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Abstract

In this manuscript the concept of dynamical systems is introduced. This defini-
tion is motivated and illustrated in detail by several examples. A classification of
dynamical systems is given too.

Resumen

En este manuscrito se presenta el concepto de sistema dindmico. Esta definicién
es motivada e ilustrada en detalle a través de algunos ejemplos. También se presenta
una clasificacién de los sistemas dindmicos.
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Introduction

The notion of dynamical systems first appeared when Newton combined the concept of
ordinary differential equations (ODEs) with mechanics. However, the modern approach
of dynamical systems theory is due to Heinri Poincaré. In 1890 he analyzed the stability
of the solar system and the three-body problem by means of ODEs. In order to simplify
the analysis, Poincaré introduced a surface perpendicular to the orbits described by the
planets, in such a way that instead of considering the whole trajectories, he studied their
intersections with the transversal surface. In that way the study of discrete dynamical
systems began. This approach gave later rise to the well-known Poincaré map.
Nowadays, dynamical systems play a central role in many branches of applied sciences,
such as: physics, chemistry, biology, economy and even social sciences, among others. One



t=t,
t=ty+ee#07

Vo

Yo

Y
S S S S S S

Fig. 1.1: Two-body system.

main reason for this is that a dynamical system is nothing else but the mathematical for-
malization of a deterministic process. This allows us to study very (apparently) different
mathematical models under a compact setting, such that a broader overview and a deeper
understanding of the process behind the models is achieved. For instance, by means of the
dynamical systems theory we are able to understand that e.g. ODEs, difference equations,
and some types of partial differential equations (PDEs) share abstract properties which
will enable us to study these objects in the very same setting and in a compact manner.

Most of the material presented in this manuscript can be found in the lectures notes
of Prof. Beyn, [3, 4]. Literature on this subject is numerous. The reader may find an
interesting introduction, motivation and applications of dynamical systems theory in the
monographs [1, 2, 5, 6, §].

1 Basic Concepts

Let us first introduce the abstract definition of dynamical systems. For this purpose, we
will motivate the reader by a very simple problem of physics that is known from high
school, namely, the two-body problem. Consider an idealized piece of the earth’s surface
and a small body of mass negligible with respect to the mass of the earth, see Figure 1.1.
In order to perform a mathematical description of this two-body system, we need first,
as usual, to choose proper variables. In this physical setting we have in principle three
variables at hand, namely, position, velocity and acceleration. It is clear that the position
(or the velocity) of the body alone does not fully determine the state of the system. On
the other hand, in this idealized problem, the acceleration is assumed to be constant and
equal to the gravity. Therefore, the variables we must consider for the description of the
system are position and velocity.



Of course we also need to have a notion of time, which in our case is a real number.
Thus, the problem we are dealing with is how to predict the behavior of the system
knowing its initial state at ¢t = ¢y, i.e.. What will the state of the system be at t = tg + ¢,
e # 07 Note that we allow negative values of €, which means that we want to know not
only future states of the system but also past states of the system, provided we are given
an initial state. These questions are answered by a set of equations which models the
motion of the body. The underlying equations are given in terms of the following function
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where v, vy represent the initial position and velocity of the body, respectively, at ¢ty =
0 (see Figure 1.1), and g is the gravity constant. In short, we have illustrated three
ingredients of a dynamical system, which are:

e time,
e state set,
e function that describes the evolution of the system.
Let us now present the formal definition of dynamical systems:

Definition 1.1. A dynamical system is a triple {T, X, {¢' et }, where T is a time set,
X 1is a state space, and ©' : X — X is a family of operators parametrized by t € T, such
that:

DS1 Vu € X : @°(u) = u, i.e., ¢ = Idx,

DS2 Vu € X,Vs,t € T : p'5(u) = ' (¢*(u)), i.e., p' o p® = s,
Some remarks about this definition are in order:
e Throughout this manuscript, X stands for a metric space!.
e ! is referred to as evolution operator.
e The time set T has the following properties:

- 30eT,VieT: t+0=t,
—Vt,seT:s+teT,
—Vt,seT:s+t=t+s.

This means that T equipped with the operation + is a commutative semigroup.

e DS1 reflects the fact that the system does not change its state spontaneously, i.e.,
“no time, no evolution”.

In general, it suffices that X is a topological space.



Fig. 1.2: Tlustration of DS2.

e DS2 means that the laws governing the system do not change in time, i.e., the
process is autonomous and deterministic. This property is schematically depicted
in Figure 1.2. In this picture we illustrate two ways of arriving at the same final
state from an initial state. The first one consists in letting the system run from the
starting point zg to the final state ¢'*%(xg), which takes ¢ 4+ s units of time. The
other one is first letting the system run from z, to the state ¢®(z), and then using
this point as initial state to arrive at the final point ¢'(*(z0)), after ¢ units of time.
DS2 guarantees that this two procedures lead the system to the same final state.

Let us show some examples to illustrate the concept of dynamical systems:

Example 1.2. Consider the two-body problem introduced before (see Figure 1.1). We
will verify that {RR, R?, {¢'}ier} is a dynamical system. Let us begin with DS1:
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Fig. 1.3: Simple pendulum.

As for DS2, it holds that:
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Therefore, the triple {R, R?, {apt}te]R} is a dynamical system.

Example 1.3. Consider a pendulum of mass m attached to a string of length L, which
is displaced by an angle from the vertical rest position, see Figure 1.3. If we assume the
amplitude of oscillation to be sufficiently small, then the dynamics of the pendulum is
approximately described by the ODE

M+%9=a

whose general solution is given by

9/
O(t) = 2 sin(wt) + o cos(wt), w=4/L, teR.
w L
As in the two-body problem, it is clear that knowing the angle # at certain value of
time is not sufficient to uniquely define the state of the system. Therefore, the function
that describes the evolution of the system should provide another physical quantity, e.g.

angular velocity. Thus, such a function may be given by ¢)(:) : R x R* — R?

(8)- (i) (i)



where 6, ), represent the initial angle and angular velocity of the pendulum, respectively,
at t = 0. Let us see whether {]R, R?, {(pt}te]R} is a dynamical system. We begin with

DS1:
) 2 ) b sin(wt) + Oy cos(wt) 0o
() e (8) - (oo (%)
0 0 0 cos(wt) — Gpw sin(wt) 0

t=0
For DS2 we have that:
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Therefore, the triple {R, R?, {apt}te]ﬁ} is a dynamical system.

2 Classification of Dynamical Systems

As mentioned in the Introduction, dynamical systems play an important role in many
applied sciences, and consequently a large variety of dynamical systems has been devel-
oped. In order to present the theory in a systematic manner, it is very useful to introduce
a classification of dynamical systems. Common criteria used for classification are: time,
state space, and invertibility of the evolution operator. Let us briefly discuss them.

Classification with respect to the time

According to this criterion, dynamical systems can be divided into two groups: continuous-
and discrete-time dynamical systems. The first group is characterized by one of the
following conditions:

o T =R,
o T =R"U{0},
o T=(a,b) CR,a<0<b.

For continuous-time dynamical systems the family {¢'}ier is referred to as flow (resp.
semiflow, see below). It is readily seen that the systems presented in the Examples 1.2,
1.3 are continuous-time systems. As for the discrete-time systems, it holds that:



e T =NU{0} =: Ny,

o T =7.
Let us illustrate this type of systems by the following example:
Example 2.1. Let X be a metric space and g : X — X. Define the operator () :
Ny xX — X as follows

VEe N: Ml =plogh ol=yg, ¢ =Idy. (2.1)
We will prove that {INO, X, {@k}kelNO} is a dynamical system. It is clear that DS1 holds.
Let us work with DS2. We must show that
Vu € X,Vm,n € Ny : " (u) = ¢™ (" (u)).

For this purpose we will use mathematical induction for the variable m. Let n € Ny and
u € X be arbitrary. DS2 clearly holds for m = 0. For m = 1 we have that

P (u) B (01 0 @) (w) = (¢ (1),

Now assume that for some m € Ny ™" (u) = ¢™(¢™(u)) holds. Then

2.1)

m n ( m n m n m-Tn (2'1) m n
P (W) = (0o e™) (¢ (W) = @' (@ (¢ (W) = @' (" (w) = @I (w).
Hence {INO, X, {gpk}keNo} is a discrete-time dynamical system. Note that we have also

shown that any discrete-time system is completely defined by the function ¢! = g. This
function is referred to as the generator of the dynamical system.

Classification with respect to the state space

In this case we assume the state space X to be a vector space. Thus, according to the state
space, dynamical systems are: finite-dimensional, if dim X < oo, and infinite-dimensional,
if dim X = oo. It is easy to show that Examples 1.2, 1.3 correspond to systems of the
first type. Let us present a system of the second type:

Example 2.2. Consider the following PDE

O (0t) + o2, 1) = 0
{ ot Y TG Y = , uweCYR*R), feCHR). (2.2)

u(z,0) = f(z)
This system has the general solution u(z,t) = f(ze™"), z,t € R. Define the operator
¢O() : RxCHR) — C'(R), such that (¢'(f))(z) = flze™). Is {R,C'(R), {¢'}ier} a
dynamical system? Note that

Vi€ CHR) : (¢"(N))(z) = flz) = ¢°(f) = .

which means that DS1 holds. Next, take any f € C*(R) and t,s € R. Let g := ©*(f),
i.e. g(x) = f(xe™®), x € R. Then

(P (@ (M) = (¢'(9))(@) = glwe™) = fze” ) = (" (f))(2),
that is, ©'(¢*(f)) = ©**(f). Hence, {R,C*(R),{¢'}ier} is an infinite-dimensional,
continuous-time dynamical system. Furthermore, this system is invertible too (see below).



Classification with respect to invertibility

For this type of classification we are interested in analyzing the invertibility of the evolu-
tion operator of the system, in the following sense. Let {T, X, {¢'}ier} be a dynamical
system with T = R or Z. Observe that

vteT:plop™ =" =0 = Idx,

which implies that for all fixed ¢ € T, ¢ is invertible and further (¢!)~" = ¢ ~*. Hence,
invertible dynamical systems are those that admit both positive and negative values of
time, otherwise they are non-invertible. For example, the two-body problem, the simple
pendulum, and the system defined by (2.2) are invertible. On the other hand, Example
2.1 provides us, by its construction, with a non-invertible system, however, if ¢g=! exists,
then we could redefine the system in such a way that it admits negative values of time.
Moreover, if we deal with continuous-time, invertible dynamical systems, then the family
of evolution operators is called flow. Otherwise, the family is referred to as semiflow.

Another important type of dynamical systems are those that describe the so-called
Symbolic Dynamics. Let N € N and [N] := {0,1,...,N}. Consider the state space
X :=[NJ%, ie.

X ={u= (u)iez : u; € [N]}2

Consider the shift-operator ¢)(-) : Z xX — X, defined as
(gok(u))l = Uit k, 1€ X

We will show that {Z, X, {@k}kez} defines a dynamical system. To begin with, we verify
DS1:
Yue X,Vi € Z: (¢°(u)); = uiro = u; = ©°(u) = u.

Next, for DS2 it holds that
Vk,p € Z,Yu € X, Vi € Z : (¢"*(u))i = Uishsp = Uirk)+p = (7("(1)))is

and thereby, {Z, X, {cpk}kez} is a discrete-time, invertible dynamical system.

Conclusions

In this manuscript we presented a brief motivation to the study of dynamical systems.
Several examples were given in order to emphasize the advantage of having such a powerful
concept at hand, which allows us to consider different types of mathematical models as
a very same object. In a forthcoming manuscript ([7]) we will present some more robust
connections between ODEs and dynamical systems, so that the reader will realize that
the object here introduced did not arise artificially but it is rather a natural generalization
of many already known dynamical processes.

2Note that X equipped with the metric d : X x X — R, defined as d(u,v) = > o0 |u; — v;|27 11,
becomes a complete metric space.
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