3Eva_IIT2018_T3 EDO

3ra Evaluación II Término 2018-2019. 12/Febrero/2018. MATG1013

Tema 3. (40 puntos)

y'' = 2y'-y +xe^{x} -x

0 ≤ x ≤ 2
y(0) = 0
y(2) = -4

a. Use las fórmulaas en diferencias finitas para aproximar las soluciones en los nodos indicados con h = 0.25
b. Estime el error

c. Con los puntos calculados, construya el trazador cúbico natural

Rúbrica: Plantear malla (5 puntos), plantear método (5 puntos), desarollo de la ecuación (10 puntos), planteo del error (5 puntos), obtención del trazador (10 puntos)

3Eva_IIT2018_T2 Drenar tanque cilíndrico

3ra Evaluación II Término 2018-2019. 12/Febrero/2018. MATG1013

Tema 2. (30 puntos) En un tanque cilíndrico vertical, al abrir una válvula en la base el agua fluirá rápidamente cuando el tanque esté lleno; conforme el tanque se vacía irá fluyendo más lentamente.

Si la rapidez a la que disminuye el nivel del agua es:

\frac{\delta y}{\delta t} = -k\sqrt{y}

Donde k es una constante que depende del área de la sección transversal del tanque y del orificio de salida.

La profundidad el agua «y» se mide en pies; y el tiempo t en minutos.

Si k=0.5 e inicialmente el nivel del fluido es de 9 pies. ¿Cuál es el tiempo mínimo para que la altura del taque sea inferior a 6 pies?

a. Utilice el método de Taylor de segundo orden para resolver este problema con h= 0.5 minutos

b. Estime el error en cada paso.

Rúbrica: Plantear el método (5 puntos), desarrollo de la ecuación (10 puntos), valor numérico (5 puntos), planteo del error(5 puntos), valor del error (5 puntos)

3Eva_IIT2018_T1 Integral Doble con Cuadratura de Gauss

3ra Evaluación II Término 2018-2019. 12/Febrero/2018. MATG1013

Tema 1. (30 puntos) Aproxime el resultado de la integral doble:

\int_{0}^{\frac{\pi}{4}} \int_{\sin (x)}^{\cos (x)} \Big( 2y \sin(x) + \cos ^2 (x) \Big) \delta y \delta x

a. Use el método de cuadratura de Gauss de dos términos en cada eje

b. Determine el error al comparar el resultado numérico con el valor exacto.

Rúbrica: Plantear el método (5 puntos), desarrollo (10 puntos), plantear el error (10 puntos), valor del error (5 puntos)

3Eva_IT2018_T3 EDP Parabólica, temperatura en varilla

3ra Evaluación I Término 2018-2019. 11/Septiembre/2018. MATG1013

Tema 3. (30 puntos) La temperatura u(x,t) de una varilla larga y delgada, de sección transversal constante y de un material conductor homogéneo está regida por la ecuación unidimensional de calor. Si se genera calor en el material (por ejemplo, debido a la resistencia de la corriente), la ecuación se convierte en:

\frac{d^2u}{dx^2} + \frac{Kr}{\rho C} = K\frac{du}{dt} 0 \lt x \lt L, 0 \lt t
Donde: Suponga que:
L es la longitud, L =  1.5 cm
ρ es la densidad, ρ = 10.6 g/cm3
C es el calor específico C = 0.056 cal/g deg
K es la difusividad térmica de la varilla K = 1.04 cal/cm deg s
La función r = r(x,t,u) representa el calor generado por unidad de volumen. r(x,t,u) = 5 cal/g deg

Si los extremos de la varilla se mantienen a 0°C, entonces

u(0,t) = u(L,t) = 0, t>0

Suponga que la distribución inicial de la temperatura está dada por:

u(x,0) = \sin \Big( \frac{\pi x}{L} \Big), 0 \le x \le L

Aproxime la distribución de la temperatura con h=0.25, k=0.025 para t=3k


Referencia: Burden 9ed Chapter 12 exercise 18 p738

3Eva_IT2018_T2 Drenaje de estanque

3ra Evaluación I Término 2018-2019. 11/Septiembre/2018. MATG1013

Tema 2. (40 puntos) Un estanque se drena a través de un tubo como se observa en la figura.

Con suposiciones simplificadoras, la ecuación diferencial siguiente describe cómo cambia la profundidad con el tiempo:

\frac{dh}{dt} = -\frac{\pi d^2}{4A(h)}\sqrt{2g(h+e)}

 
Donde:
h = profundidad (m),
t = tiempo (s),
d = diámetro del tubo (m),
A(h) = área de la superficie del estanque como función de la profundidad (m2),
g = constante gravitacional (9,81 m/s2) y
e es la profundidad de salida del tubo por debajo del fondo del estanque (m).

Con base en la tabla siguiente de área-profundidad, resuelva esta ecuación diferencial para determinar cuánto tiempo tomaría que el estanque se vacie, dado que h(0) = 6 m, d = 0.25 m, e = 0.3 m.

h 6 5 4 3 2 1 0
A(h) 1.17 0.97 0.67 0.45 0.32 0.18 0.02

a) Con las profundidades 0, 2, 4, 6, encuentre un modelo de trazador cúbico natural para modelar el área A(h) y calcule el error en h = 5 m

b) Use el método de Taylor de segundo orden con dt=1 s para aproximar el tiempo en que la profundidad es 3 m.

Rúbrica: literal a (20 puntos), literal b (20 puntos)


hi = np.array([6, 5, 4, 3, 2, 1, 0])
Ai = np.array([1.17, 0.97, 0.67, 0.45, 0.32, 0.18, 0.02])

Referencia: Chapra Ejercicio 28.24 p849, pdf873

Video: Superestructuras: la presa Hoover

3Eva_IT2018_T1 Intersección de círculos

3ra Evaluación I Término 2018-2019. 11/Septiembre/2018. MATG1013

Tema 1. (30 puntos) Encuentre las raíces de las ecuaciones simultaneas siguientes:

(x-4)^2 + (y-4)^2 = 5 x^2 + y^2 = 16

a) Use el enfoque gráfico para obtener los valores iniciales.

b) Encuentre aproximaciones refinadas con el Método de Newton-Raphson

Rúbrica: literal a (10 puntos), literal b  (20 puntos)


Referencia: Un asteroide dos veces más grande que un avión Boeing 747 pasará muy cerca la Tierra. https://www.eluniverso.com/noticias/2018/08/28/nota/6927335/asteroide-dos-veces-mas-grande-que-avion-pasara-muy-cerca-tierra

3Eva_IIT2017_T3 EDP Elíptica

3ra Evaluación II Término 2017-2018. Febrero 20, 2018. MATG1013

Tema 3. Aproxime la solución de la siguiente EDP elíptica.

\frac{d^2 u}{dx^2} + \frac{d^2u}{dy^2} = (x^2 + y^2) e^{xy} 0 \lt x \lt 2, 0 \lt y \lt 1

con condiciones de frontera

u(0,y) = 1 , u(2,y) = e^{2y}, 0 \leq y \leq 1 u(x,0) = 1, u(x,1) = e^x , 0 \leq x \leq 2

a) use tamaños de paso h = 2/3 y k = 1/3

b) compare con la solución u(x,y) = exy en forma gráfica

3Eva_IIT2017_T2 trazador cúbico natural

3ra Evaluación II Término 2017-2018. Febrero 20, 2018. MATG1013

Tema 2. El caballo llamado Thunder Gulch ganó el derby de Kentuckyde 1995, con un tiempo de 2 min 1 1/5 s en la carrera de 1 1/4 millas.

Los tiempos en los postes que marcan el cuarto de milla, la mitad de la milla y la milla fueron respectivamente 22 2/5 s, 45 4/5 s, 1min con 1 1/5 s.

a) Use los valores anteriores junto con el tiempo de arranque y construya un trazador cúbico natural.

b) Use el trazador para predecir el tiempo en el poste de tres cuartos de milla y compare el resultado con el tiempo real de 1 in con 10 1/5 s.

c) Usando el trazador y las fórmulas de diferencias finitas, aproxime la velocidad y la aceleración del caballo en todos los postes.

3Eva_IIT2017_T1 Punto fijo

3ra Evaluación II Término 2017-2018. Febrero 20, 2018. MATG1013

Tema 1. Sea g: [a,b] →ℜe (reales) una función diferenciable tal que g(x) ∈ [a,b], para toda x ∈ [a,b]. Demuestre o refute las siguientes afirmaciones.

a) g tiene al menos un punto fijo en [a,b]

b) g tiene un punto fijo único en [a,b]