2.4 Posición Falsa – Concepto

Referencia: Burden p.72/pdf.82, Chapra 5.3 p.131/pdf155

El método de la posición falsa considera dividir el intervalo cerrado [a,b] donde se encontraría una raíz de la función f(x) basado en la cercanía a cero que tenga f(a) o f(b).

El método une f(a) con f(b) con una línea recta, la intersección de la línea con el eje x representaría una mejor aproximación de la raiz.

Al reemplazar la curva de f(x) por una línea recta, se genera el nombre de «posición falsa» de la raíz.

El método también se conoce como interpolación lineal.

A partir de la gráfica, usando triángulos semejantes se estima que:

\frac{f(a)}{c-a} = \frac{f(b)}{c-b}

que al despejar c, se obtiene:

c = b - f(b) \frac{(a-b)}{f(a)-f(b)}

Calculado el valor de c, éste reemplaza a uno de los valores iniciales [a,b], cuyo valor evaluado tenga el mismo signo que f(c)

Nota: La forma de la expresión presentada para c, se usa para comparar con el método de la secante. Se obtiene sumando y restando b y reagrupando.


Algoritmo propuesto para análisis y mejoras:

# Algoritmo de falsa posicion para raices
# Los valores de [a,b] son seleccionados
# desde la gráfica de la función
# error = tolera

import numpy as np

def posicionfalsa(fx,a,b,tolera):
    fa = fx(a)
    fb = fx(b)
    c = b - fb*(a-b)/(fa-fb)
    
    tramo = abs(c-a)
    while (tramo > tolera):
        fc = fx(c)
        cambia = np.sign(fa)*np.sign(fc)
        if (cambia > 0):
            tramo = abs(c-a)
            a=c
            fa=fc
        else:
            tramo = abs(c-b)
            b=c
            fb=fc
        c = b - fb*(a-b)/(fa-fb)
        
    respuesta = c
    
    # Valida respuesta
    fa = fx(a)
    fb = fx(b)
    cambio = np.sign(fa)*np.sign(fb)
    if (cambio>0):
        respuesta = np.nan
        
    return(respuesta)