Proceedings of the 16th US National Congress on Theoretical

and Applied Mechanics

USNCTAM 2010
June 27-July 2, 2010, Pennsylvania, USA

USNCTAM2010-420

STARTING HOMOCLINIC TANGENCIES NEAR 1:1 RESONANCES

Joseph P aez Chavez
Instituto de Ciencias Matematicas
Escuela Superior Politécnica del Litoral
Guayaquil, Ecuador
Email: jpaez@espol.edu.ec

ABSTRACT

tially no control over the outcome of the Newton iteratioasd

In this presentation we construct a theory-based numerical it can easily happens that a spurious solution is obtainéé;hw

method for starting the continuation of homoclinic tangeac
near 1: 1 resonances, for systems with arbitrary dimensi@n
The method is based on numerical center manifold reductidn a
flow approximation. The effectiveness of the method is illus
trated by numerical examples.

INTRODUCTION

A typical problem in the numerical analysis of homoclinic
orbits is the choice of an appropriate initial guess thatd¢:tead
us, via e.g. Newton iterations, to the homaoclinic connectie
want to analyze. In our case we have a well-posed problemgive
in terms of an operator, whose solutions correspond to the nu
merical approximation of the homoclinic tangencies we are i
terested in (see e.g. [1]). Thus we will construct a theagea
starting procedure, by means of which we can obtain an “edu-
cated” initial guess of the solution of the underlying wetlsed
problem.

What is commonly done is to set a first approximating orbit
to

("'aEv"'aElew"aXHE;---aza---)v

whereg represents an equilibrium pointardi=1,....r,re N
are, basically, randomly chosen vectors on the state sgdgs.
method is successfully applied, e.g., in [1]. This is of cmur
a purely trial-and-error-based method, where the usersen-
tirely on “luck” or brute force. Therefore, the user has esse
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is a significant disadvantage. Thus, our main concern throug
out this presentation will be the construction of a theoagdxl
method that allows us to start the continuation of tangéhta
moclinic orbits near 1 : 1 resonances, with no restrictiothef
dimension of the system. This method will enable us to quan
titatively explore the homoclinic structure in variousargsting
examples, since homoclinic orbits are one of the most fascin
ing objects of study in the theory of dynamical systems, beea
their presence leads to nontrivial dynamics.

BASIC SETUP

Let f(-,a), f € CKRN xR2 RN), k> 1, be a diffeomor-
phism for alla € R?. Throughout this presentation we consider
the discrete-time system

xi= (X, 0). (1)
Suppose tha € RN is a hyperbolic equilibrium of (1) at = .
An orbit xz € (IRN)Z of (1) is referred to as homoclinic with
respect t& (in short homoclinic) if

lim x,=¢&.
im0 =&

Further, a homoclinic orbitz of (1) is referred to as tangential,
if the stable and unstable manifolds fintersect tangentially
along the connecting orbx.



We will restrict our study to tangential homoclinic orbits
near 1 : 1 resonances. We say that the ppiatar) € RN x R?
is a 1:1 resonance of (1), f(xg,0r) = xgr and the matrix
fx(Xr,dr) has a double, defective eigenvalug; = 1 and no
other eigenvalues on the unit circle.

The normal form of the 1 : 1 resonance is known to be (cf. [2,
Lemma 9.7])

&1 .7 &1+&2
<52) = Nu(@):= (EZ+V1+V2£2+A(V)E%+ B(V)El;§2>

+O(I&]°).

whereA(-), B(-) depend smoothly o := (v1,v2) € R?, and
A(0)B(0) # 0,812 € R. This normal form can be approximated
by the flow of a vector field for all sufficiently smdlv||, that is

Ny (&) = ¢3(8) +O([|vII*) +O(l[&| ”lIvI) + O &%),

whereg!, is the flow of a smooth planar system, whose dynamics
are described by the Bogdanov-Takens bifurcation thedrgré-
fore, a tangential homoclinic orbit of the normal form carelpe
proximated by a homoclinic orbit of the vector field, for whic
several starting procedures are available, see e.g. [3te Qe
have constructed an approximating homoclinic orbit forribe

mal form of the 1 : 1 resonance, we can transform this orbihto a
approximating orbit for a general system (1), via nume riesd-

ter manifold reduction. For this purpose, the homologicpise
tion (cf. [2]) plays a central role. This equation has therfor

F(H(Ev),K(v)) = H(Nv(&),V), (2)

whereH : R? x R? — RN andK : R? — IR? are locally defined,
smooth functions that represent a parametrization of aecent
manifold of (1) and a parameter transformation, respelgtiBy

(2), we can obtain linear approximations of the functibh«,

and hence a homoclinic orbit of the normal form can be trans-
formed into an approximating homoclinic orbit of the getera
system (1). The resulting starting procedure can be foufd]in

NUMERICAL EXAMPLES
Consider the following three-dimensional version of the

Hénon map
X a2+ 01z2— X2
Y| +— X .
z y

This system undergoes a 1 : 1 resonance (&ty,z) =
(—0.75,-0.75,-0.75), (a1,02) = (—0.5,—0.5625. With the
procedure described in the previous section, we find a homc
clinic tangency afai,az) =~ (—1.144,—0.233). In the following
picture we show the phase plot of the computed orbit.

Figure 1. TANGENTIAL HOMOCLINIC ORBIT OF THE HENON MAP.
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