1.1.2 Error-por tipos en computador

Referencia: Chapra 3.3 p.56/pdf.80, Burden definición 1.15 p.20/pdf.30

1. Error absoluto

Es la magnitud (sin signo) entre el valor «conocido» real X y el valor «estimado» Xk.

E = |X-X_k|

El valor dependerá de la magnitud de X, por ejemplo:

– Al contar monedas de 1 centavo, una persona cuenta Xk = 98 y una máquina contadora de monedas determina que el valor X = 100, el error absoluto es de 2 centavos ó 0.02 dólares.

¿Que pasaría si el conteo fuese con monedas de 1 dólar y se mantienen las mismas cantidades de monedas?


2. Error relativo

Continuando el tema del ejemplo anterior, se puede mejorar  dimensionando proporcionalmente los errores, es decir ponderarlos respecto a la magnitud usada.

e = \frac{|X-X_k|}{X}

Ponderar el error, calculando el error relativo para ambos ejemplos anteriores, se hacen comparables cuando las monedas son de un centavo o un dolar:

e = \frac{|100-98|}{100} = 0.02

3. Error de redondeo

Aparece cuando se usa una calculadora o computadora para los cálculos con números reales. La calculadora usa una cantidad finita de dígitos.
Por ejemplo:

  • el número π tiene un número infinito de dígitos,
  • si el número resultante de \sqrt{3} se eleva al cuadrado, se debería obtener 3

Sin embargo podemos comprobar que lo enunciado no se cumple al usar el computador,  así obtenemos el error de redondeo.

Usando Python se obtiene:

>>> import numpy as np
>>> numeropi=np.pi
>>> numeropi
3.141592653589793

>>> b=np.sqrt(3)
>>> b
1.7320508075688772
>>> b**2
2.9999999999999996
>>> 

4. Error de redondeo absoluto

si X_k es una aproximación de X, el error absoluto es

E = |X-X_k|

Este error se enfoca solo en la magnitud de las diferencias, no importa el signo.

5. Error de redondeo relativo

El error relativo es más significativo al usar la proporción del error en lugar del tamaño del valor.

e = \frac{|X-X_k|}{X}

6. Error de truncamiento

Resultan al usar una aproximación en lugar de un procedimiento matemático exacto. Es la diferencia entre una respuesta esperada y el valor calculado con una fórmula iterativa.

Ejemplo, al usar un polinomio de Taylor en lugar de la función original.