker Rν1 and hence α(S) = dimY > 0.
Therefore, 0 ∈ π00(S). Analogous arguments show the reverse implication.

The second assertion follows from the equality ker (λI−R) = ker ( 1
λ
I−S).

(ii) If 0 ∈ πa00(R) then 0 ∈ iso σa(R) and hence 0 ∈ iso σa(S). To show that
0 < α(S) <∞, proceed as in the proof part (i). An analogous reasoning shows
that if 0 ∈ πa00(S) then 0 ∈ πa00(R). The second assertion follows from the
equality ker (λI − R) = ker ( 1

λ
I − S). �

Theorem 6.119 Let R ∈ L(X) be Drazin invertible with Drazin inverse S. Then
(i) R satisfies Weyl’s theorem if and only if S satisfies Weyl’s theorem.

(ii) R satisfies a-Weyl’s theorem if and only if S satisfies a-Weyl’s theorem.
(iii) R satisfies property (ω) if and only if S satisfies property (ω).

Proof

(i) Suppose that R satisfies Weyl’s theorem. Then R satisfies Browder’s theorem
and hence, by part (i) of Theorem 5.109, Browder’s theorem holds for S. Let
λ ∈ π00(S). If λ = 0 then, by Lemma 6.118, 0 ∈ π00(R) = p00(R), hence,
by Lemma 5.111, 0 ∈ p00(S). If λ �= 0 then 1

λ
∈ π00(R) = p00(R), hence

λ ∈ p00(S). Therefore, π00(S) ⊆ p00(S) and since the opposite inclusion
holds for every operator we then conclude that π00(S) = p00(S), thus, by
Theorem 6.40 S satisfies Weyl’s theorem. In a similar way Weyl’s theorem for
S implies Weyl’s theorem for R.

(ii) If R satisfies a-Weyl’s theorem, then R satisfies a-Browder’s theorem and
pa00(R) = πa00(R). From part (ii) of Theorem 5.109 we know that a-Browder’s
theorem holds for S. To show that S satisfies a-Weyl’s theorem then it suffices,
by Theorem 6.40, to prove that πa00(S) = pa00(S).

Let λ ∈ πa00(S). If λ = 0 then, by Lemma 6.118, 0 ∈ πa00(R) = pa00(R).
Hence, by Lemma 5.111, 0 ∈ pa00(S). If λ �= 0 then, by Lemma 6.118,
1
λ

∈ πa00(R) = pa00(R), and hence, by Lemma 5.111, we have λ ∈ pa00(S).
Therefore, πa00(S) ⊆ pa00(S). The opposite inclusion holds for every operator,
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so πa00(S) = pa00(S), thus S satisfies a-Weyl’s theorem. In a similar way a-
Weyl’s theorem for S implies a-Weyl’s theorem for R.

(iii) If R satisfies property (ω), then, by Theorem 6.89, R satisfies a-Browder’s
theorem and pa00(R) = π00(R). By part (ii) of Theorem 5.109, a- Browder’s
theorem holds for S, so, in order to show property (ω) for S, it suffices to prove,
by Theorem 6.89, that π00(S) = pa00(S).

Let λ ∈ π00(S). If λ = 0 then, by Lemma 6.118, 0 ∈ π00(R) = pa00(R). Hence,
by Lemma 5.111, 0 ∈ pa00(S). Suppose the other case, λ �= 0. Then 1

λ
∈ π00(R) =

pa00(R), and hence λ ∈ pa00(S). Therefore,π00(S) ⊆ pa00(S). It remains to prove that
pa00(S) ⊆ π00(S). Let λ ∈ pa00(S). If λ = 0 then S is Browder, see Lemma 5.111,
so 0 is an isolated point of σ(S). Clearly, 0 < α(T ), since 0 is an eigenvalue and
S(X) is closed. Moreover, α(S) <∞, so 0 ∈ π00(S).

If λ �= 0 then, again by Lemma 6.118, 1
λ

∈ pa00(R) = π00(R), and hence, by
Lemma 5.111, λ ∈ π00(S), from which we conclude that π00(S) = pa00(S), thus
S satisfies property (ω). In a similar way, property (ω) for S implies property (ω)
for R. �

6.6 Weyl-Type Theorems for Polaroid Operators

We have seen that assuming the SVEP for T ∗ (respectively, for T ) the Weyl-type
theorems are equivalent for T (respectively, for T ∗). In this section we show that
also assuming polaroid-type conditions then some of the Weyl-type theorems are
equivalent.

In the following diagram we resume the relationships between all Weyl-type
theorems, generalized or not, proved in the previous section. We shall use the
symbols (W) and (gW) for Weyl’s theorem and the generalized Weyl’s theorem,
respectively. By (aW) and (gaW) we shall denote a-Weyl’s theorem and the
generalized a-Weyl’s theorem, respectively. We have

(gω) ⇒ (ω) ⇒ (W)

(gaW) ⇒ (aW) ⇒ (W).

Furthermore,

(gω) ⇒ (gW) ⇒ (W)

(gaW) ⇒ (gW) ⇒ (W).
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Theorem 6.120 Let T ∈ L(X). Then we have:
(i) If T is left-polaroid then (aW) and (gaW) for T are equivalent. If T is right-

polaroid then (aW) and (gaW) for T ∗ are equivalent.
(ii) If T is polaroid then (W) and (gW) for T are equivalent. Analogously, (W)

and (gW) for T ∗ are equivalent.

Proof

(i) We know that (gaW) entails property (aW) without any assumption on T . To
show the converse, suppose that property (aW) holds for T , i.e., �a(T ) =
σap(T ) \ σuw(T ) = πa00(T ). We have only to prove that σap(T ) \ σubw(T ) =
Ea(T ). We show first that the inclusion σa(T )\σubw(T ) ⊆ Ea(T ) holds without
any assumption on T .

Let λ ∈ σap(T )\σubw(T ). We can suppose that λ = 0. Therefore, 0 ∈ σap(T )

and T is upper semi B-Weyl. By Theorem 1.117, there exists an ε > 0 such
that μI − T is upper semi-Weyl for all 0 < |μ| < ε. We claim that T has the
SVEP at every μ. If μ /∈ σap(T ) this is obvious. Suppose that μ ∈ σap(T ).
Then μ ∈ σap(T ) \ σuw(T ) = πa00(T ), so μ is an isolated point of σap(T )

and hence T has the SVEP at μ. The following argument shows that T has the
SVEP at 0. Let f : D0 → X be an analytic function defined on an open disc
D0 centered at 0 for which the equation (λI − T )f (λ) = 0 for all λ ∈ D0.
Take 0 �= μ ∈ D0 and let D1 be an open disc centered at μ contained in D0.
The SVEP of T at μ implies that f ≡ 0 on D1 and hence, from the identity
theorem for analytic functions, it then follows that f ≡ 0 on D0, so T has
the SVEP at 0. But T is upper semi B-Fredholm, so, by Theorem 2.97, 0 ∈
iso σap(T ).

Suppose that α(T ) = 0. By Theorem 1.114 then T ∈ �+(X), so
the range T (X) is closed and, consequently, 0 /∈ σap(T ), a contradiction.
Therefore α(T ) > 0, from which we conclude that 0 ∈ Ea(T ) and hence
σap(T ) \ σubw(T ) ⊆ Ea(T ).

Suppose now that T is left polaroid and let λ ∈ Ea(T ). Then λ is an
isolated point of σap(T ), and hence by the left polaroid condition λ is a left
pole of T . In particular, λI − T is left Drazin invertible. Since σubw(T ) ⊆
σld(T ) we then have λ ∈ σap(T ) \ σld(T ) ⊆ σap(T ) \ σubw(T ). Therefore,
σap(T ) \ σubw(T ) = Ea(T ), and the generalized a-Weyl’s theorem holds for
T .

The assertion concerning right-polaroid operators is obvious by Theo-
rem 1.144.

(ii) We have only to show that Weyl’s theorem entails the generalized Weyl’s
theorem. Suppose first that λ0 ∈ E(T ). Since T is polaroid then λ0 is a pole
of T , hence 0 < p(λ0I − T ) = q(λ0I − T ) < ∞. Therefore, λ0I − T

is Drazin invertible or equivalently, by Theorem 3.47, λ0I − T is B-Browder
and hence B-Weyl. Consequently, λ0 ∈ σ(T ) \ σbw(T ) and hence E(T ) ⊆
σ(T ) \ σbw(T ).
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Conversely, assume that λ0 ∈ σ(T ) \ σbw(T ). Then λ0I − T is B-Weyl
and hence, again by Theorem 1.117, there exists an ε > 0 such that λI − T
is Weyl for all 0 < |λ − λ0| < ε. By Theorem 1.118 we know that λI −
T is semi-regular in a punctured open disc centered at λ0, so we can assume
that

ker (λI − T ) ⊆ N∞(λI − T ) ⊆ (λI − T )∞(X) for all 0 < |λ− λ0| < ε.

Since Weyl’s theorem for T entails Browder’s theorem for T , we have
σw(T ) = σb(T ). Therefore, λI − T is Browder for all 0 < |λ − λ0| < ε and,
consequently, p(λI − T ) = q(λI − T ) <∞. By Lemma 1.19 we then have

ker (λI − T ) = ker (λI − T ) ∩ (λI − T )∞(X) = {0},

thus α(λI−T ) = 0 and since λI−T is Weyl we then conclude that also β(λI−
T ) = 0, so λI − T is invertible for all 0 < |λ− λ0| and hence λ0 ∈ iso σ(T ).

To show that λ0 ∈ E(T ) it remains to prove that α(λ0I − T ) > 0. Suppose
that α(λ0I −T ) = 0. Since λ0I −T is B-Weyl then, by Lemma 1.114, λ0I −T
is Weyl and since α(λ0I − T ) = 0 it then follows that λ0I − T is invertible,
a contradiction since λ0 ∈ σ(T ). Therefore, λ0 ∈ E(T ), so the generalized
Weyl’s theorem holds for T .

The last assertion is clear: T ∗ is also polaroid. �
Corollary 6.121 If T ∈ L(X) is a-polaroid then (aW), (gaW), (ω), (gω) for T
are equivalent.

Proof Every a-polaroid operator is left polaroid so, by part (i) of Theorem 6.120,
(aW) and (gaW) are equivalent. Property (ω) and (aW) are equivalent, since
π00(T ) = πa00(T ). We also have E(T ) = Ea(T ), from which it easily follows
that (gaW) and (gω) are equivalent. �

In the following example we show that the result of Corollary 6.121 does not
hold if we replace the condition of being a-polaroid by the weaker conditions of
being left polaroid or polaroid.

Example 6.122 Let R and U be defined as in Example 6.30. As observed before
T := R ⊕ U is both left polaroid and polaroid. Moreover, σap(T ) = � ∪ {0}, � the
unit circle, and iso σ(T ) = π00(T ) = ∅, so σap(T ) \ σuw(T ) = {0} �= π00(T ), i.e.,
T does not satisfy property (ω). On the other hand, we have πa00(T ) = {0}, hence T
satisfies a-Weyl’s theorem.

In the following result we show that if T is polaroid and T ∗ has the SVEP,
(respectively, T has the SVEP), we can say much more: all Weyl-type theorems,
generalized or not, are equivalent and hold for T , (respectively, for T ∗).
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Theorem 6.123 Let T ∈ L(X) be polaroid. Then we have
(i) If T ∗ has the SVEP then (W), (aW), (ω), (gW), (gaW) and (gw) hold for T .

Moreover, T ∗ satisfies (gW).
(ii) If T has the SVEP then (W), (aW), (ω), (gW), (gaW) and (gω) hold for T ∗.

Moreover, T satisfies (gW).

Proof

(i) T satisfies (W) by Theorem 6.44. The first statement is then proved if we
show that (W) is equivalent to each one of the other Weyl-type theorems for
T , generalized or not. The SVEP for T ∗ ensures, by Theorem 6.96, that (W)
and (aW) for T are equivalent. By Theorem 4.15 T is a-polaroid hence, by
Theorem 6.29, (aW), (gaW), (ω), (gω) for T are equivalent. Finally, from part
(ii) of Theorem 6.120, (W) and (gW) for T are equivalent. By Theorem 6.44
T ∗ satisfies (W) and since T ∗ is polaroid then, by part (ii) of Theorem 6.120,
(gW) holds for T ∗.

(ii) T ∗ satisfies (W) by Theorem 6.44, so it suffices to prove for T ∗ that (W) is
equivalent to each one of the other Weyl-type theorems, generalized or not.
Because, by Theorem 4.15, T ∗ is a-polaroid, by Theorem 6.29 it then follows
that (aW), (gaW), (ω), (gω) are equivalent for T ∗. The SVEP for T entails,
by Theorem 6.96, that (W) and (aW) are equivalent for T ∗, while (W) and
(gW) for T ∗ are equivalent by part (ii) of Theorem 6.120. By Theorem 6.44 T
satisfies (W) and since T is polaroid this is equivalent to (gW) for T , by part
(ii) of Theorem 6.120. �

The result of Theorem 6.123 may be considerably extended as follows

Theorem 6.124 Let T ∈ L(X) be polaroid and suppose that f ∈ H(σ (T )) is not
constant on each of the components of its domain. Then we have

(i) If T ∗ has the SVEP then (W), (aW), (ω), (gW), (gaW) and (gω) hold for
f (T ).

(ii) If T has the SVEP then (W), (aW), (ω), (gW), (gaW) and (gω) hold for
f (T ∗).

Proof

(i) If T ∗ has the SVEP then f (T )∗ = f (T ∗) has the SVEP, by Theorem 2.86.
Moreover, T is left polaroid by Theorem 4.15, so f (T ) is left polaroid, as
observed after Theorem 4.19. Again by Theorem 4.19, f (T ) is polaroid, hence
Theorem 6.123 applies to f (T ).

(ii) Argue as in the proof of part (i), just replace T with T ∗. �
Remark 6.125 Obviously, in the case of Hilbert space operators, the condition that
T ∗ has the SVEP in Theorem 6.124 may be replaced by the SVEP of the Hilbert
adjoint T ′.

Theorem 6.126 Suppose that T ∈ L(X) has the SVEP and f ∈ Hnc(σ (T )). Then
we have
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(i) If T ∈ L(X) is left-polaroid, then (aW) holds for f (T ), or equivalently (gaW)
holds for f (T ).

(ii) If T ∈ L(X) is polaroid, then (W) holds for f (T ), or equivalently (gW) holds
for f (T ).

Proof

(i) As observed above, if T is left polaroid then f (T ) is left polaroid. Since f (T )
has the SVEP, by Theorem 2.86, then Corollary 6.85 applies to f (T ). The
equivalence of (aW) and (gaW) follows from Theorem 6.120.

(ii) If T is polaroid then f (T ) is polaroid and has the SVEP, so Theorem 6.44
applies to f (T ). The equivalence of (W) and (gW) follows from Theo-
rem 6.120. �

We now apply the results obtained in this section in order to produce a general
framework for establishing Weyl type theorems for perturbations of hereditarily
polaroid operators

Theorem 6.127 SupposeK ∈ L(X) is an algebraic operator commuting with T ∈
L(X) and let f ∈ Hnc(σ (T +K)). Then we have
(i) If T is hereditarily polaroid then f (T +K) satisfies (gW), while f (T ∗ +K∗)

satisfies every Weyl-type theorem (generalized or not).
(ii) If T ∗ is hereditarily polaroid then f (T ∗ +K∗) satisfies (gW), while f (T +K)

satisfies every Weyl-type theorem (generalized or not).

Proof

(i) Every hereditarily polaroid has the SVEP, by Theorem 4.31. Then T + K has
the SVEP by Theorem 2.145, and hence f (T +K) also has the SVEP, by The-
orem 2.86. Moreover, by Theorem 4.32, T +K is polaroid, and consequently,
f (T+K) is polaroid, by Theorem 4.19. From Theorem 6.43 it then follows that
f (T + K) satisfies Weyl’s theorem and this, by Theorem 6.126, is equivalent
to the generalized Weyl’s theorem.

To show the second assertion, observe that the SVEP for T + K entails,
by Theorem 4.15, that T ∗ + K∗ is a-polaroid, in particular left polaroid.
According to Remark 4.20 then f (T ∗+K∗) is left polaroid. By Theorem 6.126
it then follows that (gaW) holds for f (T ∗ + K∗) and this, by part (ii) of
Theorem 6.120, is equivalent to property (gω).

(ii) The proof is analogous. �

6.7 Weyl-Type Theorems Under Compact Perturbations

In this section we study Browder-type and Weyl-type theorems for operators T +K ,
where K ∈ L(X) is a (not necessarily commuting) compact operator. We have
already seen that in general, Weyl-type theorems, such as Weyl’s theorem, a-Weyl’s
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theorem and property (w), are not preserved under compact, also commuting,
perturbations K . In Theorems 6.45, 6.74 and 6.101 we have seen that this happens
only under some special conditions on T , or on K . Thus, it is not surprising that
the permanence of Weyl-type theorems under compact perturbations requires some
rather restrictive conditions.

Lemma 6.128 If T ∈ L(X), X a Banach space, then iso σ(T ) ⊆ σsf(T ) ∪ p00(T ).

Proof Let λ ∈ iso σ(T ). Then either λ ∈ σsf(T ) or λ /∈ σsf(T ). If λ /∈ σsf(T ) then
λI −T ∈ �±(X), and since both T and T ∗ have the SVEP at λ, λI −T is Browder,
by Theorem 2.100, so λ ∈ p00(T ) = σ(T ) \ σb(T ). �

Recall that given a compact set σ ⊂ C, a hole of σ is a bounded component of
the complement C \ σ . Since C \ σ always has an unbounded component, C \ σ is
connected precisely when σ has no holes.

Lemma 6.129 Let T ∈ L(X).
(i) If ρw(T ) is connected then ρw(T ) = ρ(T ) ∪ p00(T ). Furthermore, �(T ) =
p00(T ).

(ii) If ρuw(T ) is connected then ρuw(T ) = ρap(T )∪pa00(T ). Furthermore,�a(T ) =
pa00(T ).

Proof

(i) Let � be the unique component of ρw(T ). Clearly, � ⊇ ρ(T ). Since ρw(T ) ⊆
ρsf(T ) there is a component�1 of ρsf(T ) which contains � and hence ρw(T ).
Now, �1 contains the resolvent ρ(T ). Trivially both T and T ∗ have the SVEP
at every point of ρ(T ), so, see Remark 2.119, both T and T ∗ have the SVEP at
every point of �1, and in particular have the SVEP at every point of �. Now,
let λ ∈ ρw(T ), so λI − T ∈ W(X). The SVEP of T and T ∗ at λ implies,
see Theorems 2.97 and 2.98, that p(λI − T ) = q(λI − T ) < ∞. We have
either λ /∈ ρ(T ) or λ /∈ ρ(T ). If λ /∈ ρ(T ) then λ ∈ σ(T ) and hence λ ∈
σ(T ) \ σb(T ) = p00(T ). Therefore, the equality�(T ) = p00(T ) holds.

(ii) The proof is analogous to that of part (i): let � be the unique component of
ρuw(T ). Clearly ρap(T ) ⊆ �. Since ρuw(T ) ⊆ ρsf(T ) there is a component
�1 of ρsf(T ) which contains �. Obviously, T has the SVEP at every point
of �, by Remark 2.119. Suppose that λ ∈ ρuw(T ). The SVEP at λ entails,
by Theorem 2.97, that p(λI − T ) < ∞, i.e., λ /∈ σub(T ). We have either λ ∈
ρap(T ) or λ /∈ ρap(T ). If λ /∈ ρap(T ) then λ ∈ σap(T ), so λ ∈ σap(T )\σub(T ) =
pa00(T ). �

From Lemma 6.129 we see that if ρw(T ) is connected then T satisfies Browder’s
theorem, and, analogously, if ρuw(T ) is connected then T satisfies a-Browder’s
theorem. Set ρap(T ) =: C \ σap(T ).

Theorem 6.130 Let T ∈ L(X). Then
(i) ρw(T ) is connected if and only if ρ(T ) is connected and T satisfies Browder’s

theorem.
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(ii) ρuw(T ) is connected if and only if ρap(T ) is connected and T satisfies a-
Browder’s theorem.

Proof

(i) Suppose that ρw(T ) is connected. By Lemma 6.129 then T satisfies Browder’s
theorem. Suppose that ρ(T ) is not connected. Then there is a hole of σ(T ),
i.e. a bounded component � of ρ(T ). On the other hand, ρw(T ) has a unique
(unbounded) component. Since� ⊆ ρw(T )we have a contradiction. Therefore,
ρ(T ) is connected.

Conversely, assume that ρ(T ) is connected and that T satisfies Browder’s
theorem. Suppose that ρw(T ) is not connected. Then there is a bounded
component� of ρw(T ). Then either� ⊂ σ(T ) or� \ σ(T ) �= ∅. If� ⊂ σ(T )
then � ⊆ σ(T ) \ σw(T ) ⊆ iso σ(T ), where the last inclusion follows since
T satisfies Browder’s theorem, and this is impossible. If � \ σ(T ) �= ∅, then
there exists a λ0 ∈ � such that λ0 /∈ σ(T ). Since λ0 ∈ ρ(T ) then there exists a
component�0 of ρ(T ) such that λ0 ∈ �0. The set �0 is an open connected set
contained in ρw(T ). Furthermore,� and �0 has a common point, so �0 ⊆ �.
Consequently,�0 is a bounded component of ρ(T ), i.e. ρ(T ) is not connected,
a contradiction.

(ii) The proof is similar to that of part (i). Replace in the proof of part (i) the set
ρ(T ) by ρap(T ). �

In the sequel by K(X) we shall denote the two-sided ideal of all compact
operators in L(X).

Corollary 6.131 Let T ∈ L(X) be such that ρw(T ) is connected and int σw(T ) =
∅. Then both T +K and T ∗ +K∗ have SVEP for all K ∈ K(X).

Proof ρw(T +K) = ρw(T
∗ +K∗) = ρw(T ) is connected, so both T +K and T ∗

satisfy Browder’s theorem. Since intσw(T ) = intσw(T +K) = intσw(T
∗ +K∗) =

∅, then, by Theorem 5.6, T +K and T ∗ +K∗ have SVEP for all K ∈ K(X). �
Lemma 6.132 If T ∈ L(X) and ρuw(T ) is connected then ρw(T ) = ρuw(T ).

Proof We know that ρuw(T ) = ρ−
sf (T ) ∪ ρuw(T ) and both sets ρ−

sf (T ) and ρuw(T )

are open subsets of C. Since ρuw(T ) is non-empty and ρ−
sf (T ) ∩ ρuw(T ) = ∅, the

assumption that ρuw(T ) is connected entails ρ−
sf (T ) = ∅. Thus, ρw(T ) = ρuw(T ).

�
We now state a result for Hilbert space operators. The proof involves some rather

technical result on Hilbert spaces. For a proof we refer to [188, Proposition 3.2].

Lemma 6.133 Let T ∈ L(H), H a Hilbert space. If � is a bounded component of
σsf(T ) then there exists a K ∈ K(H) such that � ⊂ σp(T +K).

The condition that ρw(T ) is connected entails Browder’s theorem for T , by part
(i) of Theorem 6.130. The converse is true for Hilbert space operators:
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Theorem 6.134 Let T ∈ L(X) be such that ρw(T ) is connected. Then T + K

satisfies Browder’s theorem for all K ∈ K(X).
Furthermore, if T ∈ L(H),H a Hilbert space, then the following statements are

equivalent:

(i) ρw(T ) is connected;
(ii) Browder’s theorem holds for T +K for every K ∈ K(H).

Proof (i) ⇒ (ii) Let S := T + K , with K ∈ K(X) arbitrarily given, and suppose
that ρw(T ) is connected. To show that Browder’s theorem holds for S we need to
prove the equality �(S) = p00(S). Observe first that

ρw(T ) = C \ σw(T ) = C \ σw(T +K) = ρw(S).

Thus, ρw(S) is connected. By Lemma 6.129 we then have �(S) = p00(S), so
Browder’s theorem holds for S = T +K .

To show (ii) ⇒ (i), suppose that T ∈ L(H), and ρw(T ) is not connected. Then
ρw(T ) has a bounded component�, and by Lemma 6.133 there exists a K ∈ K(H)
for which � ⊆ σp(T +K). Then

� ⊆ �(T +K) = σ(T +K) \ σw(T +K),

and hence �(T + K) cannot be contained in iso σ(T + K). Consequently, by
Theorem 5.10, T + K does not satisfy Browder’s theorem. This shows that
(ii) ⇒ (i). �

An analogous result holds for property (b):

Theorem 6.135 Let T ∈ L(X). If ρuw(T ) is connected then property (b) holds for
T +K for every K ∈ K(X).

Proof Let K ∈ K(X) be arbitrarily given and set S := T + K . To prove
�a(S) = p00(S) it suffices to prove the inclusion �a(S) ⊆ p00(S), since the
opposite inclusion is true for every operator. Let λ0 ∈ �a(S) = σap(S) \ σuw(S).
Then λ0 ∈ C \ σap(S) = ρuw(S). By Lemmas 6.132 and 6.129 we have ρuw(S) =
ρw(S) = ρ(S) ∪ p00(S). Therefore, either λ0 ∈ ρ(S) or λ0 ∈ p00(S). But
λ0 ∈ ρ(S) is impossible, since λ0 ∈ σ(S). Hence λ0 ∈ p00(S), and consequently
�a(S) ⊆ p00(S). �

In the case of Hilbert space operators the result of Theorem 6.135 may be
reversed:

Theorem 6.136 Let T ∈ L(H), H a Hilbert space. Then the following statements
are equivalent:

(i) ρuw(T ) is connected;
(ii) a-Browder’s theorem holds for T +K for every K ∈ K(H);

(iii) property (b) holds for T +K for every K ∈ K(H).
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Proof (i) ⇒ (iii) has been proved in Theorem 6.135. The implication (iii) ⇒ (ii)
holds, because property (b) for T entails that T satisfies a-Browder’s theorem. It
suffices to prove the implication (ii) ⇒ (i). Suppose that ρuw(T ) is not connected,
so there exists a bounded component � of ρuw(T ) and obviously, � ⊆ ρsf(T ). By
Lemma 6.133, there exists a K ∈ K(H) such that � ⊆ σp(T + K), and � ⊆
ρsf(T +K). Hence,

� ⊆ ρsf(T +K) ∩ σp(T +K) = �a(T +K),

and hence�a(T +K) is not contained in σap(T +K), so a-Browder’s theorem does
not hold for T +K . �
Remark 6.137 The proof of the equivalence of (i), (ii) and (iii) in Theorem 6.136
is based on Lemma 6.133. In the absence of a similar result for perturbed Banach
space operators, a corresponding result does not seem to be possible for Banach
space operators.

Lemma 6.138 Let T ∈ L(X), X a Banach space.

(i) If iso σw(T ) = ∅ then π00(T ) ⊆ ρsf(T ) and p00(T ) = π00(T ).
(ii) If iso σuw(T ) = ∅ then πa00(T ) ⊆ ρsf(T ) and pa00(T ) = πa00(T ).

Proof

(i) If λ0 ∈ π00(T ) then λ ∈ iso σ(T ). Suppose that λ0 /∈ ρsf(T ). Then λ0 ∈
σsf(T ) ⊆ σw(T ), hence λ0 ∈ iso σw(T ) �= ∅, a contradiction.

To show the equality p00(T ) = π00(T ), it suffices to show that π00(T ) ⊆
p00(T ). Let λ ∈ π00(T ). Then α(λI − T ) < ∞, λ ∈ iso(T ), and λ ∈ ρsf(T )

by the first part, so λI − T ∈ �±(X). By Theorems 2.97 and 2.98 we have
p(λI − T ) = q(λI − T ) < ∞ and hence α(λI − T ) = β(λI − T ) < ∞, by
Theorem 1.22. Thus, λ ∈ p00(T ).

(ii) If λ0 ∈ πa00(T ) then λ0 ∈ iso σap(T ), so there exists a δ > 0 such that λI − T
is bounded below for all 0 < |λ| < δ, in particular λI − T ∈ W+(X) for all
0 < |λ| < δ. Suppose that λ0 /∈ ρsf(T ). Then λ0 ∈ σsf(T ) ⊆ σuw(T ), hence
λ0 ∈ iso σuw(T ) �= ∅, a contradiction.

To show the equality pa00(T ) = πa00(T ), it suffices to show that πa00(T ) ⊆
pa00(T ). Let λ ∈ πa00(T ). Then α(λI−T ) <∞, λ ∈ iso σap(T ), and λ ∈ ρsf(T ),
so λI − T ∈ �+(X). By Theorem 2.97 we then have p(λI − T ) < ∞, thus
λ ∈ pa00(T ). �

We now state another result for Hilbert space operators. Its proof depends upon
the following lemma, whose rather technical proof may be found in [188].

Lemma 6.139 Let T ∈ L(H), H a Hilbert space.

(i) If λ ∈ iso σw(T ) then there exists a compact operator K ∈ K(H) for which
λ ∈ π00(T +K).

(ii) If λ ∈ iso σuw(T ) then there exists a compact operator K ∈ K(H) for which
λ ∈ πa00(T +K).
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Theorem 6.140 Let T ∈ L(X),X a Banach space, be such that ρw(T ) is connected
and iso σw(T ) = ∅. Then T +K satisfies Weyl’s theorem for every K ∈ K(X).

Furthermore, if T ∈ L(H),H a Hilbert space, then the following statements are
equivalent:

(i) ρw(T ) is connected and iso σw(T ) = ∅;
(ii) Weyl’s theorem holds for T +K for every K ∈ K(H).

Proof Suppose that ρw(T ) is connected and iso σw(T ) = ∅. Let S := T + K ,
where K ∈ K(X) is arbitrarily given. Since σw(T ) = σw(S), ρw(T ) = ρw(S)

is connected, so, by Lemmas 6.129 and 5.25, �(S) = p00(S). On the other hand
iso σw(T + K) = iso σw(T ) = ∅, so by Lemma 6.138, we also have π00(S) =
p00(S) = �(S). Thus, Weyl’s theorem holds for S = T +K .

We show now that if T ∈ L(H), H a Hilbert space, then (ii) ⇒ (i). Suppose that
Weyl’s theorem holds for T +K for everyK ∈ K(H). Then

π00(T +K) = p00(T +K) for all K ∈ K(H). (6.25)

Assume that iso σw(T ) �= ∅ and choose λ ∈ iso σw(T ). By Lemma 6.139 there
exists a K0 ∈ K(H) such that λ ∈ π00(T + K0), and hence λ ∈ iso σ(T + K0).
Since λ ∈ iso σw(T ), by Theorem 3.58 we have λ ∈ σusf(T ), and since σusf(T ) is
stable under compact perturbations, λ ∈ σusf(T +K0) ⊆ σb(T +K0). Consequently,

λ /∈ σ(T +K0) \ σb(T +K0) = p00(T +K0).

Therefore π00(T + K0) �= p00(T + K0), contradicting the equality (6.25). Thus,
iso σw(T ) = ∅ for everyK ∈ K(H).

On the other hand, assume that ρw(T ) is not connected, and let � be a bounded
component of ρw(T ). Evidently, � is also a bounded component of ρsf(T ) and
by Lemma 6.133 there exists a K0 ∈ K(H) such that � ⊂ σp(T ). Then � ⊆
�(T + K0), and since Weyl’s theorem for T + K0 entails that T + K0 satisfies
Browder’s theorem, by Theorem 5.10 we then have � ⊆ iso σ(T + K0), which is
impossible. Thus ρw(T ) is connected. �
Lemma 6.141 If iso σw(T ) = ∅ then T is polaroid and hence isoloid.

Proof Let λ ∈ iso σ(T ). Then either λ ∈ σw(T ) or λ /∈ σw(T ). If λ ∈ σw(T ) then
λ ∈ iso σw(T ) and this is impossible. Therefore, λ /∈ σw(T ), so λI −T is Weyl and,
since both T and T ∗ have the SVEP at every isolated point of the spectrum, it then
follows, from Theorem 2.100, that p(λI − T ) = q(λI − T ) < ∞, i.e., λ is a pole
of the resolvent. �

Trivially, by Theorem 6.140, if ρw(T ) is connected and iso σw(T ) = ∅ then T
satisfies Weyl’s theorem. Assuming SVEP andKT = TK , the condition that ρw(T )

is connected may be omitted:
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Corollary 6.142 Assume that T or T ∗ has the SVEP. If iso σw(T ) = ∅ then f (T )
satisfies Weyl’s theorem for every f ∈ Hnc(σ (T )). Additionally, if KT = TK ,
K ∈ K(X), then Weyl’s theorem holds for f (T +K) for every f ∈ Hnc(σ (T +K)).
Proof As observed above the condition iso σw(T ) = ∅ entails that T is polaroid
and hence f (T ) is polaroid for every f ∈ Hnc(σ (T )), by Theorem 4.19. The SVEP
for T or T ∗ entails the SVEP for f (T ), or f (T ∗), by Theorem 2.86. Hence, by
Theorem 6.43, Weyl’s theorem holds for f (T ).

Additionally, assuming TK = KT , if T has the SVEP then T +K has the SVEP,
by Theorem 2.129, and, by Lemma 6.141, T +K is polaroid since iso σw(T +K) =
iso σw(T ) = ∅. Then f (T + K) is polaroid for every f ∈ Hnc(σ (T + K)), again
by Theorem 4.19, and hence, again by Theorem 6.43, Weyl’s theorem holds for
f (T +K) for every f ∈ Hnc(σ (T +K)). �
Theorem 6.143 Let T ∈ L(X), X a Banach space, be such that ρuw(T ) is
connected and iso σuw(T ) = ∅. Then T + K satisfies both property (w) and a-
Weyl’s theorem, for every K ∈ K(X).

If T ∈ L(H),H a Hilbert space, then the following statements are equivalent:

(i) ρw(T ) is connected and iso σw(T ) = ∅;
(ii) property (ω) holds for T +K for every K ∈ K(H);

(iii) a-Weyl’s theorem holds for T +K for every K ∈ K(H).

Proof Let S := T + K , where K ∈ K(X). The condition that ρuw(T ) is
connected entails a-Browder’s theorem, by Theorem 6.136, so, to show property
(ω) for S it suffices to prove πa00(S) = p00(S). Since p00(S) ⊆ πa00(S) holds for
every operator, it suffices to prove the inclusion πa00(S) ⊆ p00(S). Observe that
iso σw(S) = iso σw(T ) = ∅, so, by Lemma 6.138, we have πa00(S) ⊆ ρsf(S). If
λ0 ∈ πa00(S) then λ0 ∈ iso σap(T ) and λ0I − S ∈ �±(X). By Theorem 2.97 we
have p(λ0I − T ) < ∞ and hence α(λ0I − T ) ≤ β(λ0I − T ), by Theorem 1.22.
This implies λ0I − S ∈ �+(X) and ind (λ0I − T ) ≤ 0, so λ0 ∈ ρuw(T ).

By Lemma 6.132 we have ρuw(S) = ρw(S), and from Lemma 6.129, it then
follows that ρuw(S) = ρ(S) ∪ p00(S). Since λ /∈ ρ(S), we then conclude that
λ0 ∈ p00(S), hence πa00(S) ⊆ p00(S). Therefore, πa00(S) = p00(S) and hence
property (ω) holds for S.

To show that a-Weyl’s theorem holds for S, note that πa00(S) = p00(S) ⊆ pa00(S),
by Lemma 5.25. Since the inclusion pa00(S) ⊆ πa00(S) holds for every operator,
it then follows that pa00(S) = πa00(S) and taking into account that a-Browder’s
theorem holds for S it then follows, from Theorem 6.70, that a-Weyl’s theorem
holds for S.

(ii) ⇒ (i) Suppose that T ∈ L(H) and property (ω) holds for T + K for every
K ∈ K(H). In particular, by Theorem 6.89 property (R) holds for T +K , i.e.,

πa00(T +K) = p00(T +K) for everyK ∈ K(H). (6.26)

We show that if one of the conditions (i) is not satisfied then there exists a compact
operator K0 ∈ K(H) such that T + K0 does not satisfy property (ω). If ρuw(T ) is
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not connected then, by Theorem 6.136, there exists aK0 ∈ K(H) such that T +K0
does not satisfy a-Browder’s theorem and hence property (ω) does not hold for
T + K0, since property (ω) entails a-Browder’s theorem. Suppose the other case,
iso σuw(T ) �= ∅, and choose λ ∈ iso σuw(T ). Then, by Lemma 6.139 there exists
a K0 ∈ K(H) such that λ ∈ πa00(T + K0). Evidently, λ ∈ iso σuw(T + K0) =
iso σuw(T ). From Theorem 3.58, we know that λ ∈ σusf(T +K0) ⊆ σb(T +K0), so

λ /∈ σ(T +K0) \ σb(T +K0) = p00(T +K0),

contradicting (6.26). Thus iso σuw(T ) = ∅.
(i) ⇒ (iii) follows by the first part of the proof.
(iii) ⇒ (i) Proceed as before: Suppose that a-Weyl’s theorem holds for T + K

for every K ∈ K(H). If ρuw(T ) is not connected then, by Theorem 6.136, there
exists a K0 ∈ K(H) such that T + K0 does not satisfy a-Browder’s theorem and
hence a-Weyl’s theorem does not hold for T + K0, a contradiction. Hence ρuw(T )

is connected, so property (b) holds for every T +K , by Theorem 6.136, and hence

�a(T +K) = p00(T +K) for all K ∈ K(H).

Now, if iso σuw(T ) �= ∅ then, as above, there exists a K0 ∈ K(H) such that

πa00(T +K0) �= p00(T +K0) = �a(T +K0),

so a-Weyl’s theorem does not hold for T +K0 �
Lemma 6.144 Every operator T ∈ L(X) for which iso σuw(T ) = ∅ is both left
polaroid and finite a-isoloid.

Proof Suppose that λ0 ∈ iso σap(T ) is arbitrary. Then there is an ε > 0 such that
λI−T is bounded below for all 0 < |λ−λ0| < ε, and hence λI−T ∈ W+(X) for all
0 < |λ−λ0| < ε. Now, we have either λ0 ∈ σuw(T ) or λ0 /∈ σuw(T ). If λ0 ∈ σuw(T )

then we would have λ0 ∈ iso σuw(T ) �= ∅, a contradiction. Therefore, λ0 /∈ σuw(T ),
i.e. λ0I − T ∈ W+(X). Since T has the SVEP at every isolated point of σap(T ), it
then follows, by Theorem 2.97, that p(λ0I − T ) < ∞, hence λ0I − T ∈ B+(X),
so λ0 is a left pole of the resolvent, hence T is left polaroid. Since (λ0I − T )(X) is
closed, the condition λ0 ∈ σap(T ) entails that α(λ0I − T ) > 0, thus T is a-isoloid.
But α(λ0I − T ) <∞, since λ0I − T ∈ B+(X), so T is finite a-isoloid. �

Assuming that a Riesz operatorR commutes with T , the result of Theorem 6.143
may be extended to Riesz operators:

Corollary 6.145 Let T ∈ L(X) and suppose ρuw(T ) is connected and
iso σuw(T ) = ∅. Then T + R satisfies a-Weyl’s theorem, or equivalently T + R
satisfies the generalized a-Weyl’s theorem, for every Riesz operator R which
commutes with T .
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Proof By Corollary 3.18 σuw(T + R) = σuw(T ) is connected and

iso σuw(T + R) = iso σuw(T ) = ∅,

so a-Weyl’s theorem holds for T + R, and this is equivalent, by Theorem 6.120, to
T + R satisfying the generalized a-Weyl’s theorem. �
Theorem 6.146 Let T ∈ L(X) be such that ρuw(T ) is connected and iso σuw(T ) =
∅. If K ∈ K(X) we have:

(i) The generalized a-Weyl’s theorem holds for T +K .
(ii) If T or T ∗ has the SVEP, R is a Riesz operator for which RT = TR, and

f ∈ H(σ (T + R)), where f is injective and non-constant on the components
of σ(T + R), then the generalized a-Weyl’s theorem holds for f (T + R).

(iii) If T ∗ has the SVEP, R a Riesz operator for which RT = T R, and f ∈
H(σ (T + R)) is injective and non-constant on the components of σ(T + R),
then generalized property (ω) holds for f (T + R).

Proof

(i) By Theorem 6.143, T + K satisfies a-Weyl’s theorem for all K ∈ K(X).
According to Lemma 6.144, the condition iso σuw(T ) = iso σuw(T +K) = ∅
implies that T + K is left polaroid. This implies, by Theorem 6.120, that a-
Weyl’s theorem holds for T+K if and only if the generalized a-Weyl’s theorem
holds for T +K .

(ii) The SVEP for T or T ∗ is extended to T + R or T ∗ + R∗, by Theorem 2.129.
This ensures that the spectral mapping theorem holds for σuw(T + R), by
Corollary 3.120, and that a-Browder’s theorem holds for T as well as for T+R,
by Corollary 5.5. Thus

iso σuw(T + R) = iso σub(T + R) = iso σub(T ) = iso σuw(T ) = ∅

and analogously ρuw(T + R) is connected. Thus T + R is a-isoloid, by
Lemma 6.144, and T + R satisfies a-Weyl’s theorem, by Theorem 6.145.
By Theorem 6.80, f (T + R) satisfies a-Weyl’s theorem. Since T + R is left
polaroid f (T +R) is also left polaroid, by Theorem 4.21. Therefore, as in part
(i), the generalized a-Weyl’s theorem holds for f (T + R).

(iii) T +R is polaroid and has the SVEP, so the generalized property (ω) for f (T +
R), by Theorem 6.100. �

6.8 Weyl’s Theorem for Toeplitz Operators

The results of the previous section apply in particular to Toeplitz analytic operators
on Hardy spaces. As observed in Chap. 3, if φ ∈ C(T), σw(Tφ) consists of � :=
φ(T) and every Toeplitz operator with continuous symbol is polaroid. The Toeplitz



6.8 Weyl’s Theorem for Toeplitz Operators 485

operators defined in Example 4.101 shows that the SVEP may fail for both Tφ and
T ′
φ , so the result of Theorem 6.43 cannot be applied to deduce Weyl’s theorem

for Tφ . However, we know, see Corollary 4.98, that σ(Tφ) = σw(Tφ), and hence
�(Tφ) = σ(Tφ)\σw(Tφ) = ∅. Moreover, if φ is non-constant, by Theorem 4.99 we
have iso σ(Tφ) = iso σw(Tφ) and hence π00(T ) = ∅.

Theorem 6.147 If φ ∈ C(T) is non-constant then Tφ satisfies Weyl’s theorem.
The next Example 6.154 provides an example of a Toeplitz operator Tφ which

satisfies Weyl’s theorem, but whose symbol φ is not continuous.
We also know that σw(Tφ) consists of � and those holes with respect to which

the winding number of φ is nonzero, while σuw(Tφ) consists of � and those holes
with respect to which the winding number of φ is negative. Therefore, ρw(Tφ) is
connected (respectively, ρuw(Tφ) is connected) precisely when the winding number
of φ with respect to each hole of � is nonzero (respectively, the winding number of φ
with respect to each hole of � is negative). From Theorems 6.134, 6.136, and 6.140
we then obtain:

Theorem 6.148 Let 0 �= φ ∈ C(T), and Tφ be the corresponding Toeplitz operator
on L2(T). Then we have

(i) Tφ+K satisfies Browder’s theorem for any compact operatorK onL2(T) if and
only if the winding number of φ with respect to each hole of φ(T) is nonzero.
Tφ +K satisfies Weyl’s theorem, for any compact operatorK on L2(T), if and
only if φ is non-constant and the winding number of φ with respect to each hole
of φ(T) is nonzero.

(ii) Tφ + K satisfies a-Browder’s theorem for any compact operator K on
L2(T) if and only if the winding number of φ with respect to each hole
of φ(T) is negative. Tφ + K satisfies both a-Weyl’s theorem and property
(w), for any compact operator K on L2(T), if and only if φ is non-constant
and the winding number of φ with respect to each hole of φ(T) is nega-
tive.

We now consider the special case when φ ∈ H∞(T).

Theorem 6.149 If φ ∈ H∞(T) then Weyl’s theorem holds for f (Tφ), for every
f ∈ H(σ (Tφ)). If K is an algebraic operator on L2(T) which commutes with Tφ ,
then Weyl’s theorem holds for f (Tφ +K) for every f ∈ Hnc(σ (Tφ +K)).
Proof If φ ∈ H∞(T) then, by Theorem 4.91 Tφ is hereditarily polaroid and has the
SVEP. By Corollary 6.44 then Weyl’s theorem holds for f (Tφ). The last assertion
follows from Theorem 6.127. �

In the case when φ ∈ C(T) the argument used in the proof of Theorem 6.149
does not work, since, as already noted, both Tφ and T ′

φ may fail SVEP. However, if
φ satisfies condition (i) of Theorem 4.100, or the condition of Theorem 4.102, then
Tφ has the SVEP and is also polaroid. From Corollary 6.44 we then conclude that
Weyl’s theorem holds for f (Tφ).
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Lemma 6.150 Let φ ∈ C(T) and let f ∈ H(σ (Tφ)). Then Tf ◦φ − f (Tφ) is
compact.

Proof We know that Tφ is invertible if and only if Tφ is Fredholm. Therefore, for
every λ /∈ σ(Tφ) both the functions φ − λ and φ − λ are invertible in C(T) and
(φ − λ)−1 ∈ C(T). Using this fact and Theorem 4.93 we have, for ψ ∈ L∞(T) and
λ,μ ∈ C

Tφ−μTψT −1
φ−λ − Tφ−μ)ψ(φ−λ)−1 ∈ K(L2(T)) whenever λ /∈ σ(Tφ).

The argument used above also works for rational functions to yield: If r is any
rational function with all its poles outside of σ(Tφ), then r(Tφ) − Tr◦φ is compact
on L2(T). Suppose that f ∈ H(σ (Tφ)). By Runge’s theorem (see Appendix A)
there exists a sequence of rational functions rn for which the poles of each rn lie
outside of σ(Tφ), and rn → f uniformly on σ(Tφ). Thus, rn(Tφ) → f (Tφ) in
the norm topology of L(L2(T)). Since rn ◦ φ → f ◦ φ uniformly, it then follows
that Trn◦φ converges to Tf ◦φ . Therefore Tf ◦φ − f (Tφ) is the limit of the compact
operators Trn◦φ − rn(Tφ), hence is a compact operator. �
Corollary 6.151 If φ ∈ C(T) and f ∈ H(σ (Tφ)), then

σw(f (Tφ)) = σ(Tf ◦φ).

Proof The Weyl spectrum is stable under compact perturbations, so, by
Lemma 6.150

σw(f (Tφ)) = σw(Tf ◦φ) = σ(Tf ◦φ).

�
We now characterize the operators Tφ for which f (Tφ) satisfies Weyl’s theorem.

Theorem 6.152 Let φ ∈ C(T) and f ∈ H(σ (Tφ)). Then

σ(Tf ◦φ) ⊆ f (σ(Tφ)).

f (Tφ) satisfies Weyl’s theorem if and only if σ(Tf ◦φ) = f (σ(Tφ)).
Proof By Corollary 6.151 we have

σ(Tf ◦φ) ⊆ σw(f (Tφ)) ⊆ σ(f (Tφ)) = f (σ(Tφ)).

Since σ(Tφ) is connected, f (σ(Tφ)) = f (σ(Tφ)) is connected. Therefore,
π00(f (Tφ)) = ∅. By Corollary 6.151 we then have σw(f (Tφ) = σ(Tf ◦φ).
Consequently, σ(f (Tφ)) \ σw(f (Tφ)) = ∅ if and only if σ(Tf ◦φ) = f (σ(Tφ)). �
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We now show that there exists a continuous function for which σ(Tφ2) �=
[σ(Tφ)]2.

Example 6.153 Let φ be defined as in Example 4.101. We know that σ(Tφ) =
convφ(T) and σe(Tφ) = φ(T). A straightforward calculation shows that φ2(T) is
the cardioid � having equation ρ = 2(1 + cos θ). In particular, φ2(T) traverses
� once in a counterclockwise direction, and then traverses � once in clockwise
direction. Thus, wn(φ2, λ) = 0 for each λ in the hole of φ2(T). This shows that
σ(Tφ2) is the cardioid �, and since

[σ(Tφ)]2 = convφ(T) = {(ρ, θ) : ρ ≤ 2(1 + cos θ)},

it then follows that σ(Tφ2) �= [σ(Tφ)]2.

The Toeplitz operator defined in the previous example satisfies Weyl’s theorem,
while, by Theorem 6.152, T 2

φ does not satisfy Weyl’s theorem.

Example 6.154 If φ is not continuous it is possible that Weyl’s theorem holds for
f (Tφ) without σ(Tf ◦φ) being equal to f (σ(Tφ)). Define

φ(eiθ ) := e iθ3 , where 0 ≤ θ ≤ 2π.

Evidently, φ is a piecewise continuous function. The operator Tφ is invertible, while
Tφ2 is not invertible, so 0 ∈ σ(Tφ2)\ [σ(Tφ)]2. However, we have σ(Tφ) = σw(Tφ),
see the following figure:

Because the set π00(Tφ) is empty, Weyl’s theorem holds for Tφ .Note that the
equality σ(T 2

φ ) = σw(T
2
φ ) is still true, see the following figure,
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and since π00(T
2
φ ) is also empty it then follows that Weyl’s theorem holds for T 2

φ .

Corollary 6.155 Let φ ∈ C(T ) and suppose that either Tφ or T φ′ has the
SVEP. Then Weyl’s theorem holds for f (Tφ) and f (T ′

φ) for every f ∈ H(σ (Tφ)).
Furthermore, σ(Tf ◦φ) = f (σ(Tφ)) for every f ∈ H(σ (Tφ)).

Proof Tφ is polaroid and either Tφ or T φ′ has the SVEP. By Corollary 6.44,
Weyl’s theorem holds for f (Tφ) for every f ∈ H(σ (Tφ)). By Theorem 6.152 then
σ(Tf ◦φ) = f (σ(Tφ)) for every f ∈ H(σ (Tφ)). �

Since for φ ∈ H∞(T), Tφ has the SVEP, since it is hyponormal, we also have:

Corollary 6.156 If φ ∈ H∞(T) then σ(Tf ◦φ) = f (σ(Tφ)) for every f ∈
H(σ (Tφ)).

In particular, by Theorem 4.100 the result of Corollary 6.155 applies to the case
where the orientation of the curve φ(T) traced out by φ is counterclockwise or
clockwise.

Remark 6.157 If φ is not continuous it is possible that Weyl’s theorem holds for
some f (Tφ) without σ(Tf ◦φ) being equal to f (σ(Tφ)).

Example 6.158 Let φ have the form p(a
z

+ bz), where a, b ∈ R and p(z) is any
polynomial. Then Weyl’s theorem holds for f (Tφ) for every f ∈ H(σ (Tφ)). Indeed,
if a = b then Tφ is self-adjoint and the assertion is evident, since Tφ has the SVEP.
If a �= b set ψ = a

z
+ bz. Then

ψ(T) =
{
(u, v) ∈ C :

(
u

b + a
)2

+
(

v

b − a
)2

= 1

}
,

which is a circle or an ellipse. Then

φ(T) = (p ◦ ψ)(T) = p(ψ)(T),
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and hence φ(T) has no holes, or exactly one hole (in this case it is oriented
counterclockwise), because polynomials map continuous curves onto continuous
curves and open sets onto open sets. Therefore, Weyl’s theorem holds for f (Tφ) for
every f ∈ H(σ (Tφ)).

Theorem 6.159 If φ ∈ C(T) is such that σ(Tφ) has planar Lebesgue measure zero
then Weyl’s theorem holds for f (Tφ) and f (T ′

φ) for every f ∈ H(σ (Tφ).

Proof Tφ is polaroid and has the SVEP, by Theorem 4.102, so Theorem 6.43
applies. �

It should be noted that if φ ∈ C(T) has planar Lebesgue measure zero then Tφ
is the sum of a normal operator and a compact operator. Indeed, Tφ is essentially
normal, and as observed after Theorem 4.93, Tφ is the sum of a normal operator and
a compact operator since λI − T is Weyl for every λ /∈ σe(Tφ).

6.9 Weyl’s Theorem for Isometries and Weighted Shift
Operators

In this section we exhibit some other classes of operators for which the resolvent
sets ρw(T ) and ρuw(T ) are connected, and iso σw(T ) = ∅, or iso σuw(T ) = ∅.

(a) Let T ∈ L(X), X an infinite-dimensional Banach space, be non-invertible
and i(T ) = r(T ), where r(T ) denotes the spectral radius of T and

i(T ) := lim
n→∞ k(T

n)1/n

has been defined in Chap. 3.
We have seen in Chap. 3 that σ(T ) = σw(T ) = D(0, r(T )), while σap(T ) =

σsf(T ) = ∂D(0, r(T )). Since

σsf(T ) ⊆ σuw(T ) ⊆ σap(T ),

it then follows that σuw(T ) = ∂D(0, r(T )). Suppose that T is not quasi-nilpotent,
i.e. r(T ) > 0. Then ρw(T ) is connected and iso σw(T ) = ∅, so by Theorem 6.140,
T + K satisfies Weyl’s theorem for all K ∈ K(H). The condition i(T ) = r(T )

entails that T has the SVEP, so, by Corollary 6.142, f (T ) satisfies Weyl’s theorem
for all f ∈ H(σ (T )). The SVEP for T also entails that a-Browder’s theorem holds
for T . Since �a(T ) = πa00(T ) = ∅, T satisfies a-Weyl’s theorem. Of course, if T
is a Hilbert space operator, since ρuw(T ) = C \ ∂D(0, r(T )) is not connected, there
exists a K ∈ K(H) for which T +K does not satisfy a-Weyl’s theorem.

(b) Weyl-type theorems for isometries Let T ∈ L(X) be an isometry on a
Banach space X. Then i(T ) = r(T ) = 1, and by Corollary 4.71, T always has
the SVEP, so T satisfies Browder’s theorem. Suppose first that T is non-invertible.
By Theorem 4.72, every non-invertible isometry is a-polaroid, and, by part (ii) of
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Theorem 4.68, σ(T ) = D(0, 1), and σap(T ) = �, � the unit circle of C. Therefore
ρ(T ) = C \ D(0, 1) is connected, and by part (ii) of Theorem 6.130 we deduce
that ρw(T ) is connected. Actually, we have σw(T ) = D(0, 1). Indeed, suppose that
λ /∈ σw(T ) and λ ∈ σ(T ). Then λI − T ∈ W(X), and the SVEP for T implies, by
Theorem 2.97, that p(λI −T ) <∞ and hence, by Theorem 1.22, q(λI −T ) <∞,
so λ is a pole of T , in particular an isolated point of σ(T ), and this is impossible.
Therefore iso σw(T ) = ∅. Combining Theorem 6.140, part (ii) of Theorem 6.126,
and part (ii) of Theorem 6.123, we then obtain:

Theorem 6.160 If T is a non-invertible isometry on a Banach spaceX then T +K
satisfies Weyl’s theorem for allK ∈ K(X). Moreover, for every f ∈ Hnc(σ (T )), we
have:

(i) The generalized Weyl’s theorem holds for f (T ).
(ii) The generalized a-Weyl’s theorem and the generalized property (ω) hold for

f (T ∗).

Consider the case when T ∈ L(X) is an invertible isometry. As observed in
Theorem 4.72, T is hereditarily polaroid. From Theorem 6.127 we then have:

Theorem 6.161 Suppose that T is an invertible isometry on a Banach spaceX and
K ∈ K(X) is an algebraic operator which commutes with T . If f ∈ Hnc(σ (T )),
then f (T +K) satisfies the generalized Weyl’s theorem, while f (T ∗ +K∗) satisfies
every Weyl-type theorem (generalized or not),

In the case of invertible isometries for which σ(T ) = �, � the unit circle, the
result of Theorem 6.140 cannot be applied to compact perturbations T +K . In fact,
in this case ρ(T ) is not connected, T has the SVEP and hence Browder’s theorem
holds for T . By Theorem 6.130, ρw(T ) is not connected. Therefore, for Hilbert
space invertible isometries T ∈ L(H), there exist a compact operator K ∈ K(H)
for which Weyl’s theorem fails.

(c) Weyl-type theorems for weighted shift operators We first consider the case
of weighted right shift operators T defined on �p(N). Recall that σap(T ) is the
possibly degenerate annulus {λ ∈ C : i(T ) ≤ |λ| ≤ r(T )}, while, by Theorems 4.79
and 4.83, we have σw(T ) = D(0, r(T )).

Theorem 6.162 Let T be a non-quasinilpotent weighted right shift operators T on
�p(N). Then we have:

(i) f (T ) and f (T ∗) satisfy Weyl’s theorem for all f ∈ Hnc(σ (T )).
(ii) T +K satisfies Weyl’s theorem for all compact operatorsK ∈ K(�p(N)).

Proof

(i) Obviously, T is polaroid, since iso σ(T ) = ∅, and has the SVEP. Then f (T ) is
polaroid, by Theorem 4.19, and f (T ) has the SVEP, by Theorem 2.88. From
Theorem 6.43 we then conclude that both f (T ) and f (T ∗) satisfy Weyl’s
theorem.
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(ii) ρw(T ) = C \ D(0, r(T )) is connected and iso σw(T ) = ∅, so the assertion
follows from Theorem 6.140. �

Concerning a-Weyl’s theorem, or property (ω), we distinguish the two situations
i(T ) = 0 and i(T ) > 0.

Theorem 6.163 Let T be a non-quasinilpotent unilateral weighted right shift on
�p(N), 1 ≤ p ≤ ∞. Then we have:

(i) If i(T ) = 0 then f (T ) satisfies the generalized a-Weyl’s theorem for every
f ∈ Hic(σ (T )).

(ii) If i(T ) = 0, T + K satisfies Weyl’s theorem for all compact operators K in
�p(N).

(iii) If i(T ) > 0, for p = 2 there exists a compact operator K in �p(N) for which
a-Weyl’s theorem does not hold.

Proof

(i) We have σap(T ) = σ(T ) = D(0, r(T ), so T is left polaroid, since iso σap(T ) =
∅, and hence f (T ) is left polaroid, by Theorem 4.21. Moreover, T has the
SVEP, hence f (T ) has the SVEP, by Theorem 2.88. From Corollary 6.85 it
then follows that f (T ) satisfies the generalized a-Weyl’s theorem.

(ii) Since T has the SVEP and ρ(T ) is connected then ρw(T ) is connected.
Moreover, it is easily seen that σw(T ) = D(0, r(T )). Indeed, if λ /∈
σw(T ) and λ ∈ D(0, r(T )), then λI − T ∈ W(X). The SVEP for T
at λ implies, by Theorem 2.97, that p(λI − T ) < ∞ and hence, by
Theorem 1.22, q(λI − T ) < ∞, so λ is an isolated point of D(0, r(T )),
a contradiction. Therefore, iso σw(T ) = ∅, so the assertion follows from
Theorem 6.140.

(iii) If i(T ) > 0 then ρap(T ) is disconnected, so ρuw(T ) is disconnected,
by Theorem 6.130. Since p = 2, the assertion follows from Theo-
rem 6.143.

�
We conclude this section with some remarks on the classical bilateral shift T

on �2(Z). It is well-known that σ(T ) is the unit circle �. This implies that both T
and T ∗ have the SVEP. Furthermore, σw(T ) = �. This follows by using the same
argument as part (ii) of Theorem 6.163. Hence ρw(T ) is not connected.

Theorem 6.164 Let T be a bilateral shift on �2(Z). Then, both f (T ) and f (T ∗)
satisfy all generalized Weyl-type theorems for every f ∈ Hnc(σ (T )). Moreover,
there exists a compact operator on �2(Z) such that Weyl’s theorem fails for
T +K .

Proof Since iso σ(T ) = ∅, T is polaroid and hence f (T ) is polaroid. Since T and
T ∗ have the SVEP, f (T ) and f (T )∗ also have the SVEP. By Theorem 6.113 it then
follows that the generalized property (ω) holds for f (T ) and f (T ∗), and this is
equivalent to saying that f (T ) and f (T ∗) satisfy the generalized a-Weyl’s theorem,
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by Theorem 6.112. The last assertion is clear from Theorem 6.140, since ρw(T ) is
not connected. �

(d) Weyl’s theorem forH(p)-operators Let T ∈ L(X) be aH(p)-operator, i.e.
H0(λI − T ) = ker(λI − T )p for all λ ∈ C and some p ∈ N. By Theorem 4.37, T
is a hereditarily polaroid operator, so, by Theorem 6.127, we have:

Theorem 6.165 Let T ∈ L(X) be an H(p)-operator and K ∈ K(X) an algebraic
operator which commutes with T . If f ∈ Hnc(σ (T )), then f (T + K) satisfies the
generalized Weyl’s theorem, while f (T ∗ + K∗) satisfies every Weyl-type theorem
(generalized or not).

In particular, Theorem 6.165 applies to convolution operators Tμ on the group
algebra L1(G), G a locally compact abelian group, and more generally to every
multiplier defined on a commutative semi-simple Banach algebra, since these
are H(1)-operators. Since every paranormal operator is hereditarily polaroid,
by Theorem 4.56, another consequence of Theorem 6.127 is the following
result:

Theorem 6.166 Let T ∈ L(X) be paranormal and K ∈ K(X) an algebraic
operator which commutes with T . If f ∈ Hnc(σ (T )), then f (T + K) satisfies the
generalized Weyl’s theorem, while f (T ∗ + K∗) satisfies every Weyl-type theorem
(generalized or not).

(e) Weyl’s theorem for operators reduced by each of its finite-dimensional
eigenspaces We outline in this section some results due to Berberian [60]. Let T ∈
L(H),H a Hilbert space, and suppose that T is reduced by each of its finite-dimen-
sional eigenspaces. If π0f = {λ ∈ C : 0 < α(λI − T ) <∞}, set

M :=
∨
λ∈π0f

ker (λI − T ).

It is easily seen that M reduces T . Set T1 := T |M and T2 := T |M⊥. Then we
have, see [60, Proposition 4.1]:

(i) T1 is normal with pure point spectrum (this means that the space M is the
closed linear span of the eigenvalues of T1).

(ii) π0(T1) = π0f (T ), where π0(T1) is the set of all eigenvalues of infinite
multiplicity.

(iii) σ(T1) = σp(T1).
(iv) π0(T2) = π0(T ) \ π0f = π0(T ).

In this case, Berberian [60, Definition 5.4] defined the set τ (T ) := σ(T2) ∪
π0f (T ) and showed that τ (T ) is a non-empty compact subset of σ(T ). The set
τ (T ) is called the Berberian spectrum of T . Berberian has also shown that if T is
reduced by each of its finite-dimensional subspaces then τ (T ) = σw(T ) = σb(T ),
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so T satisfies Browder’s theorem, see also Lee [223].

σ(T ) \ σw(T ) = σ(T ) \ σb(T ) ⊆ π00(T ). (6.27)

The inclusion (6.27) easily implies that if iso σ(T ) = ∅ and T is reduced by each
of its finite-dimensional subspaces then Weyl’s theorem holds for T , as well as for
T ∗, and σ(T ) = σw(T ). The following result was proved in [60].

Theorem 6.167 If T ∈ L(H) is reduced by each of its finite-dimensional
subspaces and every restriction of T to any reducing subspace is isoloid then Weyl’s
theorem holds for T .

Theorem 6.167 applies to hyponormal operators and p-hyponormal operators,
since these are reduced by each of its finite-dimensional subspaces, see Curto
[104]. We can say much more: hyponormal operators and p-hyponormal operators
are H(p)-operators, hence have the SVEP and are hereditarily polaroid. From
Theorem 6.44, f (T ) and f (T ∗) satisfies Weyl’s theorem for every f ∈ H(σ (T )).
Since, by Theorem 4.15, the SVEP for T entails that (aW), (ω), (gW), (gaW) and
(gω) hold for f (T ∗).

An operator T ∈ L(X) is said to have property (G1) if

‖(λI − T )−1‖ ≤ 1

dist (λ, σ (T ))
.

Note that the right-hand side of the inequality above is equal to the spectral radius
of (λI − T )−1, so that we actually have equality, thus, T satisfies (G1) if and
only if (λI − T )−1 is normaloid for all λ /∈ σ(T ). In [288] Stampfli showed that
the condition (G1) entails that T is isoloid. In [183] Istrătescu̧ proved that if the
restriction of T to any invariant subspace satisfies property (G1) and each point of
σ(T ) is a bare point (that is, it lies on the circumference of some closed disc that
contains σ(T )), then Weyl’s theorem holds for T . Berberian in [60] has shown that
if T is reduced by each of its finite-dimensional eigenspaces and the restriction of
T to any reducing subspace has property (G1) then Weyl’s theorem holds for T .

(f) Weyl’s theorem for Cesàro operators Let Cp denote the Cesàro operator
on the Hardy space Hp(D) for 1 ≤ p <∞, defined as

(Cpf )(λ) := 1

λ

∫ λ

0

f (μ)

1 − μdμ for all f ∈ Hp(D) λ ∈ D.

The spectral properties of Cesàro operators have been studied by Siskasis [286].
In [240] Miller et al. proved that Cp has property (β) whenever 1 < p < ∞. In
particular, Cp has the SVEP for 1 < p <∞. The spectrum of Cp is connected and
has no isolated points, since

σ(Cp) =
{
λ ∈ C : |λ− p

2
| < p

2

}
.
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Furthermore, σap(Cp) = ∂σ(Cp), so ρap(T ) is not connected. From Theorem 6.130
we then deduce that ρuw(T ) is not connected. Therefore, Weyl’s theorem holds for
Cp + K for every compact operator on Hp(D), while this is not true for a-Weyl’s
theorem, or property (ω).

6.10 Weyl’s Theorem for Symmetrizable Operators

Let X be a complex infinite-dimensional Banach space and suppose that X is a
subspace of another Banach space Y . Assume that the embedding of X into Y is
continuous, i.e. there is a constant k > 0 such that

‖x‖Y ≤ k‖x‖X for all x ∈ X.

Let T ∈ L(X) and denote by T ∈ L(Y ) an extension of T to Y . In general, very
few things can be said concerning the relationship between the spectral theory and
Fredholm theory of T and T , see Example 1 and Example 2 of Barnes [56]. The
spectral theory and Fredholm theory of T and T are almost the same if we assume:

A) X is dense in Y and T (Y ) ⊆ X.
In [220] some aspects of Fredholm theory have been studied where we

assume:

B) Y is a Hilbert space and T is symmetrizable (see later for the definition).

In this section we are mainly concerned with the transmission of Weyl-type
theorems from T to T in both cases (A) and (B). In the sequel we always assume that
X and Y are Banach spaces with X a proper subspace of Y . Suppose that T ∈ L(X)
admits an extension T ∈ L(Y ) and set

M(X) := {T ∈ L(X) : T (Y ) ⊆ X}.

It is easily seen that M(X) is a left ideal of L(X), i.e., if T ∈ M and S ∈ L(X) then
ST ∈ M(X). If T ∈ M(X), σ(T ) and σ(T ) may differ only by 0. More precisely,
we have:

Theorem 6.168 If T ∈ M(X) then

(i) ker (λI − T ) = ker (λI − T ) for all λ �= 0.
(ii) σ(T ) \ {0} = σ(T ) \ {0}.

(iii) σw(T ) \ {0} = σw(T ) \ {0}.
(iv) σb(T ) \ {0} = σb(T ) \ {0}.
Proof To show (i), note first that ker (λI − T ) = ker (λI − T ) ∩ X for all λ ∈ C.
Suppose that λ �= 0 and y ∈ ker (λI − T ). Then y = 1

λ
T y ∈ T (Y ) ⊂ X, which

proves assertion (i). A direct proof of the assertions (ii) and (iii) can be found in
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[55], but it is possible to prove these by using an argument of [56]. Let S ∈ L(X, Y )
denote the canonical embedding of X into Y and define R ∈ L(Y,X) by Ry :=
T y for all y ∈ Y . Then T = RS and T = SR, and hence the assertions (ii)
and (iii) follow from [56, Theorem 6], while (iv) follows from [56, Theorem 6 and
Proposition 10]. �
Remark 6.169 Note that since X is dense in Y , T ∈ M(X) if and only if there
exists a c > 0 such that ‖T x‖X ≤ c‖x‖Y for all x ∈ X [62].

Remark 6.170 Since in the notation of the proof of Theorem 6.168 we have T =
RS and T = SR, T has the SVEP if and only if T has the SVEP, by Lemma 2.158.

Theorem 6.171 Suppose that X is dense in Y and T ∈ M(X). Then 0 ∈ σw(T ) ∩
σw(T ) ⊆ σ(T ) ∩ σ(T ). Consequently, σ(T ) = σ(T ) and σw(T ) = σw(T ).

Proof Suppose that 0 /∈ σw(T ). Then T ∈ �(Y ), so T (Y ) has finite codimension in
Y and hence has finite codimension inX. Therefore there exists a finite-dimensional
subspace Z such that X = T (Y )⊕ Z. But T (Y ) is closed in Y , hence X is a closed
subspace of Y . SinceX is assumed to be dense in Y , it then follows thatX = X = Y ,
contradicting our assumption that X is a proper subspace of Y .

Suppose now that 0 /∈ σw(T ). Then T ∈ W(X), hence there exists an invertible
operator U ∈ L(X) and a finite-dimensional operator K ∈ L(X) such that T =
U −K ∈ M(X), see Theorem 3.35. From this we obtain

U−1(U −K) = I − U−1K = I −K0 ∈ M(X),

whereK0 := U−1K is a finite-dimensional operator. By Remark 6.170 then kerK0
is closed in Y . Since kerK0 has finite codimension inX, there is a finite-dimensional
subspace N such that X = kerK0 ⊕N . ThereforeX is closed in Y and this implies
X = Y , again contradicting the assumption that X is a proper subspace of Y .

The last assertion is clear by Theorem 6.168. �
Corollary 6.172 Suppose that X is dense in Y and T ∈ M(X). Then T satisfies
Browder’s theorem if and only if T satisfies Browder’s theorem.

Proof By Theorem 6.171 we have 0 ∈ σw(T )∩σw(T ) ⊆ σb(T )∩σb(T ). Therefore,
by Theorem 6.168, σb(T ) = σb(T ), and hence σw(T ) = σb(T ) if and only if
σw(T ) = σb(T ). �

The equivalence of Weyl’s theorem for T and T requires a very special condition
on the range of T .

Theorem 6.173 Suppose that X is dense in Y , T ∈ M(X) and T (X) is closed
in X. Then T satisfies Weyl’s theorem if and only if T satisfies Weyl’s theorem. In
particular, this equivalence holds if β(T ) <∞.
Proof Suppose that Weyl’s theorem holds for T . By Theorem 6.171 then 0 /∈ σ(T )\
σw(T ) = π00(T ). If λ ∈ π00(T ) then λ �= 0 so, by part (i) of Theorem 6.171, we
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have α(λI − T ) = α(λI − T ). Since λ ∈ iso σ(T ) = iso σ(T ), it then follows that
λ ∈ π00(T ). Therefore, π00(T ) ⊆ π00(T ).

We now show that the reverse inclusion also holds. We claim that α(T ) = ∞.
To see this, suppose α(T ) < ∞. Then ker T is complemented, since it is finite-
dimensional, so there exists a closed subspace M of X such that X = ker T ⊕
M . The restriction T |M : M → T (X) admits an inverse (T |M)−1. Define V ∈
L(X) by

V : x ∈ X → (T |M)−1T x ∈ X.

Clearly, V (ker T ) = {0} and Vm = m for allm ∈ M . Consequently, I−V is finite-
dimensional. We show that V ∈ M(X). Since T ∈ M(X) there exists a c > 0 such
that ‖T x‖X ≤ c‖x‖X. Therefore,

‖V x‖X = ‖(T |M)−1T x‖X ≤ ‖(T |M)−1‖‖T x‖X
≤ c‖(T |M)−1‖‖x‖Y ,

from which we conclude that V ∈ M(X). Now, ker (I − V ) is closed in Y . Indeed,
let (xn) be a sequence of elements of ker (I − V ) ⊂ X such that ‖xn − x0‖Y → 0
for some x0 ∈ Y . Then

‖xn − xm‖X = ‖V (xn − xm)‖X ≤ c‖(T |M)−1‖‖x − x − xm‖Y → 0,

so (xn) is a Cauchy sequence in X. Since X is a Banach space, there exists a z ∈ X
such that ‖xn − z‖X → 0. Therefore, for some c′ > 0 we have

‖xn − z‖Y ≤ c′‖xn − z‖X → 0,

and z = x0. Consequently, ‖xn− x0‖X → 0 which shows that ker (I −V ) is closed
in Y , as desired.

Since I − V is finite-dimensional, we haveX = ker (I −V )⊕N , with N finite-
dimensional, and hence X is closed in Y . Hence X = X = Y , a contradiction.

Therefore, α(T ) = ∞ and hence 0 /∈ π00(T ). Consequently, by part (i) of
Theorem 6.168, we have α(λI − T ) = α(λI − T ) for all λ ∈ π00(T ), so
π00(T ) ⊆ π00(T ). Therefore, π00(T ) = π00(T ). Finally

σ(T ) \ σw(T ) = σ(T ) \ σw(T ) = π00(T ) = π00(T ),

so T satisfies Weyl’s theorem.
Suppose that T satisfies Weyl’s theorem. Then 0 /∈ σ(T ) \ σw(T ) = π00(T ) and

hence π00(T ) ⊆ π00(T ). Suppose that α(T ) < ∞. Then α(T ) < ∞ and as it has
been proved before this is impossible. Therefore, α(T ) = ∞ and hence 0 /∈ π00(T ).
As above, it then follows that π00(T ) = π00(T ) and hence σ(T )\σw(T ) = π00(T ).

The last assertion is obvious: every finite codimensional subspace is closed. �
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In the next corollary we consider the case whenX is a dense subspace of a Hilbert
space.

Corollary 6.174 Suppose that X is dense in a Hilbert spaceH and let T ∈ M(X)

be such that T (X) is closed in X. If T is self-adjoint then T satisfies a-Weyl’s
theorem.

Proof If T is self-adjoint then T is decomposable, hence the dual T
∗

(or equiv-
alently, the Hilbert adjoint of T ) has the SVEP. In the notation of the proof of
Theorem 6.168 we have T

∗ = R∗S∗ and T ∗ = S∗R∗, and this implies that T ∗
also has the SVEP. By Theorem 6.173 we know that T satisfies Weyl’s theorem and
the SVEP of T ∗ implies that a-Weyl’s theorem also holds for T , while T ∗ satisfies
the generalized Weyl’s theorem. �

Note that instead of assuming that T is self-adjoint we can assume that T is
generalized scalar. Indeed, every generalized scalar operator is decomposable and
hence its dual has the SVEP, so the argument of Corollary 6.174 still works.

Theorem 6.175 Suppose that X is dense in Y and T ∈ M(X).

(i) If T is polaroid and T satisfies Weyl’s theorem then T satisfies the generalized
Weyl’s theorem.

(ii) If T is polaroid and T satisfies Weyl’s theorem then T satisfies the generalized
Weyl’s theorem.

Proof

(i) Proceeding as in the first part of the proof of Theorem 6.173 we see that
π00(T ) ⊆ π00(T ). The polaroid condition on T entails that 0 /∈ π00(T ). Indeed
if 0 ∈ π00(T ) then 0 is a pole of the resolvent and hence p(T ) = q(T ) < ∞.
By definition of π00(T ) we also have α(T ) < ∞, so β(T ) = α(T ), hence 0 /∈
σw(T ), which is impossible by Theorem 6.171. By part (i) of Theorem 6.168
we then conclude that π00(T ) ⊆ π00(T ). Therefore,π00(T ) = π00(T ) and as in
the proof of Theorem 6.171 this implies that T satisfies Weyl’s theorem. Since
T is polaroid, T satisfies the generalized Weyl’s theorem, by Theorem 6.44.

(ii) The proof is analogous to that of part (i). �
We now show that Weyl’s theorem holds for symmetrizable operators. Indeed,

in this very special situation the assumptions of Corollary 6.174 can be simplified.
To see this, assume that the Banach space X is a subspace of a Hilbert space H
and assume that the embedding of X into H is continuous and X is dense in H .
Following Lax [220] T ∈ L(X) is said to be symmetrizable if T is symmetric with
respect to the inner product 〈·, ·〉 induced by H on X, i.e.,

〈T x, y〉 = 〈x, Ty〉 for all x, y ∈ X.
Note that every quasi-hermitian operator in the sense of Dieudonné [109] is

symmetrizable (a bounded operator T on a Hilbert space is said to be quasi-
hermitian if it satisfies a relation of the form ST = T ∗S, where S is a metric
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operator, i.e., a strictly positive self-adjoint operator, see for further information
also Antoine and Trapani [50]). Applications of symmetrizable operators to partial
differential equations may be found in Lax [220] and Gohkberg and Zambitski
[154].

The proof of the following important properties of symmetrizable operators T ∈
L(X) may be found in Lax [220]:

(a) T is bounded with respect to the Hilbert norm. Moreover, the natural extension
T of T to H is a bounded self-adjoint operator.

(b) σ(T ) ⊆ σ(T ). Clearly, since T is a self-adjoint operator then σ(T ) ⊂ R. This
inclusion may be strict, since σ(T ) may contain non-real points, see the next
Example 6.180.

(c) If λI −T ∈ W(X) then λI −T ∈ W(H). In this case ker (λI −T ) = ker (λI −
T ). Moreover, σw(T ) ⊆ σw(T ).

Lemma 6.176 If T is symmetrizable and λ0 is an eigenvalue of T then λ0 ∈ R.
Furthermore, if λ0 is an isolated eigenvalue of T then λ0 is an isolated eigenvalue
of T .

Proof Clearly, every eigenvalue λ of T is an eigenvalue of T . Since T is self-adjoint
then λ ∈ R. If λ0 is an isolated eigenvalue of T then there exists a punctured open
disc D0 centered at λ0 such that λ /∈ σ(T ) of all λ ∈ D \ {λ0}, and hence by (b) we
have λ /∈ σ(T ), from which we deduce that λ0 is an isolated eigenvalue of T . �
Lemma 6.177 Every symmetrizable operator T has the SVEP.

Proof Observe first that since T is self-adjoint then T has the SVEP. This entails
that T also has the SVEP. In fact, let λ ∈ C be arbitrarily given. Since every analytic
function f : U → X defined on an open disc U centered at λ remains analytic
when considered as a function from U to H , it is clear that T inherits the SVEP
at λ. Observe that the SVEP is also an immediate consequence of Theorem 6.176,
since σp(T ) has an empty interior. �
Theorem 6.178 If T ∈ L(X) is symmetrizable then Weyl’s theorem holds for T .

Proof Since T has the SVEP, T satisfies Browder’s theorem. By Theorem 6.40, in
order to prove that T satisfies Weyl’s theorem, it suffices to show that π00(T ) =
p00(T ). For this suppose that λ0 ∈ π00(T ). Then λ0 is an isolated eigenvalue of
finite multiplicity in σ(T ) and hence, by Lemma 6.176, it follows that λ0 is also
an isolated eigenvalue of T . Since T is self-adjoint, λ0 is a pole of first order of the
resolvent of T , see [179, Proposition 70.5]. Therefore, p(λ0I −T ) = q(λ0I −T ) =
1. If P0 denotes the spectral projection of T associated with λ0, then, by (c),

H0(λ0I − T ) = P0(H) = ker(λ0I − T ) = ker(λ0I − T ).

Therefore, (λ0I − T )P0x = 0 for all x ∈ H .
On the other hand, the restriction of P0 to X coincides with the spectral

projection of T associated with the isolated point λ0 of σ(T ). For all x ∈ X then
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(λ0I − T )P0x = 0, which implies

H0(λ0I − T ) = R(P0|X) ⊆ ker (λ0I − T ),

whereR(P0|X) is the range of P0|X. This implies thatH0(λ0I−T ) = ker (λ0I−T )
for all λ ∈ π00(T ). From the decomposition

X = H0(λ0I − T )⊕K(λ0I − T ) = ker (λ0I − T )⊕K(λ0I − T ),

we then deduce that (λI − T )(X) = K(λI − T ), so X = ker (λ0I − T ) ⊕ (λI −
T )(X) and this implies, by Theorem 1.35, that p(λ0I − T ) = q(λ0I − T ) = 1.
By the definition of π00(T ) we know that α(λ0I − T ) < ∞ and this implies by
Theorem 1.22 that β(λ0I − T ) is also finite. Since λ0I − T has both ascent and
descent finite then λ0I − T is Browder, so λ0 ∈ p00(T ) and hence π00(T ) ⊆
p00(T ). Since the opposite inclusion holds for every operator we then conclude that
p00(T ) = π00(T ). �

In the sequel we need the following elementary lemma:

Lemma 6.179 LetX and Y be vector spaces and T a linear injective mapping from
x onto Y . If M is a linear subspace of X for which Y/T (M) is finite-dimensional
then X/M is also finite-dimensional, with dim (Y/T (M)) = dim (X/M).

Proof Let x̂ := x +M and define φ : X/M → Y/T (M) by φ(x̂) := T x + T (M),
where x ∈ x̂. Clearly, since Y/T (M) is finite-dimensional and φ maps in a one-to-
one way X/M onto Y/T (M), the two quotients X/M and Y/T (M) have the same
dimension. �
Example 6.180 Let R and L denote the right shift and the left shift in �p(N), 1 ≤
p >∞, respectively. Let U ∈ L(�p(N)) be defined as

U := aR + bI + cL, a, b, c ∈ R. (6.28)

Some spectral properties of U have been described by Gohkberg and Zambitski in
[154]. In particular,

1) If |a| ≤ |c| then σ(U) = {λ = x + iy} inside and on the ellipse having equation

(x − b)2
(a + c)2 + y2

(a − c)2 = 1.

If λ belongs to the interior of this ellipse then (λI − U)(X) is closed and

α(λI − U) :=
{

1 if |a| > |c|,
0 if |a| < |c|,
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and

β(λI − U) :=
{

0 if |a| > |c|,
1 if |a| < |c|.

2) When a = c, σ(U) is the closed interval [−2c+ b, 2|c| + b].
3) In the case a = −c, σ(U) = {λ = iμ+ b : −2|c| ≤ μ ≤ 2|c|}.

Furthermore, in the case (2) and (3) we have α(λI −U) = 0 and (λI − U)(x) =
�p(N).

Let now X be the space of all complex sequences x := (x1, x2, . . . , xn, . . . ) for
which

∑∞
j=1 2j |xj | <∞. The space X provided with the norm

‖x‖X =
n∑
j=1

2j |xj |

is a Banach space which is dense in the Hilbert space �2(N), and ‖x‖2 ≤ ‖x‖X.
Define a map  : X → �1 by

(x) := (2x1, 2
2x2, . . . , 2

j xj , . . . ).

Evidently,  is an isometry from X onto �1(N). Let S be a bounded operator in
�1(N) defined by S := 1

2aR + bI + 2cL and U defined in X as in (6.28). Then

(U(x)) = S((x)) for all x ∈ X.

In particular, σ(U) = σ(S).
Let us take H := �2(N) and T := R + 2I + L. Then T is symmetrizable over

X. Indeed, T is a bounded linear operator on X, and

〈T x, y〉 = 〈x, Ty〉 for all x, y ∈ X,

where 〈·, ·〉 is the inner product in �2(N). Therefore, T satisfies Weyl’s theorem. We
can say much more:

(i) σw(T ) = σ(T ) = [0, 4].
(ii) σw(T ) = σ(T ) consists of the points λ := x + iy which lie inside or on the

ellipse � having equation

(x − 2)2

25
4

+ y2

9
4

= 1.

In particular, σw(T ) is connected
(iii) σe(T ) = σap(T ) = �.
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To show (i), consider above the case a = c. Then σ(T ) = [0, 4]. On the other
hand, since the only points λ for which ind (λI − T ) are the points in the resolvent
of T , σw(T ) = σ(T ). To prove (ii) and (iii) observe that σ(T ) coincides with the
spectrum of S = 1

2aR + bI + 2cL on �1(N), which according to part (1) above,
consists of all λ = x + iy inside and on the ellipse �. Furthermore, for λ ∈ σ(S)
inside the ellipse � we have α(λI − S) = 0 and β(λI − S) = 1. Using the fact that
the mapping  defined above is an injective linear map from X onto �1(N) with
(λI − S)(�1) = [(λI − T )(X)], one obtains by Lemma 6.179,

α(λI − T ) = 0 and β(λI − T ) = 1, for any λ inside the ellipse �.

The following argument shows that σe(T ) = �. The inclusion σe(T ) ⊆ � is clear,
since inside the ellipse λI − T is Fredholm.

Let λ ∈ � and suppose that λ /∈ σe(T ). Then λI − T is Fredholm and since
� is the border of σ(T ) then both T and T ∗ have the SVEP at λ. This implies,
by Theorems 2.97 and 2.98, that p(λI − T ) = q(λI − T ) < ∞, hence, by
Theorem 1.22, λI − T is Weyl. Consequently, there exists an open disc D(λ, δ)

centered at λ for which μI − T is Weyl for all μ ∈ D(λ, δ), and this is impossible,
since ind (μI − T ) = −1 inside �. Therefore, σe(T ) = �. Evidently, λI − T ∈
W+(X) inside �, so σuw(T ) ⊆ �. The opposite inclusion is also true, since, as
above, for every λ ∈ � we cannot have λI −T ∈ W+(X), otherwise from the SVEP
for T and T ∗ at λ we would obtain ind (μI − T ) = 0 in an open disc centered at λ.
From σuw(T ) ⊆ σap(T ) ⊆ � we then obtain σap(T ) = σuw(T ) = �, in particular
we see that ρuw(T ) is not connected.

The operator T defined in Example 6.180 is polaroid, since isoσ(T ) = ∅ and
has the SVEP, so by Theorem 6.44 both f (T ) and f (T ∗) satisfy Weyl’s theorem
for every f ∈ H(σ (T )). Since T has the SVEP, f (T ∗) satisfies a-Weyl’s theorem
and property (ω). Moreover, since ρw(T ) is connected and iso σw(T ) = ∅, from
Theorem 6.140 we then deduce that T + K satisfies Weyl’s theorem for every
compact operator K ∈ K(X). Since ρuw(T ) is not connected there exists a
K ∈ K(H) such that a-Weyl’s theorem does not hold for T +K .

The results above may be improved as follows.

Definition 6.181 Let T ∈ L(X), X a Banach space with norm ‖ · ‖. A linear
operator K is said to be T -compact if for any sequence {xn} satisfying ‖xn‖ +
‖T xn‖ ≤ c, where c > 0, the sequence {Kxn} has a convergent subsequence.

Clearly, every compact operator is T -compact for any T ∈ L(X) and each T -
compact operator is bounded. This can be shown by establishing first the inequality
‖Kx‖ ≤ M(‖x‖ + ‖T x‖) and then using the boundedness of T .

Corollary 6.182 Let T ∈ L(X) be symmetrizable on X and suppose that K is a
T -compact operator in X, symmetric with respect to the inner product induced by
the Hilbert spaceH on X. Then Weyl’s theorem holds for T +K .
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Proof Since K is bounded, K is symmetrizable, and hence T + K too. By
Theorem 6.178 then T +K satisfies Weyl’s theorem. �
Example 6.183 Let� be a compact set of Rn, and C(�) be the Banach space of all
continuous function on �. Let T be the following convolution operator

(Tf )(x) :=
∫
�

f (y)

|x − y|n−α d y 0 < α < n, n > 2.

T is a bounded linear operator onC(�). This follows from the fact that if f ∈ C(�),
then Tf ∈ C(�) (see the section on equations of elliptic type in Hellwig [176]), and
since the integral

∫
�

d y

|x − y|n−α

is bounded. Taking X = C(�) and H = L2(�), we see that T is symmetric with
respect to the inner product

〈f, g〉 =
∫
�

f (x)g(x)dx.

Therefore, T satisfies Weyl’s theorem.

6.11 Quasi-T HN Operators

In this section, in order to give a general framework for Weyl-type theorems, we
introduce a new class of operators which properly contain the class T HN of all
totally hereditarily normaloid operators, already studied in Chap. 3.

Remark 6.184 It is rather easy to see that if T ∈ L(X) is T HN and M is a T -
invariant closed subspace of X, then the restriction T |M is also T HN .

Definition 6.185 An operator T ∈ L(X), X a Banach space, is said to be k-quasi
totally hereditarily normaloid, k a nonnegative integer, if the restriction T |T k(X) is
T HN .

Evidently, every T HN -operator is quasi-T HN , and if T k(X) is dense in X
then a quasi-T HN operator T is T HN . In the sequel by Y we denote the closure
of Y ⊆ X.

Lemma 6.186 If T ∈ L(X) is quasi-T HN and M is a closed T -invariant
subspace of X, then T |M is quasi-T HN .

Proof Let k be a nonnegative integer such that Tk := T |T k(X) is T HN . Let TM
denote the restriction T |M . Clearly, TMk(M) ⊆ T k(X), so TMk(M) is Tk-invariant
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subspace of T k(X). By Remark 6.184 it then follows that

TM |TMk(M) = Tk|TMk(M)

is a T HN -operator. �
We recall now some elementary algebraic facts. Suppose that T ∈ L(X) and

X = M ⊕ N , with M and N closed subspaces of X, M invariant under T . With
respect to this decomposition of X it is known that T may be represented by an

upper triangular operator matrix

(
A B

0 C

)
, where A ∈ L(M), C ∈ L(N) and B ∈

L(N,M). It is easily seen that for every x =
(
x

0

)
∈ M we have T x = Ax, so

A = T |M . Let us consider now the case of operators T acting on a Hilbert space
H , and suppose that T k(H) is not dense in H . In this case we can consider the
nontrivial orthogonal decomposition

H = T k(H)⊕ T k(H)⊥, (6.29)

where T k(H)
⊥ = ker(T ∗)k , T ′ the adjoint of T . Note that the subspace T k(H) is

T -invariant, since

T (T k(H)) ⊆ T (T k(H)) = T k+1(H) ⊆ T k(H).

Thus we can represent, with respect to the decomposition (6.29), T as an upper
triangular operator matrix

(
T1 T2

0 T3

)
, (6.30)

where T1 = T |T k(H). Moreover, T3 is nilpotent. Indeed, if x ∈ T k(X)
⊥

, an

easy computation yields T kx = T

(
0
x

)
= T3

kx. Hence T3
kx = 0, since

T kx ∈ T k(H) ∪ T k(H)⊥ = {0}. Therefore we have:

Theorem 6.187 Suppose that T ∈ L(H) and T k(H) non-dense in H . Then,

according to the decomposition (6.29), T =
(
T1 T2

0 T3

)
is quasi-T HN if and only if

T1 is T HN . Furthermore,

σ(T ) = σ(T1) ∪ σ(T3) = σ(T1) ∪ {0}.
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Proof The first assertion is clear, since T1 = T |T k(H). The second assertion

follows from the following general result: if T :=
(
A C

0 B

)
is an upper triangular

operator matrix acting on some direct sum of Banach spaces and σ(A) ∩ σ(B) has
no interior points, then σ(T ) = σ(A) ∪ σ(B); see [222] for details. �

Paranormal operators, and in particular hyponormal operators, are obvious
examples of quasi-T HN operators, since, as has been observed in Chap. 3, these
operators are T HN . In the sequel we give some other examples of operators which
are quasi totally hereditarily normaloid, that generalize these classes.

(iv) The class of quasi-paranormal operators may be extended as follows: T ∈
L(H) is said to be (n, k)-quasiparanormal if

‖T k+1x‖ ≤ ‖T 1+n(T kx)‖ 1
1+n ‖T kx‖ n

1+n for all x ∈ H.

The class of (1, k)-quasiparanormal operators has been studied in [238]. The
(1, 1)-quasiparanormal operators have been studied in Cao et al. [86]. If T k(H)

is not dense then, in the triangulation T =
(
T1 T2

0 T3

)
, T1 = T |T k(H) is n-

quasiparanormal, and hence T HN , see Yuan and Ji [299].
(v) An extension of class A operators is given by the class of all k-quasiclass A

operators, where T ∈ L(H), H a separable infinite-dimensional Hilbert space, is
said to be a k-quasiclass A operator if

T ∗k(|T |2 − |T |2)T k ≥ 0.

Every k-quasiclass A operator is quasi-T HN . Indeed, if T has dense range then T
is a class A operator and hence paranormal. If T does not have dense range then
T with respect the decomposition H = T k(H) ⊕ kerT ∗k may be represented as

a matrix T =
(
T1 T2

0 T3

)
, where T1 := T |T k(H) is a class A operator, and hence

T HN , see Tanahashi [290] .
As has been observed in Duggal and Jeon [135, Example 0.2], a quasi-class A

operator (i.e. k = 1), need not be normaloid. This shows that, in general, a quasi-
T HN operator is not normaloid, so the class of quasi-T HN operators properly
contains the class of T HN operators.

(vi) An operator T ∈ L(H),H a separable infinite-dimensional Hilbert space, is
said to be k-quasi *-paranormal, k ∈ N, if

‖T ∗T kx‖2 ≤ ‖T k+2x‖‖T kx‖ for all unit vectors x ∈ H.

This class of operators contains the class of all quasi- ∗-paranormal operators
(which corresponds to the value k = 1). Every k-quasi *-paranormal operator
is quasi-T HN . Indeed, if T k has dense range then T is ∗-paranormal and hence
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T HN . If T k does not have dense range then T may be decomposed, according the

decompositionH = T k(H)⊕ ker T ∗k, as T =
(
T1 T2

0 T3

)
, where T1 = T |T k(H) is

∗-paranormal, hence T HN , see [239, Lemma 2.1].
(vii) An extension of p-quasi-hyponormal operators is defined as follows: an

operator T ∈ L(H) is said to be (p, k)-quasihyponormal for some 0 < p ≤ 1 and
k ∈ N, if

T ∗k|T ∗|2pT k ≤ T ∗k|T |2pT k.

Every (p, k)-quasihyponormal operator T with respect to the decomposition H =
T k(H) ⊕ kerT ∗k may be represented as a matrix T =

(
T1 T2

0 0

)
, where T1 :=

T |T k(H) is k-hyponormal (hence paranormal) and consequently T HN , see Kim
[198].

The next result generalizes the result of Theorem 4.60.

Theorem 6.188 Suppose that T ∈ L(H), H a Hilbert space, is analytically quasi-
T HN and quasi-nilpotent. Then T is nilpotent.

Proof Suppose first that T is quasi-nilpotent and k-quasi T HN . If T k(H) is dense
then T is T HN , so T is nilpotent by Theorem 4.60. Suppose that T k(H) is not

dense and write T =
(
T1 T2

0 T3

)
, where T1 is T HN , T3

k = 0, and σ(T ) = σ(T1) ∪
{0}. Since σ(T ) = {0} and σ(T1) is not empty, we then have σ(T1) = {0}, thus T1

is a quasi-nilpotent T HN operator and hence T1 = 0. Therefore T =
(

0 T2

0 T3

)
. An

easy computation yields that

T k+1 =
(

0 T2

0 T3

)k+1

=
(

0 T2T
k

3
0 T k+1

3

)k+1

= 0,

so that T is nilpotent.
Finally, suppose that T is quasi-nilpotent and analytically k-quasi T HN . Let

h ∈ Hnc(σ (T )) be such that h(T ) is quasi-T HN . We claim that h(T ) is nilpotent.
If h(T )k has dense range then h(T ) is T HN and hence, by Theorem 4.60, h(T ) is
nilpotent. Suppose that h(T )k does not have dense range. Then with respect to the

decompositionX = h(T )k(H)⊕h(T )k(H)⊥, the operator h(T ) has a triangulation

h(T ) =
(
A B

0 C

)
such that A = h(T )|h(T )k(H) is T HN and

σ(h(T )) = σ(A) ∪ {0}.
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By the spectral mapping theorem we have

σ(h(T )) = h(σ(T )) = {h(0)}.

Consequently, 0 ∈ {h(0)}, i.e. h(0) = 0, and therefore h(T ) is quasi-nilpotent.
Since h(T ) is quasi-T HN , by the first part of the proof it then follows that h(T ) is
nilpotent. Now, h(0) = 0 so we can write

h(λ) = μλn
n∏
i=1

(λiI − T )ni g(λ),

where g(λ) has no zeros in σ(T ) and λi �= 0 are the other zeros of g with
multiplicity ni . Hence

h(T ) = μT n
n∏
i=1

(λiI − T )ni g(T ),

where all λiI − T and g(T ) are invertible. Since h(T ) is nilpotent, T is also
nilpotent. �
Theorem 6.189 If T ∈ L(H) is an analytically quasi T HN operator, then T is
polaroid.

Proof We show that for every isolated point λ of σ(T ) we have p(λI − T ) =
q(λI − T ) < ∞. Let λ be an isolated point of σ(T ), and denote by Pλ the spectral
projection associated with {λ}. ThenM := K(λI−T ) = ker Pλ andN := H0(λI−
T ) = Pλ(X), andH = H0(λI −T )⊕K(λI −T ), see Theorem 2.45. Furthermore,
the restriction λI − T |N is quasi-nilpotent, while λI − T |M is invertible. Since
λI − T |N is analytically quasi T HN , Lemma 6.188 implies that λI − T |N is
nilpotent. In other words, λI−T is an operator of Kato Type, and hence has uniform
topological descent by Theorem 1.83.

Now, both T and the dual T ∗ have the SVEP at λ, since λ is isolated in σ(T ) =
σ(T ∗), and this implies, by Theorems 2.97 and 2.98, that both p(λI − T ) and
q(λI − T ) are finite. Therefore, λ is a pole of the resolvent. �
Theorem 6.190 If T ∈ L(H) is analytically quasi T HN , then T is hereditarily
polaroid and hence has the SVEP.

Proof Let f ∈ Hnc(σ (T )) such that f (T ) is quasi T HN . If M is a closed T -
invariant subspace of X, we know that f (T )|M is quasi T HN , by Lemma 6.186,
and f (T )|M = f (T |M), so f (T |M) is polaroid, by Theorem 6.189, and
consequently, T |M is polaroid, by Theorem 4.19. �
Corollary 6.191 If T ∈ L(H) is the direct sum T = S ⊕N , where S is T HN and
N is nilpotent, then T is hereditarily polaroid.
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Proof If T = S ⊕ N , where S is T HN and N is nilpotent, then T is quasi

T HN , since T admits a triangulation T =
(
S 0
0 N

)
, with respect to a suitable

decomposition. �
Theorem 6.192 Let T ∈ L(H) be an analytically quasi T HN operator on a
Hilbert space H , and let K ∈ L(H) be an algebraic operator commuting with T .
Then both f (T +K) and f (T ′ +K ′) satisfy (gW) for every f ∈ Hnc(σ (T +K)).
Proof Suppose that T ∈ L(H) is analytically quasi T HN , and let f ∈ Hnc(σ (T ))
be such that f (T ) is quasi T HN . Since T has the SVEP, by Theorem 4.31, f (T )
has the SVEP. Now, by Theorem 6.190 T is hereditarily polaroid, and hence the
results of Theorem 6.127 apply. �

6.12 Comments

The properties (R), (gR) were introduced by Aiena et al. in [41, 43] and [44]
and the section concerning these properties is completely modeled after these
papers. The crucial Theorem 6.11 is due to Oudghiri [251]. The perturbation result
concerning hereditarily polaroid operators of Theorem 4.31 is taken from Aiena
and Aponte [8]. The definition of Weyl’s theorem was introduced by Coburn
[97], which started from the work of Weyl [296], which studied the spectra of
all the compact perturbations T + K of a self-adjoint operator T acting on a
Hilbert space and showed that λ ∈ C belongs to the Weyl spectrum precisely
when λ is not an isolated point of finite multiplicity in σ(T ). Later Coburn [97]
extended Weyl’s theorem to Toeplitz operators, and Berberian extended Weyl’s
theorem to some other classes of operators in [60] and [61]. Later, Weyl’s theorem
was studied in connection with the single-valued extension property, by Curto
and Han [105]. In particular they showed that if T or T ∗ has the SVEP then
the spectral theorem holds for the Weyl spectrum. Later, Weyl’s theorem was
studied and extended to other classes of operators by several authors. We cite some
of these articles [16, 54, 57, 105, 106, 119, 129–131, 166, 168, 173, 183, 224].
The characterizations of Weyl’s theorem of Theorems 6.40 and 6.41 are taken
from [10, 32, 105], and Weyl’s theorem for polaroid operators was investigated
by Duggal et al. [138]. Lemma 6.51 and Theorem 6.52 is modeled after Oberai
[250].

The generalized version of Weyl’s theorem was introduced by Berkani and
Koliha [70] and investigated in several papers by Berkani et al. [9, 64, 65] and [69].
However, the characterizations of the generalized Weyl’s theorem established in
Theorem 6.62 is taken from Aiena and Garcia [13]. Theorem 6.64 and Example 6.67
is modeled after Zguitti [306].
a-Weyl’s theorem for operators was introduced by Rakočević [262] and has

been studied by several other authors [2, 35, 105, 111, 252]. In particular, The-
orem 6.70 is modeled after [35]. Theorems 6.73 and 6.75 are due to Oudghiri
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[252], while Theorem 6.80 is an adaptation of a result of Djordjević and Djordjević
[113].

The generalized version of a-Weyl’s theorem was introduced by Berkani and
Koliha [70], and studied by several other authors. Theorem 6.84 may be found in
Aiena and Miller [47].

Property (w) was introduced in a short article by Rakočević [261] and later
studied in several other articles by Aiena et al. [4, 11, 22, 37, 42]. Property (gw)
was introduced and studied by Amouch and Berkani [67, 68]. The section con-
cerning the equivalence between Weyl-type theorems for polaroid-type operators
is modeled after Aiena et al. [38], but pertinent results may be found in Duggal
and Djordjević [129–133]. The section concerning Weyl-type theorems for Drazin
invertible operators is modeled after Aiena and Triolo [28].

A streamlined study of Toeplitz operators may be found in [223]. The result
that a Toeplitz operator satisfies Weyl’s theorem was first established by Coburn
[97]. The section concerning Weyl-type theorems under compact perturbations is
modeled after Duggal and Kim [137], Aiena and Triolo [29], and Jia and Feng [188].
Theorems 6.150 and 6.152 and Example 6.154 are taken from Farenick and Lee
[145].

The results concerning Weyl-type theorems for extensions of bounded linear
operators and symmetrizable operators are modeled after [40] and Nieto [248], who
first proved Theorem 6.178 by using different methods. The class of quasi T HN
operators, which give a general framework for Weyl-type theorems for operators
on Hilbert spaces, was introduced in Aiena et al. [45]. Upper triangular operator
matrices have been studied by many authors, see for instance Han et al. [167] and
Cao et al. [86, 118, 305].



Appendix A

In this appendix we collect some of the basic definitions and results from the
theory of semi-Fredholm operators acting between Banach spaces, and some other
classes of operators related to them. We are mainly concerned with the algebraic
and topological structure of this class, as well as with some perturbation properties.

A.1 Basic Functional Analysis

LetM be a subset of a Banach spaceX. The annihilator ofM is the closed subspace
of X∗ defined by

M⊥ := {f ∈ X∗ : f (x) = 0 for every x ∈ M},
while the pre-annihilator of a subset N of X∗ is the closed subspace of X defined
by

⊥N := {x ∈ X : f (x) = 0 for every f ∈ N}.
An application of the Hahn–Banach theorem shows that if M is a linear subspace
of X then ⊥(M⊥) is the norm closure ofM , so, ifM is closed then ⊥(M⊥) = M . If
N is a linear subspace of X∗, then (⊥N)⊥ is the weak-star closure of N , see [269,
Chap. 4].

The following classical result is essentially due to Kato [196, Chapter IV], its
proof may be found in several other standard books on functional analysis:

Theorem A.1 (Sum Theorem) LetM andN be two closed subspaces of a Banach
space X. Then the following assertions are equivalent:

(i) M +N is closed;
(ii) M⊥ +N⊥ is closed;
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(iii) M⊥ +N⊥ = (M ∩N)⊥;
(iv) M +N = ⊥(M⊥ ∩N⊥).

Let L(X, Y ) denote the space of all continuous linear operators from the Banach
space X into the Banach space Y . The following duality relationships between the
kernels and ranges of a bounded operator T ∈ L(X), on a Banach space X, and
its dual T ∗ are well known, (the reader can find the proofs, for instance, in Heuser
[179, p. 135], or Goldberg [156]:

ker T = ⊥T ∗(X∗) and ⊥ker T ∗ = T (X), (A.1)

and

T (X)⊥ = ker T ∗ and T ∗(X∗) ⊆ kerT ⊥. (A.2)

Note that the last inclusion is, in general, strict. However, a classical consequence
of the closed range theorem establishes that the equality holds precisely when T has
closed range, see Kato [196, Theorem 5.13, Chapter IV].

In the next theorem we establish some well-known basic isomorphisms (for a
proof, see [269]).

Theorem A.2 (Annihilator Theorem) Let M be a closed subspace of a Banach
space X. Then M∗ is isometrically isomorphic to the quotient X∗/M⊥, while
(X/M)∗ is isometrically isomorphic to M⊥. Moreover, if N is a weak-star closed
linear subspace of X∗ then X∗/N is isometrically isomorphic to (⊥N)∗ and
(X/⊥N)∗ is isometrically isomorphic to N .

Definition A.3 Let X be a Banach space. A subspace M of X is said to be
paracomplete, or paraclosed, if there exists a T ∈ L(X) such that T (X) = M .

A subspaceM of a Banach spaceX is paracomplete if and only if there is a complete
norm |||·||| onM which is greater than the original norm ‖·‖. Every closed subspace
is paracomplete but the opposite is not true, see [147].

The following lemma due to Neubauer (see [208, Prop. 2.1.1]), gives sufficient
conditions under which paracomplete subspaces are closed.

Lemma A.4 (Neubauer Lemma) Let X be a Banach space, and M and N
paracomplete subspaces of X. If M ∩ N andM + N are closed, then bothM and
N are closed.

Proofs of the following two basic principles of operator theory may be found in
several standard books on functional analysis, for instance Rudin [269].

Theorem A.5 (Open Mapping Theorem) Let T ∈ L(X, Y ) be surjective. Then T
is open, i.e. there is a constant c > 0 such that, for every y ∈ Y , there exists an
element x ∈ X for which T x = y and ‖x‖ ≤ c‖y‖.
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Theorem A.6 If T ∈ L(X, Y ), X and Y Banach spaces, is such that T (X) is of
second category in X, then T is surjective and hence open.

LetD be a linear subspace ofX and T a linear map fromD into Y . The graph of
T is the set GT := {(x, T x) : x ∈ D}. If X and Y are Banach spaces, the operator
T is said to be closed if GT is a closed subset of X × Y , where the product X × Y
is provided with the norm ‖(x, y)‖ := ‖x‖ + ‖y‖.

Theorem A.7 (Closed Graph Theorem) Let T ∈ L(X, Y ) be closed. Then T is
continuous.

It is obvious that the sum M + N of two linear subspaces M and N of a vector
spaceX is again a linear subspace. IfM ∩N = {0} then this sum is called the direct
sum of M and N and will be denoted by M ⊕ N . In this case for every z = x + y
in M + N the components x, y are uniquely determined. If X = M ⊕ N then N
is called an algebraic complement of M . In this case the (Hamel) basis of X is
the union of the basis of M with the basis of N . It is obvious that every subspace
of a vector space admits at least one algebraic complement. The codimension of
a subspace M of X is the dimension of every algebraic complement N of M , or
equivalently the dimension of the quotient X/M . Note that codimM = dimM⊥.
Indeed, by Theorem A.2 we have:

codimM = dimX/M = dim (X/M)∗ = dimM⊥.

A particularly important class of endomorphisms are the so-called projections. If
X = M ⊕ N and x = y + z, with x ∈ M and y ∈ N , define P : X → M by
Px := y. The linear map P projects X ontoM along N . Clearly, I − P projects X
onto N alongM and we have

P(X) = ker (I − P) = M, ker P = (I − P)(X) = N, with P 2 = P,

i.e. P is an idempotent operator. Suppose now that X is a Banach space. If X =
M ⊕ N and the projection P is continuous then M is said to be complemented
and N is said to be a topological complement of M . Note that each complemented
subspace is closed, but the converse is not true, for instance c0, the Banach space
of all sequences which converge to 0, is a non-complemented closed subspace of
�∞, where �∞ denotes the Banach space of all bounded sequences, see [246]. It is
well known that if X = M ⊕N then bothM and N are invariant under T (i.e. T is
reduced by the pair (M,N)) if and only if T commutes with the projection P of X
ontoM along N .

Definition A.8 T ∈ L(X, Y ), X a Banach space, is said to be relatively regular if
there exists an operator S ∈ L(Y,X) for which

T = T ST and ST S = S.

In this case S is called a pseudo-inverse of T .
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There is no loss of generality if we require in the definition above only T =
T ST . In fact, if T = T ST holds then the operator S′ := ST S will satisfy both the
equalities

T = T S′T and S′ = S′T S′.

In general, a relatively regular operator admits infinite pseudo-inverses. In fact,
if S is a pseudo-inverse then all operators of the form

ST S + U − ST UT S with U ∈ L(X) arbitrary

are pseudo-inverses of T , see [87, Theorem 2]. We now establish a basic result.

Theorem A.9 A bounded operator T ∈ L(X, Y ) is relatively regular if and only if
kerT and T (X) are complemented.

Proof If T = T ST and ST S = S then P := T S ∈ L(Y ) andQ := ST ∈ L(X) are
idempotents, hence projections. Indeed

(T S)2 = T ST S = T S and (ST )2 = ST ST = ST .

Moreover, from the inclusions

T (X) = (T ST )(X) ⊆ (T S)(Y ) ⊆ T (X),

and

kerT ⊆ ker(ST ) ⊆ ker(ST S) = kerT ,

we obtain P(Y ) = T (X) and kerQ = (IX −Q)(X) = kerT .
Conversely, suppose that kerT and T (X) are complemented in X and Y ,

respectively. Write X = kerT ⊕ U and Y = T (X) ⊕ V and let us denote by P
the projection of X onto kerT along U and by Q0 the projection of Y onto T (X)
along V . Define T0 : U → T (X) by T0x = T x for all x ∈ U . Clearly T0 is bijective.
Put S := T0

−1Q0. If we represent an arbitrary x ∈ X in the form x = y + z, with
y ∈ kerT and z ∈ U , we obtain

ST x = T0
−1Q0T (y + z) = T0

−1Q0T z

= T0
−1T z = z = x − y = x − Px.

Similarly one obtains T S = Q0. If Q := IY −Q0 then

ST = IX − P and T S = IY −Q. (A.3)
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If we multiply the first equation in (A.3) from the left by T we obtain T ST = T ,
and analogously multiplying the second equation in (A.3) from the left by S we
obtain ST S = S. �

The left, or right, invertible operators may be characterized as follows:

Theorem A.10 Let T ∈ L(X, Y ), X and Y Banach spaces.

(i) T is injective and T (X) is complemented if and only if there exists an S ∈
L(Y,X) such that ST = IX .

(ii) T is surjective and ker T is complemented if and only if there exists an S ∈
L(Y,X) such that T S = IY .

Proof

(i) If S ∈ L(Y,X) and ST = IX then T ST = T , thus T is relatively regular
and hence has complemented range, by Theorem A.9. Clearly, T is injective.
Conversely, if T is bounded below and P is a projection of X onto T (X), let
S0 : T (X)→ X be the inverse of T . If S := S0P then ST = IX.

(ii) If T S = IY then T ST = T , so T has complemented kernel by Theorem A.9
and, as it is easy to see, T is onto. Conversely, if T is onto and X = ker T ⊕N
then T |N : N → Y is bijective. Let JN : N → X be the natural embedding
and set S := JN(T |N)−1. Clearly, T S = IY . �

A.2 Compact Operators

In this section we reassume some of the basic properties of compact linear operators.
Many of the results of this section are classical and are contained in standard texts
of functional analysis. For this reason, we do not give the proofs of many of these
results.

Definition A.11 A bounded operator T from a normed space X into a normed
space Y is said to be compact if for every bounded sequence (xn) of elements of
X the corresponding sequence (T xn) contains a convergent subsequence. This is
equivalent to saying that the closure of T (BX), BX the closed unit ball of X, is a
compact subset of Y .

Denote by F(X, Y ) the set of all continuous finite-dimensional operators, i.e.
those operators T for which T (X) is finite-dimensional. Let K(X, Y ) be the set of
all compact operators. In the sequel we list some basic properties of these sets (see
[179, §13]).

Theorem A.12 Let X, Y and Z be Banach spaces. Then

(i) F(X, Y ) andK(X, Y ) are linear subspaces of L(X, Y ). Moreover,F(X, Y ) ⊆
K(X, Y ).
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(ii) If T ∈ F(X, Y ), S ∈ L(Y,Z), U ∈ L(Z,X) then ST ∈ F(X,Z) and T U ∈
F(Z, Y ). Analogous statements hold for T ∈ K(X, Y ).

(iii) If (Tn) is a sequence of K(X, Y ) which converges to T then T ∈ K(X, Y ).
Consequently, K(X, Y ) is a closed subspace of L(X, Y ).

Note that by Theorem A.12, part (ii), the integral operatorK defined in Sect. 1.1
is compact. A famous counter-example of Enflo [144] shows that not every compact
operator is the limit of finite-dimensional operators.

Note that K(X, Y )may coincide withL(X, Y ). This for instance is the case when
X = �q or X = c0, Y = �p, with 1 ≤ p < q <∞, see [155].

Let us now consider the case X = Y and set F(X) := F(X,X), K(X) :=
K(X,X). Recall that a subset J of a Banach algebra A is said to be a (two-sided)
ideal if J is a linear subspace of A and for every x ∈ J , a ∈ A, the products xa
and ax lie in J . From Theorem A.12 we then deduce that F(X) as well as K(X) are
ideals of the Banach algebra L(X). Note that if X is infinite-dimensional then I /∈
K(X), otherwise any bounded sequence would contain a convergent subsequence
and by the Bolzano–Weierstrass theorem this is not possible. It is known that we
can define on the quotient algebra L(X)/K(X) the quotient norm:

‖T̂ ‖ := inf
T ∈T̂

‖T ‖, where T̂ := T + K(X).

Since K(X) is closed, the quotient algebra L̂ := L(X)/K(X), with respect to the
quotient norm defined above, is a Banach algebra, known in the literature as the
Calkin algebra. Also L(X)/F(X) is an algebra, but in general is not a Banach
algebra.

Compactness is preserved by duality, see Proposition 42.2, Proposition 42.3 of
[179]:

Theorem A.13 (Schauder’s Theorem) If T ∈ L(X, Y ), X and Y Banach spaces,
then T is compact if and only if T ∗ is compact.

We now establish some important properties of compact endomorphisms.

Theorem A.14 Let T ∈ K(X), X a Banach space. Then α(λI − T ) <∞, β(λI −
T ) <∞ and ind (λI − T ) = 0 for all λ �= 0.

Theorem A.15 If T ∈ K(X),X a Banach space, thenp(λI−T ) = q(λI−T ) <∞
for all λ �= 0.

Theorem A.16 If X and Y are Banach spaces and T ∈ L(X, Y ) is a compact
operator having closed range then T is finite-dimensional.

Proof Suppose first that T is compact and bounded below, namely T has closed
range and is injective. Let (yn) be a bounded sequence of T (X) and let (xn) be
a sequence of X for which T xn = yn for all n ∈ N. Since T is bounded below
there exists a δ > 0 such that ‖yn‖ = ‖Kxn‖ ≥ δ‖xn‖ for all n ∈ N, so (xn) is
bounded. The compactness of T then implies that there exists a subsequence (xnk )
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of (xn) such that T xnk = ynk converges as k → ∞. Hence every bounded sequence
of T (X) contains a convergent subsequence and by the Stone–Weierstrass theorem
this implies that T (X) is finite-dimensional.

Assume now the more general case when T ∈ K(X, Y ) has closed range. If
T0 : X → T (X) is defined by T0x := T x for all x ∈ X, then T0 is a compact
operator from X onto T (X). Therefore the dual T0

∗ : T (X)∗ → X∗ is a compact
operator by Schauder’s theorem. Moreover, T0 is onto, so T0

∗ is bounded below by
Theorem 1.10. The first part of the proof then gives that T0

∗ is finite-dimensional,
and hence T (X)∗ is finite-dimensional because it is isomorphic to the range of T0

∗.
From this it follows that T (X) is also finite-dimensional. �

If C[a, b] is the Banach space of all continuous functions on the interval [a, b],
then an example of a compact operator is given by the classical Fredholm integral
equation (of the second kind),

x(s)−
∫ b

a

k(s, t)x(t)dt = y(s),

where the kernel of the equation k(s, t) is continuous on the square [a, b]×[a, b], the
function y is continuous on the interval [a, b], and we look for solutions x ∈ C[a, b].
If we define K : C[a, b] → C[a, b] as

(Kx)(s) :=
∫ b

a

k(s, t)x(t)dt

then K is compact on C[a, b], see [179].

A.3 Semi-Fredholm Operators

We now introduce some important classes of operators.

Definition A.17 Given two Banach spaces X and Y , the set of all upper semi-
Fredholm operators is defined by

�+(X, Y ) := {T ∈ L(X, Y ) : α(T ) <∞ and T (X) is closed},

while the set of all lower semi-Fredholm operators is defined by

�−(X, Y ) := {T ∈ L(X, Y ) : β(T ) <∞}.

The set of all semi-Fredholm operators is defined by

�±(X, Y ) := �+(X, Y ) ∪�−(X, Y ).
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The class �(X, Y ) of all Fredholm operators is defined by

�(X, Y ) = �+(X, Y ) ∩�−(X, Y ).

At first glance the definitions of semi-Fredholm operators seems to be asymmet-
ric, but this is not the case since the condition β(T ) < ∞ entails by Corollary 1.7
that T (X) is closed.

We shall set

�+(X) := �+(X,X) and �−(X) := �−(X,X),

while

�(X) := �(X,X) and �±(X) := �±(X,X).

If T ∈ �±(X, Y ) the index of T is defined by ind T := α(T )− β(T ). Clearly, if T
is bounded below then T is upper semi-Fredholm with index less than or equal to
0, while any surjective operator is lower semi-Fredholm with index greater than or
equal to 0. Clearly, if T ∈ �+(X, Y ) is not Fredholm then indT = −∞, while if
T ∈ �−(X, Y ) is not Fredholm then indT = ∞.

Observe that in the case X = Y the class �(X) is non-empty since the
identity trivially is a Fredholm operator. This is a substantial difference from the
case in which X and Y are different. In fact, if T ∈ �(X, Y ) for some infinite-
dimensional Banach spaces X and Y then there exist two subspaces M and N
such that X = ker T ⊕ M and Y = T (X) ⊕ N , with M and T (X) closed
infinite-dimensional subspaces of X and Y , respectively. The restriction of T to
M clearly has a bounded inverse, so the existence of a Fredholm operator from
X into a different Banach space Y implies the existence of isomorphisms between
some closed infinite-dimensional subspaces of X and Y . For this reason, for certain
Banach spaces X,Y no bounded Fredholm operator from X to Y may exist, i.e.,
�(X, Y ) = ∅. This is, for instance, the case for X := Lp[0, 1] and Y = Lq [0, 1]
with 0 < p < q <∞. Other examples may be found in Aiena [1, Chapter 7].

It can be proved that each finite-dimensional subspace as well as every closed
finite-codimensional subspace is complemented, see Proposition 24.2 of Heuser
[179]. Therefore, by Corollary 1.7 and Theorem A.9 we have

Theorem A.18 Every Fredholm operator T ∈ �(X, Y ) is relatively regular.
Fredholm operators may be characterized as follows, see Heuser [179].

Theorem A.19 (Atkinson’s Theorem) If T ∈ L(X) then the following statements
are equivalent:

(i) T is a Fredholm operator;
(ii) The class residue T + F(X) is invertible in L(X)/F(X);

(iii) The class residue T + K(X) is invertible in L(X)/K(X).
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Theorem A.20 Suppose that X,Y and Z are Banach spaces.

(i) If T ∈ �−(X, Y ) and S ∈ �−(Y,Z) then ST ∈ �−(X,Z).
(ii) If T ∈ �+(X, Y ) and S ∈ �+(Y,Z) then ST ∈ �+(X,Z).

(iii) If T ∈ �(X, Y ) and S ∈ �(Y,Z) then ST ∈ �(X,Z).
In particular, if T belongs to one of the classes �−(X, Y ), �+(X, Y ),

�(X, Y ) then T n belongs to the same class for all n ∈ N.

Theorem A.21 If T ∈ �±(X) then p(T ) = q(T ∗) and q(T ) = p(T ∗).

Theorem A.22 Suppose that X, Y and Z are Banach spaces, T ∈ L(X, Y ), and
S ∈ L(Y,Z).

(i) If ST ∈ �−(X,Z) then S ∈ �−(Y,Z).
(ii) If ST ∈ �+(X,Z) then T ∈ �+(X, Y ).

(iii) If ST ∈ �(X,Z) then T ∈ �+(X, Y ) and S ∈ �−(Y,Z).

Theorem A.23 Let T ∈ �−(X, Y ) and S ∈ �−(Y,X) (or T ∈ �+(X, Y ) and
S ∈ �+(Y,X)), then ind (ST ) = ind S + ind T .

If T ∈ �+(X, Y ) the range T (X) need not be complemented, and analogously
if T ∈ �−(X, Y ) the kernel may be not complemented. The study of the following
two classes of operators was initiated by Atkinson [52].

Definition A.24 If X and Y are Banach spaces then T ∈ L(X, Y ) is said to be left
Atkinson if T ∈ �+(X, Y ) and T (X) is complemented in X. The operator T ∈
L(X, Y ) is said to be right Atkinson if T ∈ �−(X, Y ) and ker (T ) is complemented
in Y . The class of left Atkinson operators and right Atkinson operators will be
denoted by �l(X, Y ) and �r(X, Y ), respectively.

Clearly,

�(X, Y ) ⊆ �l(X, Y ) ⊆ �+(X, Y ),

and

�(X, Y ) ⊆ �r(X, Y ) ⊆ �−(X, Y ).

Moreover,

�(X, Y ) = �l(X, Y ) ∩�r(X, Y ).

Theorem A.25 Let X, Y , and Z be Banach spaces and T ∈ L(X, Y ). Then the
following assertions are equivalent:

(i) T ∈ �l(X, Y );
(ii) there exists an S ∈ L(Y,X) such that IX − ST ∈ F(X);

(iii) there exists an S ∈ L(Y,X) such that IX − ST ∈ K(X).
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Analogously, the following assertions are equivalent:
(iv) T ∈ �r(X, Y );
(v) there exists an S ∈ L(Y,X) such that IY − T S ∈ F(Y );

(vi) there exists an S ∈ L(Y,X) such that IY − T S ∈ K(Y ).

Theorem A.26 If T ∈ L(X, Y ) then the following statements are equivalent:
(i) T ∈ �(X, Y );

(ii) there exists an S ∈ L(Y,X) such that IX −ST ∈ F(X) and IY −T S ∈ F(Y );
(iii) there exists an S ∈ L(Y,X) such that IX − ST ∈ K(X) and IY − T S ∈ K(Y ).

Theorem A.27 Suppose that T ∈ L(X). Then
(i) T ∈ �r(X) if and only if the class residue T̂ = T + K(X) is right invertible in

the Calkin algebra L(X)/K(X).
(ii) T ∈ �l(X) if and only if the class residue T̂ = T + K(X) is left invertible in

L(X)/K(X).

It should be noted that if X is an infinite-dimensional complex Banach space
then λI − T /∈ �(X) for some λ ∈ C. This follows from the classical result
that the spectrum of an arbitrary element of a complex infinite-dimensional Banach
algebra is always non-empty. In fact, by the Atkinson characterization of Fredholm
operators, λI − T /∈ �(X) if and only if T̂ := T + K(X) is non-invertible in the
Calkin algebraL(X)/K(X). An analogous result holds for semi-Fredholm operators
on infinite-dimensional Banach spaces: ifX is an infinite-dimensional Banach space
and T ∈ L(X) then λI − T /∈ �+(X) (respectively, λI − T /∈ �−(X)) for some
λ ∈ C.

In the following theorem we list some other properties of Atkinson operators, the
proof is left to the reader, see Problems IV.13 of Lay and Taylor [221].

Theorem A.28 If X, Y and Z are Banach spaces we have:

(i) If T ∈ �l(X, Y ) and S ∈ �l(Y,Z) then ST ∈ �l(X,Z). Analogously, if
T ∈ �r(X, Y ) and S ∈ �r(Y,Z) then ST ∈ �r(X,Z). The sets �l(X), �r(X)

and�(X) are semi-groups in L(X).
(ii) Suppose that T ∈ L(X, Y ), S ∈ L(Y,Z) and ST ∈ �l(X,Z). Then S ∈

�l(Y,Z). Analogously, suppose that T ∈ L(X, Y ), S ∈ L(Y,Z) and ST ∈
�r(X,Z). Then T ∈ �r(X, Y ).

A.4 Some Perturbation Properties of Semi-Fredholm
Operators

The next theorem shows that the classes �+(X, Y ), �−(X, Y ) and �(X, Y ) are
stable under compact perturbations.
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Theorem A.29 If X and Y are Banach spaces the following statements hold:

(i) If �+(X, Y ) �= ∅ then �+(X, Y )+ K(X, Y ) ⊆ �+(X, Y ).
(ii) If �−(X, Y ) �= ∅ then �−(X, Y )+ K(X, Y ) ⊆ �−(X, Y ).

(iii) If �(X, Y ) �= ∅ then�(X, Y )+ K(X, Y ) ⊆ �(X, Y ).
Theorem A.30 Let T ∈ �±(X, Y ). Then ind (T + K) = ind T for all K ∈
K(X, Y ).

We show now that �(X, Y ) is stable under small perturbations.

Theorem A.31 For every T ∈ �(X, Y ), X and Y Banach spaces, there exists a
ρ := ρ(T ) > 0 such that for all S ∈ L(X, Y ) with ‖S‖ < ρ then T + S ∈ �(X, Y )
and ind (T + S) = ind T . The set �(X, Y ) is open in L(X, Y ).

Also the classes of semi-Fredholm operators are stable under small perturbations.

Theorem A.32 Suppose that T ∈ L(X, Y ). Then we have
(i) If T ∈ �+(X, Y ) then there exists an ε > 0 such that for every S ∈ L(X, Y )

for which ‖S‖ < ε we have T + S ∈ �+(X, Y ). Moreover, α(T + S) ≤ α(T )
and ind (T + S) = ind T .

(ii) If T ∈ �−(X, Y ) then there exists an ε > 0 such that for every S ∈ L(X, Y )
for which ‖S‖ < ε we have T + S ∈ �−(X, Y ). Moreover, β(T + S) ≤ β(T )
and ind (T + S) = ind T .

An immediate consequence of Theorem A.32 is that the sets �+(X, Y ),
�−(X, Y ) and �(X, Y ) are open subsets of L(X, Y ). Now, if � is a connected
open component of �±(X) the index function T → ind T is continuous on �. If
we fix T0 ∈ �, then the set {T ∈ �; indT = ind T0 is both open and closed so it
coincides with �. Hence we have:

Theorem A.33 The sets �+(X, Y ), �−(X, Y ) and �(X, Y ) are open subsets of
L(X, Y ). The index is constant on every connected component of �±(X, Y ).

If the perturbation of T ∈ �±(X) is caused by a multiple of the identity we have:

Theorem A.34 (Punctured Neighborhood Theorem) Let T ∈ �+(X). Then
there exists an ε > 0 such that

α(λI + T ) ≤ α(T ) for all |λ| < ε,

and α(λI − T ) is constant for all 0 < |λ| < ε.
Analogously, if T ∈ �−(X) then there exists an ε > 0 such that

β(λI + T ) ≤ β(T ) for all |λ| < ε,

and β(λI + T ) is constant for all 0 < |λ| < ε.
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In the sequel, we establish some basic relationships between the ascent and the
descent of a bounded operator T ∈ L(X) on a Banach space X in the case of semi-
Fredholm operators.

Suppose that T ∈ �±(X). Then T n ∈ �±(X), and hence the range of T n is
closed for all n. Analogously, T �n also has closed range, and therefore for every
n ∈ N,

ker T n� = T n(X)⊥, ker T n = ⊥T n�(X�) = ⊥T �n(X�).

Obviously these equalities imply that p(T �) = q(T ) and p(T ) = q(T �). Note
that these equalities hold in the Hilbert space sense: in the case of Hilbert space
operators T ∈ �±(H) the equalities p(T �) = q(T ) and p(T ) = q(T �) hold for the
adjoint T �.

A.5 The Riesz Functional Calculus

Let A be a complex algebra with identity u. For every a ∈ A and every analytic
function f : U → C defined on some open neighborhoodU of the spectrum σ(a),
define

f (a) := 1

2πi

∫
�

f (λ)(λu− a)−1dλ,

where � is a contour that surrounds σ(a) inU (this means that � is a finite system of
positively oriented closed rectifiable curves in U \ σ(a) such that σ(a) is contained
in the inside of � and C \ U in the outside of �. By using Cauchy’s theorem and
the Hahn–Banach theorem it can be shown that f (a) is independent of the choice of
the contour that surrounds σ(a) in U . Let H(σ (a)) denote the space of all analytic
functions on some open neighborhood U of the spectrum σ(a). Then the mapping
f ∈ H(σ (a)) → f (a) is a continuous algebra homomorphism of H(σ (a)) into A
and is called the analytic functional calculus for the element a, see [179, Section 48].
Moreover, the following fundamental property holds.

Theorem A.35 (Spectral Mapping Theorem) If a ∈ A then the equality
σ(f (a)) = f (σ(a)) holds for all f ∈ H(σ (a)).

In the particular caseA = L(X), whereX is a non-trivial complex Banach space,
the analytic functional calculus is commonly called the Riesz functional calculus. If
T ∈ L(X) consider a spectral subset σ1 (possibly empty) of C, i.e. such that σ1 and
σ2 := σ(T ) \ σ1 are closed in C. Let �1 and �2 be two closed positively oriented
contours in ρ(T ) = C \ σ(T ) which contain σ1 and σ2, respectively, but do not
contain any other subset of σ(T ). Then the operators

Pk := 1

2πi

∫
�k

(λI − T )−1dλ, k = 1, 2
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are idempotent, i.e. Pk2 = Pk . Moreover, P1P2 = P2P1 = 0 and P1 + P2 = I .
This result may be extended as follows: let σ1, . . . , σn be spectral subsets such that
σi ∩σj = ∅ for i �= j and σ(T ) = σ1 ∪ . . . σn. Let P1, . . . , Pn be the corresponding
spectral projections. Then PiPj = 0 if i �= j , while I = ∑n

k=1 Pk and X =
P1(X)⊕ · · · ⊕ Pn(X).

For a spectral subset σ (possibly empty) the operator

Pσ := 1

2πi

∫
�σ

(λI − T )−1dλ, k = 1, 2,

where �σ is a contour as above, is a projection and is called the spectral projection
associated with σ .

Theorem A.36 (Spectral Decomposition Theorem) If T ∈ L(X) and σ is a
spectral subset of T then X = Mσ ⊕ Nσ , where Mσ = Pσ (X) and Nσ = ker Pσ .
Both subspaces Mσ and Nσ are invariant under every f (T ), with f ∈ H(σ (T )).
Moreover,

σ(T |Mσ) = σ and σ(T |Nσ ) = σ(T ) \ σ.

Suppose that for T ∈ L(X) for clopen subsets σ1 and σ2 of σ(T ) we have
σ(T ) = σ1 ∪ σ2 and σ1 ∩ σ2 = ∅. Then X = Pσ1 ⊕ Pσ2 and T with respect to

this decomposition of X may be represented as a matrix T =
(
T1 0
0 T2

)
, where

σ(Tk) = σk , (k = 1, 2), see [260, Theorem 2.10].
Let us now consider the case when λ0 is an isolated point of the spectrum σ(T ).

Then the analytic resolvent function Rλ : λ → (λI − T )−1 admits a Laurent
expansion on a punctured disc 0 < |λ − λ0| < r centered at λ0 with radius r ,
i.e. Rλ may be represented by the sum of series

Rλ =
∞∑
n=1

Pn

(λ− λ0)n
+

∞∑
n=0

Qn(λ− λ0)
n for 0 < |λ− λ0| < r,

where the coefficients are calculated according to the formulas

Pn = 1

2πi

∫
�

(λ− λ0)
n−1Rλdλ,

and

Qn = 1

2πi

∫
�

Rλ

(λ− λ0)n+1
dλ,

where � is a sufficiently small positively oriented circle around λ0. If P0 denotes
the spectral projection associated with the spectral set {λ0}, it is easily seen that
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P1 = P0 and Pn = (T − λ0I)
n−1P0, for n = 1, 2, . . . . These equations show that

either Pn �= 0 for all n (in this case λ0 is said to be an essential singularity ofRλ), or
that there exists a p ∈ N such that Pn �= 0 for n = 1, . . . , p but Pn = 0 for n > p.
In this last case λ0 is said to be a pole of order p of the resolvent. The proof of
the following important characterization of the poles may be found in Heuser [179,
Proposition 50.2].

Theorem A.37 If T ∈ L(X) then λ0 ∈ σ(T ) is a pole of Rλ if and only if 0 <
p(λ0I − T ) = q(λ0I − T ) < ∞. Moreover, if p := p(λ0I − T ) = q(λ0I − T )
then p is the order of the pole. In this case λ0 is an eigenvalue of T , and if P0 is the
spectral projection associated with {λ0} then

P0(X) = ker (λ0I − T )p, ker P0 = (λ0I − T )p(X).

A.6 Vector-Valued Analytic Functions

For ease of reference we give in this section some notions and few results concerning
vector-valued analytic functions. However, we refer to Section III.14 of the classical
monograph of Dunford and Schwartz [143], or to the book of Rudin [269, Chap. 3].

Let X be a complex Banach space and � an open subset of C. A vector-valued
function f : � → X is said to be analytic if the composition φ ◦ f : � → C is
analytic for every φ ∈ X∗. Analytic functions are complex differentiable, i.e., there
exists the norm limit

f ′(λ0) := lim
λ→λ0

f (λ)− f (λ0)

λ− λ0)

for every λ0 ∈ �. As in the classical scalar-valued case, Cauchy’s integral formula
holds for every X-valued analytic function.

Theorem A.38 (Cauchy’s Integral Formula) If f : � → X is analytic and if �1
and �2 are two integration paths with the same initial and final points, which can
be deformed into each other continuously in �, then

∫
�1

f (λ)dλ =
∫
�2

f (λ)dλ.

In particular,
∫
� f (λ)dλ = 0 if � is a closed curve whose interior contains only

points of�.

For everyX-valued analytic function, the higher derivative of f at λ0 is given by

f (n)(λ0) := n!
2πi

∫
�

(λ− λ0)
−1f (λ)dλ



Appendix A 523

for all n = 0, 1, 2, . . . , λ0 ∈ �, where � is a positively oriented closed rectifiable
curve in � for which λ0 belongs to the inside of � and C \ � to the outside of �.
Furthermore, f can be expanded into a power series

f (λ) =
n∑
k=0

ak(λ− λ0)
k, with ak ∈ X,

around every point λ0 ∈ �, and the series converges at least in the largest open
disk around λ0 which contains only points of �. The coefficients ak are given by

ak = f (n)(λ0)
n! .

The next two theorems follow by combining classical results concerning scalar-
valued analytic functions and the Hahn–Banach theorem:

Theorem A.39 (Identity Theorem for an Analytic Function) Suppose that Y is
a closed linear subspace of a Banach spaceX, and f : U → X an analytic function
defined on a connected open subset U ⊆ C. If there exists a setW ⊆ U that clusters
in U such that f (W) ⊆ Y , then f (U) ⊆ Y . In particular, f ≡ 0 on U if f vanishes
on a set that clusters in U .

Theorem A.40 (Liouville’s Theorem) If f is analytic on all of C and is bounded
then f is constant.

We conclude with the classical Runge’s theorem.

Theorem A.41 (Runge’s Theorem) Let K be a compact subset of an open set
U ⊆ C. Suppose that each bounded component of C \ K contains some points of
C \ U . If A is a set containing at least one complex number from every bounded
connected component, then every analytic function on some neighbourhood of K
may be approximated uniformly on K by a sequence of rational functions rn which
converges uniformly to f on K and such that all the poles of the functions rn are
in A.

A.7 Operators on Hilbert Spaces

In this section we reassume some of the basic properties of Hilbert space operators.
We refer to the books of Rudin [269], Heuser [179], and Furuta [151] for details
and proofs. LetH be a complex Hilbert space with an inner product (·, ·). The inner
product satisfies the Schwarz inequality, i.e., |(x, y)| ≤ ‖x‖‖y‖ for all x, y ∈ H .
The dual of a Hilbert space is described by the following theorem.

Theorem A.42 (Frechét–RieszRepresentation Theorem) For each fixed element
z ∈ H the map f : x ∈ H → (x, z) defines a continuous linear form on H .
Conversely, for every continuous linear form f on H there exists a vector z ∈ H
such that f (x) = (x, z) for all x ∈ H . Furthermore, ‖f ‖ = ‖z‖.
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A consequence of this theorem is that every Hilbert space is isometrically
isomorphic to its dual. If T ∈ L(H), for a fixed y ∈ H define f (x) :=
(T x, y). According to the Frechét–Riesz representation theorem, there exists a
unique element z ∈ H such that f (x) = (T x, y) = (x, z) for all x ∈ H . The
adjoint operator T ′ ∈ L(H) is defined by (T x, y) = (x, z) = (x, T ′y). If U
is the conjugate-linear isometry that associates to each y ∈ H the linear form
f (x) = (x, y), then the dual (λI − T )∗ and the adjoint (λI − T )′ are related by the
following equality

λI − T ′ = (λI − T )′ = U−1(λI − T )∗U for all λ ∈ C. (A.4)

An operator T ∈ L(H) is said to be self-adjoint if T = T ′, i.e. (T x, y) =
(x, T y) for all x, y ∈ H . If T T ′ = T ′T then T is said to be a normal operator,
and if T T ′ = T ′T = I then T is said to be unitary. On a Hilbert space H over
C, T is normal if and only if ‖T x‖ = ‖T ′x‖, for all x ∈ H , and T is self-adjoint
if and only if (T x, x) is real for all x ∈ H . Moreover, T is unitary if and only if
‖T x‖ = ‖T ′x‖ = ‖x‖ for all x ∈ H , so every unitary operator is an isometry.
Eigenvectors x, y of a normal operator T corresponding to distinct eigenvalues are
orthogonal to each other, i.e. (x, y) = 0.

Given two self-adjoint operator T , S ∈ L(H) the symbol T ≥ S means that
(T x, x) ≥ (Sx, x) for all x ∈ H and we say that a self-adjoint operator T is positive
if T ≥ 0, i.e., (T x, x) ≥ 0 for all x ∈ H . Obviously, T ≥ S if and only if T −S ≥ 0.
If T ≥ S and U ≥ 0 then T + U ≥ S + U , and the product of positive commuting
operators is always positive.

For any positive operator T ∈ L(H) there exists a unique operator S such that

S2 = T . S is called the square root of T and denoted by T
1
2 .

Let M be a closed subspace of H . Then H = M ⊕ M⊥, where M⊥ is the
orthogonal complement of M , i.e. M⊥ := {y ∈ H : (x, y) = 0 for all x ∈ M}.
The projection PM ofH ontoM alongM⊥ is called the orthogonal projection from
H onto M . A projection P is orthogonal if and only if P is self-adjoint. Every
orthogonal projection PM has norm equal to 1, moreover 0 ≤ PM ≤ I .

An operator U ∈ L(H) is said to be a partial isometry if there exists a closed
subspaceM such that

‖Ux‖ = ‖x‖ for any x ∈ M, and Ux = 0 for any x ∈ M.

The subspace M is said to be the initial space of U , while the range N := U(H)

is said to be the final space of U . Evidently, U is an isometry if and only if U is a
partial isometry andM = H , whileU is unitary if and only ifU is a partial isometry
andM = N = H .

Theorem A.43 Let U ∈ L(H) be a partial isometry with initial spaceM and final
space N . Then we have
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(i) UPM = U and U ′U = PM .
(ii) N is a closed subspace of H .

(iii) The adjoint U ′ is a partial isometry with initial space N and final spaceM .

Note that an operatorU ∈ L(H) is a partial isometry if and only if U ′ is a partial

isometry, and in this case UU ′ and U ′U are projections. Set |T | := (T ′T ) 1
2 . It is

easily seen that ker T = ker |T |.
Theorem A.44 (Polar Decomposition) For every T ∈ L(H) there exists a partial
isometry U such that T = U |T |. The initial space of U isM := |T |(H) = T ′(H),
the final space is N := T (H). Moreover, ker U = ker |T | and U ′U |T | = |T |.

If U is as in Theorem A.44 the product T = U |T | is called the polar
decomposition of T . The partial isometry U is uniquely determined. If T = U |T |
is the polar decomposition of T then T ′ = U ′|T ′| is the polar decomposition of T ′.
Some important properties are transmitted from T to U , for instance if T is normal
then U is normal, if T is self-adjoint then U is self-adjoint, and if T is positive then
U is positive.
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132. B.P. Duggal, S.V. Djordjević, Generalised Weyl’s theorem for a class of operators satisfying

a norm condition. Math. Proc. R. Ir. Acad. 104A(1), 75–81 (2004)
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