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Abstract

In this manuscript we introduce some important concepts concerning dynamical

systems theory. We devote special attention to studying differential equations from a

dynamical systems viewpoint. The introduced concepts are illustrated by examples.

Resumen

En este manuscrito presentamos algunos conceptos importantes concernientes a

la teoŕıa de los sistemas dinámicos. Se presta especial atención al estudio de ecua-

ciones diferenciales desde el punto de vista de sistemas dinámicos. Los conceptos

presentados son ilustrados mediante ejemplos.

Keywords: Dynamical Systems, discrete-time systems, continuous-time systems,

differential equations, vector fields.

Introduction

Nowadays dynamical systems phenomena appear in almost every area of science, from the
oscillating Belousov-Zhabotinsky reaction in chemistry to the chaotic Lorenz system in
meteorology, from complicated behavior in celestial mechanics to the bifurcations arising
in ecological models. It turns out that many of the phenomena mentioned above can be
described by means of differential equations. For this reason, it is an important task to
understand the connections between differential equations and dynamical systems. By
doing this, we obtain a powerful tool which allows us to study the qualitative behavior of
differential equations without having to solve them analytically. This is specially useful
when a general solution is not available or the numerical simulations are too expensive.
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In this article, we continue the study started in [7]. We recall some basic concepts
introduced in that manuscript and bring some new ones. We also present a theorem
concerning existence and uniqueness of the solution of initial value problems and show
the connection between these problems and dynamical systems.

Most of the material presented in this manuscript can be found in the lectures notes
of Prof. Beyn, [4, 5]. There is nevertheless plenty of literature on this subject, e.g., see
[1, 2, 3, 6, 8].

1 Basic Concepts and Theorems

To begin with, we recall the definition of dynamical system (cf. [7]):

Definition 1.1. A dynamical system is a triple {T, X, {ϕt}t∈T}, where T is a time set,
X is a state space and ϕt : X → X is a family of operators parametrized by t ∈ T, such
that:

DS1 ∀u ∈ X : ϕ0(u) = u, i.e., ϕ0 = IdX,

DS2 ∀u ∈ X, ∀s, t ∈ T : ϕt+s(u) = ϕt(ϕs(u)), i.e., ϕt ◦ ϕs = ϕt+s.

Here, the set X stands for a metric space. The function ϕt is known as evolution
operator. This operator can be thought of as a “law” that governs the behavior of the
system. Furthermore, the time set T has the following properties:

• ∃0 ∈ T, ∀t ∈ T : t + 0 = t,

• ∀t, s ∈ T : s + t ∈ T,

• ∀t, s ∈ T : s + t = t + s.

This means that T equipped with the operation + is a commutative semigroup.
In [7, Example 2.1], the author explains the fact that a discrete-time system is com-

pletely defined by knowing the function g := ϕ1. Hence the evolution operator can be
constructed as follows

ϕ0 = IdX , and ϕk = g ◦ g ◦ . . . ◦ g︸ ︷︷ ︸
k times

, (1.1)

k ∈ N. Further, if g is invertible, the system admits negative values of k. For this reason,
the function g is said to be the generator of the dynamical system. Now the natural
question that arises from this fact is whether continuous-time systems also have, in some
sense, generators. Note that in this case we deal with values of time on the real line, so
the function ϕ1 does not allow us to construct the evolution operator, at least not on the
whole real line. These considerations lead us to the following definition:

Definition 1.2. Let {T, X, {ϕt}t∈T}, where T = R or R+ ∪{0}, be a dynamical system
such that ϕ·(x) is differentiable for all x ∈ X. Then the function f : X → X given by

f(x) :=
d

dt

(
ϕt(x)

)∣∣∣∣
t=0

= lim
h→0
h∈T ϕh(x) − ϕ0(x)

h
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is referred to as infinitesimal generator of the dynamical system1.

Of course, the spirit of a generator is that we can in some way construct the evolution
operator from the generator. In (1.1) we explained how the evolution operator of a
discrete-time system can be obtained from its generator. Now we will show that this is
possible for continuous-time systems, too:

Theorem 1.3. Let f : RN → RN be the infinitesimal generator of a dynamical system{T,RN , {ϕt}t∈T}. Then the function u ∈ C1(T,RN) defined as u(t) = ϕt(u0) is a
solution of the initial value problem

ẏ(t) = f(y(t)), y(0) = u0.

Proof. By DS1 we have that u(0) = ϕ0(u0) = u0, so the initial condition is satisfied.
According to the definition of infinitesimal generator we have that

∀t ∈ T : f(u(t)) = lim
h→0
h∈T ϕh(u(t)) − u(t)

h

= lim
h→0
h∈T ϕh (ϕt(u0)) − u(t)

h

DS2

= lim
h→0
h∈T ϕh+t(u0) − u(t)

h

= lim
h→0
h∈T u(t + h) − u(t)

h

= u̇(t).

This theorem asserts that every dynamical system (of the type introduced in Defini-
tion 1.2) is completely defined by its infinitesimal generator, or, more precisely, by the
initial value problem presented above. Now the natural question is whether every initial
value problem represents a dynamical system. For this issue to be dealt with, we first
present a standard result about the existence and uniqueness of the solution of initial
value problems:

Theorem 1.4. Let Ω ⊂ RN be open and f ∈ C1(Ω,RN). Then the initial value problem

ẏ(t) = f(y(t)), y(0) = u0 (1.2)

has for each u0 ∈ Ω exactly one nonextendible solution u(t, u0) ∈ Ω, where t ∈ J(u0) =
(t−(u0), t+(u0)) ∋ 0. The domain of the function u

D = {(t, u0) ∈ R×Ω : t ∈ J(u0)}

is open and u ∈ C1(D,RN). Furthermore, if f ∈ Ck(Ω,RN), then u ∈ Ck(D,RN), k ≥ 1.

1Also called vector field of the dynamical system.

3



t

J(u0)

u0 RN

D

Fig. 1.1: Domain of definition of the solution of (1.2).

Proof. This is a classical result and its proof can be found in any book on Differential
Equations, e.g., see [1, Chapter II].

Besides guaranteeing existence and uniqueness, this theorem also gives valuable infor-
mation about the domain D of definition of the solution. This domain turns out to be
open and furthermore the solution of the initial value problem (1.2) does not exist outside
D. For this reason, the interval J(u0) is referred to as the maximal interval of existence.
Here, it is important to point out that this interval varies with the initial value u0, see
Figure 1.1. With this few remarks we can turn back to the question we outlined before,
that is, whether an initial value problem defines a dynamical system. We will see that
this is true, but in a local sense:

Theorem 1.5. Let the assumptions of Theorem 1.4 hold. Then the operator ϕ·(·) : D →RN , given by ϕt(u0) = u(t, u0), defines a local dynamical system.

Proof. Let us first show DS1. By the initial value condition in (1.2), we have that

∀u0 ∈ Ω : ϕ0(u0) = u(0, u0) = u0.

Now let us work with DS2. Let u0 ∈ Ω and s ∈ J(u0) be arbitrary, but fixed. Then the
function v(t) := ϕt (ϕs(u0)), t ∈ J (ϕs(u0)), is a solution of

ẏ(t) = f(y(t)), y(0) = ϕs(u0). (1.3)

Now consider the function w(t) := ϕt+s(u0). If follows that

ẇ(t) =
d

dt
(u(t + s, u0))

(1.2)

= f(u(t + s, u0)) = f(w(t)) and w(0) = ϕ0+s(u0) = ϕs(u0).

Therefore, w is another solution of (1.3) and by uniqueness (cf. Theorem 1.4), v = w, i.e.
ϕt (ϕs(u0)) = ϕt+s(u0).
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Fig. 1.2: Forced pendulum.

According to this theorem, the initial value problem (1.2) always represents an au-
tonomous dynamical system. Thus, by combining this result with Theorem 1.3, we can
realize that the concept of dynamical system is closely related to initial value problems,
and, more generally, to differential equations (see [7, Example 2.2]).

In many cases, physical phenomena includes the action of an external time-dependent
“force”, which leads us to modeling the underlying phenomena by means of non-autonomous
differential equations of the form

ẏ(t) = f(t, y(t)), y(t0) = u0, t ∈ [t0, tE], (1.4)

where f ∈ C1(R×Ω,RN). Studying in detail non-autonomous dynamical systems is
beyond the scope of this article, however, we do want to point out that such systems can
be written in an autonomous way as the following example shows.

Example 1.6. Consider a pendulum of mass m attached to a string of length L, which
is displaced by an angle from the vertical rest position, see Figure 1.2. Suppose that
there exists an external sinusoidal force F (t) acting on the system. The dynamics of the
pendulum can then be described by the ODE

θ̈(t) +
g

L
sin(θ(t)) = A sin(βt) + B cos(βt), t ∈ R, (1.5)

where A, B, β ∈ R, β > 0 are fixed and g stands for the gravity constant. The case where
there is no external force (i.e. A = B = 0) was studied in [7, Example 1.3]. There, it is
proved that the pendulum can be seen as an autonomous dynamical system. Now we will
show how to deal with the external force in order to preserve the autonomous character
of the system. One way to achieve this is adding a nonlinear oscillator to the system. An
example of such an oscillator is given by

{
ẋ(t) = x(t) + βy(t) − x(t)(x(t)2 + y(t)2),
ẏ(t) = y(t) − βx(t) − y(t)(x(t)2 + y(t)2),
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which has the solution x(t) = sin(βt), y(t) = cos(βt). Now consider the functions u(t) =
θ(t), v(t) = θ̇(t), t ∈ R, and define

G(u, v, x, y) :=




v

−
g

L
sin(u) + Ax + By

x + βy − x(x2 + y2)
y − βx − y(x2 + y2)


 ,

where z := (u, v, x, y) ∈ R4. Thus, it is easy to see that the non-autonomous system (1.5)
can be written as

ż(t) = G(z(t)),

which is an autonomous differential equation of the type of (1.2). This discussion provides
us with a way of applying the theory developed for autonomous dynamical systems to the
present non-autonomous case.

In many cases it may happen that the external force is not periodic, or difficult to
model by an autonomous oscillator. If this is so, we can resort to writing system (1.4) in
autonomous form as follows:





ẏ(t) = f(h(t), y(t)), t ∈ [t0, tE],

ḣ(t) = 1,
y(t0) = u0,

h(t0) = t0.

This is an autonomous system of N + 1 ODEs with N + 1 initial conditions.

2 Equilibria, Orbits, and Phase Diagrams

A common approach for starting the study of dynamical systems consists in introducing
geometrical objects that allow us to visualize dynamical properties, thereby making their
analysis easier. To achieve this, we will begin with the concept of orbit. Then we will
realize that a dynamical system can be qualitatively described by drawing some “typical”
orbits. This process leads us to the so-called phase diagram.

To begin with, let us first introduce the notion of equilibrium, which is the simplest
object of study in dynamical systems. To this end, we consider the Example 1.6 without
forcing, see Figure 1.2. In [7, Example 2.1], the (approximate) evolution operator ϕ(·)(·) :R×R2 → R2 is found to be

ϕt

(
θ0

θ′0

)
=

(
θ(t)
θ′(t)

)
=

(
θ′0
ω

sin(ωt) + θ0 cos(ωt)

θ′0 cos(ωt) − θ0ω sin(ωt)

)
, ω =

√
g

L
, (2.1)

where θ0 and θ′0 represent the angle and angular velocity of the pendulum, respectively,
at t = 0. Now suppose that we let the pendulum run with the initial conditions θ0 =
θ′0 = 0. How does the system evolve in time? From the formula for the evolution operator
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presented above, it is easy to see that ϕt(θ0, θ
′
0) = 0, for all t. We can also arrive at this

conclusion from a physical point of view. Initializing the system with θ0 = θ′0 = 0 amounts
to placing the pendulum at the vertical position with initial angular velocity equal to zero.
It is then clear that the pendulum will remain at the vertical position θ = 0 forever. This
illustrates the simplest behavior that a dynamical system may present. However, this
simple behavior can be seen in more complicated/abstract systems, too. Consider for
example the PDE

{
∂u

∂t
(x, t) + x

∂u

∂x
(x, t) = 0

u(x, 0) = f(x)
, u ∈ C1(R2,R), f ∈ C1(R),

with evolution operator ϕ(·)(·) : R×C1(R) → C1(R) given by (ϕt(f))(x) = f(xe−t) (cf.
[7, Example 2.2]). Choose the initial condition f(x) = K for all x ∈ R, K being a real
constant. Then it follows that

∀t ∈ R : (ϕt(f))(x) = f(xe−t) = K = f(x) ⇒ ϕt(f) = f.

This means that if we initialize the system at a constant function, the system will remain
at that function forever. These two examples illustrate the concept of equilibrium of a
dynamical system, which is formally defined as follows:

Definition 2.1. Let {T, X, {ϕt}t∈T} be a dynamical system. A point x0 ∈ X is referred
to as equilibrium point if

∀t ∈ T : ϕt(x0) = x0.

In other words, we can say that if a dynamical system is placed at an equilibrium
point, it will remain there forever. This fact was already seen in the examples above.

In the literature, equilibrium points are also called “steady states”, “equilibrium solu-
tions”, “stationary points”, “rest points”, and “fixed points”, among others. Some authors
reserve the name “equilibrium” for continuous-time systems, while the term “fixed point”
is used when dealing with discrete-time systems. However, the reader should have in mind
that both terms stand for the same dynamical object.

Now that we have introduced our first (and the simplest) dynamical object of study,
our next task will be to investigate how to detect such objects, provided the (infinitesimal)
generator of the system is known. This task is accomplished in the following:

Theorem 2.2. Let f, g ∈ C1(RN ,RN). Consider the systems

ẋ(t) = f(x(t)), x(0) = ξ, (2.2)

xn = g(xn−1), x0 = ξ̃, n ∈ N . (2.3)

Then z0 ∈ RN is an equilibrium (resp. fixed point) of (2.2) (resp. (2.3)), if and only if
f(z0) = 0 (resp. g(z0) = z0).
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Proof. Let us first work with system (2.2). Assume that z0 is an equilibrium of (2.2).
This means that ϕt(z0) = z0 for all t. Thus, according to Definition 1.2, we have that

f(z0) =
d

dt

(
ϕt(z0)

)∣∣∣∣
t=0

=
d

dt
(z0)

∣∣∣∣
t=0

= 0.

Now suppose that f(z0) = 0. Define the constant function x(t) = z0, t ∈ R. It is then
easy to check that x is a solution of (2.2), and by uniqueness (cf. Theorem 1.4), we can
conclude that ϕt(z0) = z0 for all t ∈ R. Hence z0 is an equilibrium of (2.2). Now let us
turn to the discrete-time case. Assume z0 to be a fixed point of (2.3), i.e., ϕn(z0) = z0 for
all n ∈ N∪{0}. By (1.1), it is readily seen that g(z0) = ϕ1(z0) = z0. Now suppose that
g(z0) = z0, and that ϕn(z0) = z0 for some fixed n ∈ N holds. It follows by induction that

ϕn+1(z0)
DS2

= ϕn(ϕ1(z0)︸ ︷︷ ︸
=z0

) = ϕn(z0) = z0.

Hence ϕn(z0) = z0 for all n ∈ N∪{0}, i.e., z0 is a fixed point of (2.3).

The principal significance of the theorem is that it provides us with a way of finding
and characterizing equilibrium points of dynamical systems. In other words, if we are
interested in equilibrium points (resp. fixed points) of system (2.2) (resp. (2.3)), we should
look for the solutions of the equation f(x) = 0 (resp. g(x) = x).

Now that we have understood the meaning of equilibrium point, we can proceed with
the concept of a somewhat more elaborated dynamical object, the so-called orbit.

Definition 2.3. Let {T, X, {ϕt}t∈T} be a dynamical system and x0 ∈ X. The set

Or(x0) = {x ∈ X : x = ϕt(x0), t ∈ T}
is referred to as orbit of x0.

Before showing some examples, it is worth presenting a few remarks:

• ∀x0 ∈ X : Or(x0) ⊂ X,

• if x0 is an equilibrium point, then Or(x0) = {x0}, i.e., an equilibrium point is the
simplest orbit,

• in continuous-time dynamical systems, the orbits are curves parametrized by the
time t,

• in discrete-time dynamical systems, the orbits are sequences in X, i.e., Or(x0) ∈ XT
for all x0 ∈ X.

Let us illustrate the concept of orbit by some examples.
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Fig. 2.1: Orbit of the pendulum system.

Example 2.4. Consider again the pendulum system of Example 1.6, without external
forcing. The evolution operator can be written as (cf. (2.1))

ϕt

(
R0

φ0

)
=

(
R0

ω
sin(ωt + φ0)

R0 cos(ωt + φ0)

)
, where R0 =

√
(θ′0)

2 + (θ0ω)2 and sin(φ0) =
ωθ0

R0
.

Here, we must choose
R0

ω
small (why?). Thus, an orbit of the pendulum system is

described by the parametric curve

Or(θ0, θ
′
0) =

{(
R0

ω
sin(ωt + φ0)

R0 cos(ωt + φ0)

)
: t ∈ R} .

A typical example of an orbit of this system is depicted in Figure 2.1. Note that, in
this case, the orbits are always closed curves, which reveals the periodic nature of the
system (in the absence of friction!). In the figure, the arrow stands for the direction of
the evolution as the time increases. How does the orbit Or(0, 0) look like?

Example 2.5. Let g : R→ R be defined by g(x) = x2. Consider the system

xn = g(xn−1), n ∈ N .

Choose x0 = 2 as initial point. Then we have that Or(2) = {x ∈ R : x = ϕn(2), n = 0, 1, . . .} =
{2, 4, 16, . . .} =

(
22n
)∞

n=0
∈ RN∪{0}. Clearly, x = 1 and x = 0 are fixed points of the sys-

tem, and so it follows that Or(1) = {1} and Or(0) = {0}.
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In the examples above we have illustrated the concept of orbit for both continuous-
and discrete-time dynamical systems. As we pointed out before, an orbit is a subset of
the state space, and so we can ask ourselves whether the state space could be, in some
sense, decomposed into a collection of orbits of a dynamical system. To this end, the
following theorem gives us important information:

Theorem 2.6. Let {T, X, {ϕt}t∈T} be an invertible (cf. [7, Section 2]) dynamical system.
Let u0, v0 ∈ X. Then Or(u0) ∩ Or(v0) = ∅ or Or(u0) = Or(v0).

Proof. Suppose that Or(u0) ∩ Or(v0) 6= ∅. This means that

∃y ∈ X : y ∈ Or(u0) ∧ y ∈ Or(v0) ⇐⇒ ∃s, t ∈ T : y = ϕt(u0) = ϕs(v0).

Therefore, we have that

∀τ ∈ T : ϕτ (u0)
DS2

= ϕτ−t(ϕt(u0)︸ ︷︷ ︸
=ϕs(v0)

) = ϕτ−t(ϕs(v0))
DS2

= ϕτ−t+s(v0) ∈ Or(v0).

This implies that Or(u0) ⊆ Or(v0). We can prove analogously that Or(v0) ⊆ Or(u0) and
hence Or(u0) = Or(v0).

From this Theorem, we can conclude the following:

• Two orbits satisfying the conditions of the theorem above are either disjoint or
identical,

• through every point in the state space passes only one orbit. Consequently, it follows
that

X =
⋃̇

x0∈X

Or(x0).

This means that the state space can be represented as the disjoint union of orbits of the
underlying dynamical system. This motivates the definition of phase diagram (see below).

Definition 2.7. Let {T, X, {ϕt}t∈T} be a dynamical system. The partitioning of the state
space into orbits is referred to as phase diagram2 of the dynamical system.

Let us restrict our attention to initial value problems (cf. (1.2)). In this case, the phase
diagram consists of a family of solution curves of the system (1.2) obtained by varying
the initial condition u0. It is clear that if x is any point in Or(u0), then f(x) represents a
tangent vector of the solution curve at x. For this reason, the ODE (1.2) is also referred
to as vector field. Let us consider again the pendulum system of Example 2.4. How does
its phase diagram look like? We have seen that any orbit of that system is given by

Or(θ0, θ
′
0) =

{(
R0

ω
sin(ωt + φ0)

R0 cos(ωt + φ0)

)
: t ∈ R} .
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Fig. 2.2: Phase diagram of the pendulum system.

If we vary the initial conditions θ0, θ′0, we will then obtain several closed curves centered
at the origin, see Figure 2.2. The phase diagram provides us with an easy way of visual-
izing the behavior of a dynamical system. Useful information can be obtained from the
phase plot, even if we do not know the evolution operator. For instance, suppose that a
pendulum system presents the phase plot as shown in Figure 2.3. From this picture, we
can see that the orbits are no longer periodic, but they spiral into the origin, which is an
equilibrium point. Hence this point is called a spiral sink. What does this mean from a
physical point of view? Note that the phase diagram tells us that any initial point will,
after a long time, end at the equilibrium point. This fact reveals the presence of friction,
which prevents the system from oscillating forever as it happens in the pendulum system
described in Figure 2.2.

Conclusions

In this manuscript we have seen that dynamical systems and autonomous differential
equations are intimately related objects. In particular, Theorems 1.3 and 1.5 reflect this
fact. We have also learned how to deal with non-autonomous differential equations, which
appear when an external forcing is present. More importantly, we have introduced several
geometrical objects such as equilibrium points, orbits and phase diagrams. With these
concepts, our goal was to provide the reader with tools for facilitating the study of the
qualitative behavior of dynamical systems. In forthcoming articles we will explain in more
detail how the objects mentioned above can be used for the analysis of dynamical systems.

2Also called phase portrait and phase plot.
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θ′(t)
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Fig. 2.3: Phase diagram of a damped pendulum system.
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