s1Eva_IT2019_T2 Catenaria cable

Las fórmulas con las que se requiere trabajar son:

y = \frac{T_A}{w} cosh \Big( \frac{w}{T_A}x \Big) + y_0 - \frac{T_A}{w}

Donde la altura y del cable está en función de la distancia x.

Además se tiene que:

cosh(z) = \frac{e^z+ e^{-z}}{2}

que sustituyendo la segunda en la primera se convierte en:

y = \frac{T_A}{w} \frac{e^{\frac{w}{T_A}x}+ e^{-\frac{w}{T_A}x}}{2} + y_0 - \frac{T_A}{w}
y usando los valores del enunciado w=12, y0=6 , y=15, x=50 se convierte en:

15 = \frac{T_A}{12} \frac{e^{\frac{12}{T_A}50}+ e^{-\frac{12}{T_A}50}}{2} + 6 - \frac{T_A}{12}

simplificando, para usar el método de búsqueda de raices:
\frac{1}{2}\frac{T_A}{12} e^{\frac{12}{T_A}50} + \frac{1}{2}\frac{T_A}{12} e^{-\frac{12}{T_A}50} - \frac{T_A}{12} - 9 = 0

cambiando la variable \frac{12}{T_A}=x

\frac{1}{2x} e^{50x} + \frac{1}{2x} e^{-50x} - \frac{1}{x}-9=0

la función a usar para la búsqueda de raices es:

f(x)=\frac{1}{2x} e^{50x} + \frac{1}{2x} e^{-50x} - \frac{1}{x}-9

Para el méodo de Newton-Raphson se tiene que:

x_{i+1} = x_i -\frac{f(x_i)}{f'(x_i)}

por lo que se determina:

f'(x)= - \frac{1}{2x^2}e^{50x} + \frac{1}{2x}(50) e^{50x} + - \frac{1}{2x^2} e^{-50x} + \frac{1}{2x}(-50)e^{-50x} + \frac{1}{x^2} f'(x)= -\frac{1}{2x^2}[e^{50x}+e^{-50x}] + + \frac{25}{x}[e^{50x}-e^{-50x}] +\frac{1}{x^2} f'(x)= \Big[\frac{25}{x} -\frac{1}{2x^2}\Big]\Big[e^{50x}+e^{-50x}\Big] +\frac{1}{x^2}

Con lo que se puede inicar las iteraciones.

Por no disponer de valor inicial para TA, considere que el cable colgado no debería tener tensión TA=0 N, pues en la forma x=12/TA se crea una indeterminación. Si no dispone de algún criterio para seleccionar el valor de TA puede iniciar un valor positivo, por ejemplo 120 con lo que el valor de x0=12/120=0.1

Iteración 1

f(0.1)=\frac{1}{2(0.1)} e^{50(0.1)} + \frac{1}{2(0.1)} e^{-50(0.1)} - \frac{1}{0.1}-9 =723.0994 f'(0.1)=\Big[\frac{25}{0.1} - \frac{1}{2(0.1)^2}\Big]\Big[e^{50(0.1)}+e^{-50(0.1)}\Big] + +\frac{1}{(0.1)^2} = 29780.61043 x_{1} = 0.1 -\frac{723.0994}{29780.61043} = 0.07571

error = | x1 – x0| = | 0.07571 – 0.1| = 0.02428

Iteración 2

f(0.07571)=\frac{1}{2(0.07571)} e^{50(0.07571)}+ + \frac{1}{2(0.07571)} e^{-50(0.07571)} - \frac{1}{0.07571}-9 = 269.0042 f'(0.07571)= \Big[\frac{25}{0.07571} -\frac{1}{2(0.07571)^2}\Big]. .\Big[e^{50(0.07571)}+e^{-50(0.07571)}\Big] + +\frac{1}{(0.07571)^2} = 10874.0462 x_{2} = 0.07571 -\frac{269.0042}{10874.0462} = 0.05098

error = | x2 – x1| = |0.05098- 0.02428| = 0.02473

Iteración 3

f(0.05098) = 97.6345 f'(0.05098) = 4144.1544 x_{3} = 0.0274

error = | x3 – x2| = |0.05098- 0.0274| = 0.0236

finalmente después de varias iteraciones, la raiz se encuentra en: 0.007124346154337298

que conviertiendo
T_A = \frac{12}{x} = \frac{12}{0.0071243461} = 1684.36 N


Revisión de resultados

Usando como base los algoritmos desarrollados en clase:

['xi', 'xnuevo', 'tramo']
[0.1    0.0757 0.0243]
[0.0757 0.051  0.0247]
[0.051  0.0274 0.0236]
[0.0274 0.0111 0.0163]
[0.0111 0.0072 0.0039]
[7.2176e-03 7.1244e-03 9.3199e-05]
[7.1244e-03 7.1243e-03 3.8351e-08]
raiz en:  0.007124346154337298
TA = 12/x =  1684.365096815854

Algoritmos Python usando el procedimiento de:

http://blog.espol.edu.ec/matg1013/2-3-1-newton-raphson-ejemplo01/

# 1Eva_IT2019_T2 Catenaria cable
import numpy as np
import matplotlib.pyplot as plt

# INGRESO
a = 0.001
b = 0.1
muestras = 51

x0 = 0.1
tolera = 0.00001

fx = lambda x: 0.5*(1/x)*np.exp(50*x) + 0.5*(1/x)*np.exp(-50*x)-1/x -9
dfx = lambda x: -0.5*(1/(x**2))*(np.exp(50*x)+np.exp(-50*x)) + (25/x)*(np.exp(50*x)-np.exp(-50*x)) + 1/(x**2)

# PROCEDIMIENTO
tabla = []
tramo = abs(2*tolera)
xi = x0
while (tramo>=tolera):
    xnuevo = xi - fx(xi)/dfx(xi)
    tramo = abs(xnuevo-xi)
    tabla.append([xi,xnuevo,tramo])
    xi = xnuevo

tabla = np.array(tabla)
n=len(tabla)

TA = 12/xnuevo

# para la gráfica
xp = np.linspace(a,b,muestras)
fp = fx(xp)

# SALIDA
print(['xi', 'xnuevo', 'tramo'])
np.set_printoptions(precision = 4)
for i in range(0,n,1):
    print(tabla[i])
print('raiz en: ', xi)
print('TA = 12/x = ', TA)

# Grafica
plt.plot(xp,fp)
plt.xlabel('x=12/TA')
plt.ylabel('f(x)')
plt.axhline(0, color = 'green')
plt.grid()
plt.show()

s1Eva_IT2019_T3 Vector perpendicular a plano

Literal a

Para que un vector sea perpendicular a otro, se debe cumplir que
V1.V2 =0.

\begin{bmatrix} 2 \\ -3 \\ a \end{bmatrix} . \begin{bmatrix} b \\ 1 \\ -4 \end{bmatrix} = 0

se obtiene entonces la ecuación:

(2)(b)+(-3)(1)+(a)(-4)=0
2b -3 -4a =0

procediendo de la misma forma con los siguientes pares de vectores:

\begin{bmatrix} 2 \\ -3 \\ a \end{bmatrix} . \begin{bmatrix} 3 \\ c \\ 2 \end{bmatrix} = 0

se obtiene entonces la ecuación:

(2)(3)+(-3)(c)+(a)(2)=0
6 -3c +2a = 0
\begin{bmatrix} b \\ 1 \\ -4 \end{bmatrix} . \begin{bmatrix} 3 \\ c \\ 2 \end{bmatrix} = 2

se obtiene entonces la ecuación:

(b)(3)+(1)(c)+(-4)(2)=2
3b +c -8 =2

se obtiene el sistema de ecuaciones:

\begin{cases}-4a+2b=3 \\ 2a-3c=-6 \\3b+c=10 \end{cases}

Literal b

Se convierte a la forma matricial Ax=B

\begin{bmatrix} -4 && 2 && 0 \\ 2 && 0 && -3 \\ 0 && 3 && 1\end{bmatrix}.\begin{bmatrix} a \\b\\c \end{bmatrix} = \begin{bmatrix} 3 \\ -6 \\ 10 \end{bmatrix}

se crea la matriz aumentada:

\begin{bmatrix} -4 && 2 && 0 && 3 \\ 2 && 0 && -3 &&-6 \\ 0 && 3 && 1 && 10 \end{bmatrix}

se pivotea por filas buscando hacerla diagonal dominante:

\begin{bmatrix} -4 && 2 && 0 && 3 \\ 0 && 3 && 1 && 10 \\ 2 && 0 && -3 &&-6 \end{bmatrix}

se aplica el algoritmo de eliminación hacia adelante:
1ra Iteración

la eliminación del primer término columna es necesario solo para la tercera fila:

\begin{bmatrix} -4 && 2 && 0 && 3 \\ 0 && 3 && 1 && 10 \\ 2 -(-4)\Big( \frac{2}{-4}\Big) && 0-2\Big(\frac{2}{-4}\Big) && -3 -0\Big(\frac{2}{-4}\Big) &&-6 -3\Big(\frac{2}{-4}\Big) \end{bmatrix} \begin{bmatrix} -4 && 2 && 0 && 3 \\ 0 && 3 && 1 && 10 \\ 0 && 1 && -3 && -4.5 \end{bmatrix}

2da Iteración

\begin{bmatrix} -4 && 2 && 0 && 3 \\ 0 && 3 && 1 && 10 \\ 0 && 1 -3\Big(\frac{1}{3}\Big) && -3-(1)\Big(\frac{1}{3}\Big) && -4.5-10\Big(\frac{1}{3}\Big) \end{bmatrix} \begin{bmatrix} -4 && 2 && 0 && 3 \\ 0 && 3 && 1 && 10 \\ 0 && 0 && -\frac{10}{3} && -7.8333 \end{bmatrix}

Aplicando eliminación hacia atras

(-10/3)c = -7.8333
c = -7.8333(-3/10) = 2.35

3b +c = 10
b= (10-c)/3 = (10-2.35)/3 = 2.55

-4a +2b =3
a= (3-2b)/(-4) = (3-2(2.55))/(-4) = 0.525

como resultado, los vectores buscados:

v1 = (2,-3,0.525)
v2 = (2.55,1,-4)
v3 = (3,2.35,2)

comprobando resultados:

>>> np.dot((2,-3,0.525),(2.55,1,-4))
-4.440892098500626e-16
>>> np.dot((2,-3,0.525),(3,2.35,2))
-6.661338147750939e-16
>>> np.dot((2.55,1,-4),(3,2.35,2))
2.0

Los dos primeros resultados son muy cercanos a cero, por lo que se los considera válidos

literal c

Para usar el método de Jacobi, se despeja una de las variables de cada ecuación:

\begin{cases} a = \frac{2b -3}{4} \\b = \frac{10-c}{3} \\c = \frac{2a+6}{3} \end{cases}

usando el vector x(0) = [0,0,0]

1ra iteración

a = \frac{2b -3}{4} = \frac{2(0) -3}{4} = -\frac{3}{4} b = \frac{10-c}{3} = \frac{10-0}{3} = \frac{10}{3} c = \frac{2a+6}{3 }= \frac{2(0)+6}{3} = 2

x(1) = [-3/4,10/3,2]
diferencias = [-3/4-0,10/3-0,2-0] = [-3/4,10/3,2]
error = max|diferencias| = 10/3 = 3.3333

2da iteración

a = \frac{2b -3}{4} = \frac{2(10/3) -3}{4} = \frac{11}{12} b = \frac{10-c}{3} = \frac{10-2}{3} = \frac{8}{3} c = \frac{2a+6}{3} = \frac{2(-3/4)+6}{3} = \frac{3}{2}

x(2) = [11/12,8/3,3/2]
diferencias = [11/12-(-3/4),8/3-10/3,3/2-2] = [20/12, -2/3, -1/2]
error = max|diferencias| = 5/3= 1.666

3ra iteración

a = \frac{2b -3}{4} = \frac{2(8/3)-3}{4} = \frac{7}{12} b = \frac{10-c}{3} = \frac{10-3/2}{3} = \frac{17}{6} c = \frac{2a+6}{3} = \frac{2(11/12)+6}{3} = 2.6111

x(3) = [7/12, 17/6, 2.6111]
diferencias = [7/12-11/12, 17/6-8/3, 2.6111-3/2] = [-1/3, 1/6, 1.1111]
error = max|diferencias| = 1.1111

Los errores disminuyen en cada iteración, por lo que el método converge,
si se analiza en número de condición de la matriz A es 2, lo que es muy cercano a 1, por lo tanto el método converge.


Revisión de resultados

Resultados usando algoritmos desarrollados en clase:

matriz aumentada: 
[[-4.   2.   0.   3. ]
 [ 0.   3.   1.  10. ]
 [ 2.   0.  -3.  -6. ]]
Elimina hacia adelante
[[-4.   2.   0.   3. ]
 [ 0.   3.   1.  10. ]
 [ 0.   1.  -3.  -4.5]]
Elimina hacia adelante
[[-4.   2.   0.        3.      ]
 [ 0.   3.   1.       10.      ]
 [ 0.   0.  -3.333333 -7.833333]]
Elimina hacia adelante
[[-4.   2.   0.        3.      ]
 [ 0.   3.   1.       10.      ]
 [ 0.   0.  -3.333333 -7.833333]]
Elimina hacia atras
[[ 1.  -0.  -0.   0.525]
 [ 0.   1.   0.   2.55 ]
 [-0.  -0.   1.   2.35 ]]
el vector solución X es:
[[0.525]
 [2.55 ]
 [2.35 ]]
verificar que A.X = B
[[ 3.]
 [10.]
 [-6.]]

Número de condición de A: 2.005894

los resultados para [a,b,c]:
[0.525 2.55  2.35 ]

producto punto entre vectores:
v12:  0.0
v13:  1.3322676295501878e-15
v23:  2.0

Algoritmos en Python:

# 1Eva_IT2019_T3 Vector perpendicular a plano
import numpy as np

# INGRESO
A = np.array([[-4.,2,0],
              [ 0., 3,1],
              [ 2.,0,-3]])
B = np.array([3.,10,-6])

# PROCEDIMIENTO
B = np.transpose([B])

casicero = 1e-15 # 0
AB = np.concatenate((A,B),axis=1)
tamano = np.shape(AB)
n = tamano[0]
m = tamano[1]

print('matriz aumentada: ')
print(AB)
# Gauss elimina hacia adelante
# tarea: verificar términos cero
for i in range(0,n,1):
    pivote = AB[i,i]
    adelante = i+1 
    for k in range(adelante,n,1):
        if (np.abs(pivote)>=casicero):
            factor = AB[k,i]/pivote
            AB[k,:] = AB[k,:] - factor*AB[i,:]
    print('Elimina hacia adelante')
    print(AB)

# Gauss-Jordan elimina hacia atras
ultfila = n-1
ultcolumna = m-1
for i in range(ultfila,0-1,-1):
    # Normaliza a 1 elemento diagonal
    AB[i,:] = AB[i,:]/AB[i,i]
    pivote = AB[i,i] # uno
    # arriba de la fila i
    atras = i-1 
    for k in range(atras,0-1,-1):
        if (np.abs(AB[k,i])>=casicero):
            factor = pivote/AB[k,i]
            AB[k,:] = AB[k,:]*factor - AB[i,:]
        else:
            factor= 'division para cero'
print('Elimina hacia atras')
print(AB)

X = AB[:,ultcolumna]

# Verifica resultado
verifica = np.dot(A,X)

# SALIDA
print('el vector solución X es:')
print(np.transpose([X]))

print('verificar que A.X = B')
print(np.transpose([verifica]))

numcond = np.linalg.cond(A)

# para comprobar respuestas

v1 = [2,-3,X[0]]
v2 = [X[1],1,-4]
v3 = [3,X[2],2]

v12 = np.dot(v1,v2)
v13 = np.dot(v1,v3)
v23 = np.dot(v2,v3)
      
# SALIDA
print('\n Número de condición de A: ', numcond)

print('\n los resultados para [a,b,c]:')
print(X)

print('\n productos punto entre vectores:')
print('v12: ',v12)
print('v13: ',v13)
print('v23: ',v23)

Tarea, usar el algoritmo de Jacobi usado en el taller correspondiente.

s1Eva_IT2019_T2 Catenaria cable2

Desarrollo con error en fórmula ‘y’, en argumento Cosh(), revisar fórmulas en referencia del problema por error de tipografía:
————————-
Las fórmulas con las que se requiere trabajar son:

y = \frac{T_A}{w} cosh \Big( \frac{T_A}{w}x \Big) + y_0 - \frac{T_A}{w}

Donde la altura y del cable está en función de la distancia x.

Además se tiene que:

cosh(z) = \frac{e^z+ e^{-z}}{2}

que sustituyendo la segunda en la primera se convierte en:

y = \frac{T_A}{w} \frac{e^{\Big( \frac{T_A}{w}x \Big)} + e^{-\Big( \frac{T_A}{w}x \Big)}}{2} + y_0 - \frac{T_A}{w}

y usando los valores del enunciado w=12, y0=6 , y=15, x=50 se convierte en:

15 = \frac{T_A}{12} \frac{e^{\Big( \frac{T_A}{12}50 \Big)} + e^{-\Big( \frac{T_A}{12}50 \Big)}}{2} + 6 - \frac{T_A}{12}

simplificando, para usar el método de búsqueda de raices:

\frac{T_A}{24} e^{\Big( \frac{50}{12} T_A\Big)} + \frac{T_A}{24} e^{-\Big( \frac{50}{12} T_A\Big)} - \frac{T_A}{12} -9 =0

estandarizando a TA/12 =x

\frac{x}{2}e^{50x} + \frac{x}{2} e^{-50x} - x -9 =0

la función a usar es:

f(x) = \frac{x}{2}e^{50x} + \frac{x}{2} e^{-50x} - x -9

Para el méodo de Newton-Raphson se tiene que:

x_{i+1} = x_i -\frac{f(x_i)}{f'(x_i)}

por lo que se determina:

f'(x) = \frac{x}{2}(50)e^{50x} + \frac{1}{2}e^{50x} + + \frac{x}{2}(-50) e^{-50x} + \frac{1}{2} e^{-50x} - 1 f'(x) = 25x(e^{50x}-e^{-50x}) + + \frac{1}{2}(e^{50x} +e^{-50x}) - 1

 

 

s1Eva_IT2019_T1 Oxígeno y temperatura en mar

Literal a

Se requiere un polinomio de grado 3 siendo el eje x correspondiente a temperatura. Son necesarios 4 puntos de referencia alrededor de 15 grados, dos a la izquierda y dos a la derecha.

Se observa que los datos en el eje x son equidistantes, h=8, y ordenados en forma ascendente, se cumple con los requisitos para usar diferencias finitas avanzadas. que tiene la forma de:

p_n (x) = f_0 + \frac{\Delta f_0}{h} (x - x_0) + + \frac{\Delta^2 f_0}{2!h^2} (x - x_0)(x - x_1) + + \frac{\Delta^3 f_0}{3!h^3} (x - x_0)(x - x_1)(x - x_2) + \text{...}

Tabla

xi f[xi] f[x1,x0] f[x2,x1,x0] f[x2,x1,x0] f[x3,x2,x1,x0]
8 11.5 9.9-11.5=
-1.6
-1.5-(-1.6) =
0.1
0.4-0.1=
0.3
16 9.9 8.4-9.9=
-1.5
-1.1-(1.5)=
0.4
24 8.4 7.3-8.4=
-1.1
32 7.3

Con lo que el polinomio buscado es:

p_3 (x) = 11.5 + \frac{-1.6}{8} (x - 8) + + \frac{0.1}{2!8^2} (x - 8)(x - 16) + \frac{0.3}{3!8^3} (x - 8)(x - 16)(x - 24)

Resolviendo y simplificando el polinomio, se puede observar que al aumentar el grado, la constante del término disminuye.

p_3(x)=12.9- 0.15 x - 0.00390625 x^2 + 0.00009765625 x^3

para el cálculo del error se puede usar un término adicional del polinomio, añadiendo un punto más a la tabla de diferencia finitas. Se evalúa éste término y se estima el error que dado que el término de grado 3 es del orden de 10-5, el error será menor. (Tarea)

p_3(15)=12.9- 0.15 (15) - 0.00390625 (15)^2 + 0.00009765625 (15)^3

Evaluando el polinomio en temperatura = 15:

p3(15) = 10.1006835937500

literal b

se deriva el polinomio del literal anterior y se evalua en 16:

p'_3(x)=0- 0.15 - 0.00390625 (2) x + 0.00009765625 (3)x^2 p'_3(16)=0- 0.15 - 0.00390625 (2)(16) + 0.00009765625 (3)(16)^2

p’3(16) = -0.20

literal c

El valor de oxígeno usado como referencia es 9, cuyos valores de temperatura se encuentran entre 16 y 24 que se toman como rango inicial de búsqueda [a,b]. Por lo que el polinomio se iguala a 9 y se crea la forma estandarizada del problema:

p_3(x)=9 9 = 12.9- 0.15 x - 0.00390625 x^2 + 0.00009765625 x^3 12.9- 0.15 x - 0.00390625 x^2 + 0.00009765625 x^3 -9 = 0 f(x) = 3.9- 0.15 x - 0.00390625 x^2 + 0.00009765625 x^3

Para mostrar el procedimiento se realizan solo tres iteraciones,

1ra Iteración
a=16 , b = 24, c = (16+24)/2 = 20
f(a) = 0.9, f(b) = -0.6, f(c) = 0.011
error = |24-16| = 8
como f(c) es positivo, se mueve el extremo f(x) del mismo signo, es decir a

2da Iteración
a=20 , b = 24, c = (20+24)/2 = 22
f(a) = 0.119, f(b) = -0.6, f(c) = -0.251
error = |24-20|= 4
como f(c) es negativo, se mueve el extremo f(x) del mismo signo, b

3ra Iteración
a=20 , b = 22, c = (20+22)/2 = 21
f(a) = 0.119, f(b) = -0.251, f(c) = -0.068
error = |22-20| = 2
como f(c) es negativo, se mueve el extremo f(x) del mismo signo, b
y así sucesivamente hasta que error< que 10-3

Usando el algoritmo en python se obtendrá la raiz en 20.632 con la tolerancia requerida.


Revisión de resultados

Usando como base los algoritmos desarrollados en clase:

Literal a
[[ 1.   8.  11.5 -1.6  0.1  0.3  0. ]
 [ 2.  16.   9.9 -1.5  0.4  0.   0. ]
 [ 3.  24.   8.4 -1.1  0.   0.   0. ]
 [ 4.  32.   7.3  0.   0.   0.   0. ]]
9.765625e-5*x**3 - 0.00390625*x**2 - 0.15*x + 12.9
p(15) =  10.1006835937500
Literal b
0.00029296875*x**2 - 0.0078125*x - 0.15
dp(16) = -0.200000000000000

literal c
[ i, a, c, b, f(a), f(c), f(b), paso]
1 16.000 20.000 24.000 0.900 0.119 -0.600 8.000 
2 20.000 22.000 24.000 0.119 -0.251 -0.600 4.000 
3 20.000 21.000 22.000 0.119 -0.068 -0.251 2.000 
4 20.000 20.500 21.000 0.119 0.025 -0.068 1.000 
5 20.500 20.750 21.000 0.025 -0.022 -0.068 0.500 
6 20.500 20.625 20.750 0.025 0.001 -0.022 0.250 
7 20.625 20.688 20.750 0.001 -0.010 -0.022 0.125 
8 20.625 20.656 20.688 0.001 -0.004 -0.010 0.062 
9 20.625 20.641 20.656 0.001 -0.002 -0.004 0.031 
10 20.625 20.633 20.641 0.001 -0.000 -0.002 0.016 
11 20.625 20.629 20.633 0.001 0.001 -0.000 0.008 
12 20.629 20.631 20.633 0.001 0.000 -0.000 0.004 
13 20.631 20.632 20.633 0.000 0.000 -0.000 0.002 
14 20.632 20.632 20.633 0.000 0.000 -0.000 0.001 
raiz:  20.63232421875

Algoritmos Python usando la funcion de interpolación y un procedimiento encontrado en:

http://blog.espol.edu.ec/matg1013/5-1-1-diferencias-finitas-avanzadas-polinomio/

http://blog.espol.edu.ec/matg1013/2-1-1-biseccion-ejemplo01/

# 1Eva_IT2019_T1 Oxígeno y temperatura en mar
import numpy as np
import matplotlib.pyplot as plt
import sympy as sym

def interpola_dfinitas(xi,fi):
    '''
    Interpolación de diferencias finitas avanzadas
    resultado: polinomio en forma simbólica
    '''
    # Tabla de diferencias finitas
    titulo = ['i','xi','fi']
    n = len(xi)
    # cambia a forma de columnas
    i = np.arange(1,n+1,1)
    i = np.transpose([i])
    xi = np.transpose([xi])
    fi = np.transpose([fi])
    # Añade matriz de diferencias
    dfinita = np.zeros(shape=(n,n),dtype=float)
    tabla = np.concatenate((i,xi,fi,dfinita), axis=1)
    # Sobre matriz de diferencias, por columnas
    [n,m] = np.shape(tabla)
    c = 3
    diagonal = n-1
    while (c<m):
        # Aumenta el título para cada columna
        titulo.append('df'+str(c-2))
        # calcula cada diferencia por fila
        f = 0
        while (f < diagonal):
            tabla[f,c] = tabla[f+1,c-1]-tabla[f,c-1]
            f = f+1
        
        diagonal = diagonal - 1
        c = c+1

    # POLINOMIO con diferencias finitas
    # caso: puntos en eje x equidistantes
    dfinita = tabla[:,3:]
    n = len(dfinita)
    x = sym.Symbol('x')
    h = xi[1,0]-xi[0,0]
    polinomio = fi[0,0]
    for c in range(1,n,1):
        denominador = np.math.factorial(c)*(h**c)
        factor = dfinita[0,c-1]/denominador
        termino=1
        for f  in range(0,c,1):
            termino = termino*(x-xi[f])
        polinomio = polinomio + termino*factor
    # simplifica polinomio, multiplica los (x-xi)
    polinomio = polinomio.expand()
    
    return(tabla, polinomio)

# INGRESO
tm = [0.,8,16,24,32,40]
ox = [14.6,11.5,9.9,8.4,7.3,6.4]

xi = [8,16,24,32]
fi = [11.5,9.9,8.4,7.3]

# PROCEDIMIENTO
x = sym.Symbol('x')
# literal a
tabla, polinomio = interpola_dfinitas(xi,fi)
p15 = polinomio.subs(x,15)
# literal b
deriva = polinomio.diff(x,1)
dp16 = deriva.subs(x,16)

px =  sym.lambdify(x,polinomio)
xk = np.linspace(np.min(xi),np.max(xi))
pk = px(xk)

# SALIDA
print('Literal a')
print(tabla)
print(polinomio)
print('p(15) = ',p15)
print('Literal b')
print(deriva)
print('dp(16) =', dp16)

# gráfica
plt.plot(tm,ox,'ro')
plt.plot(xk,pk)
plt.axhline(9,color="green")
plt.xlabel('temperatura')
plt.ylabel('concentracion de oxigeno')
plt.grid()
plt.show()

# --------literal c ------------

# Algoritmo de Bisección
# [a,b] se escogen de la gráfica de la función
# error = tolera

# se convierte forma de símbolos a numéricos
buscar = polinomio-9
fx = sym.lambdify(x,buscar)

# INGRESO
a = 16
b = 24
tolera = 0.001

# PROCEDIMIENTO
tabla = []
tramo = b-a

fa = fx(a)
fb = fx(b)
i = 1
while (tramo > tolera):
    c = (a+b)/2
    fc = fx(c)
    tabla.append([i,a,c,b,fa,fc,fb,tramo])
    i = i+1
                 
    cambia = np.sign(fa)*np.sign(fc)
    if (cambia<0):
        b = c
        fb = fc
    else:
        a=c
        fa = fc
    tramo = b-a
c = (a+b)/2
fc = fx(c)
tabla.append([i,a,c,b,fa,fc,fb,tramo])
tabla = np.array(tabla)

raiz = c

# SALIDA
print('\n literal c')
np.set_printoptions(precision = 4)
print('[ i, a, c, b, f(a), f(c), f(b), paso]')
# print(tabla)

# Tabla con formato
n=len(tabla)
for i in range(0,n,1):
    unafila = tabla[i]
    formato = '{:.0f}'+' '+(len(unafila)-1)*'{:.3f} '
    unafila = formato.format(*unafila)
    print(unafila)
    
print('raiz: ',raiz)

s1Eva_IT2010_T1_MN Demanda y producción sin,log

Desarrollo Analítico

Para la demanda, el intervalo de existencia es [0,3]

demanda(t) = sin(t)

Para la oferta, el intervalo de existencia inicia en 1, limitado por la demanda [1,3]

oferta(t) = ln(t)

la oferta satisface la demanda cuando ambas son iguales

demanda(t) = oferta(t) sin(t) = ln(t)

por lo que el tiempo t se encuentra con algun método para determinar la raiz de:

sin(t) - ln(t) = 0 f(t) = sin(t) - ln(t)

Observe que las curvas de oferta y demanda se intersectan en el mismo punto en el eje x que la función f(t).

Use un método para encontrar el valor t que satisface la ecuación.


instrucciones para la gráfica, no para el algoritmo de búsqueda de raiz que es tarea.

# 1Eva_IT2010_T1_MN Demanda y producción sin,log
# Solo para analizar el problema
# Tarea: Añadir algoritmo de buscar raiz.
import numpy as np
import matplotlib.pyplot as plt

# INGRESO
# demanda
ad = 0
bd = 3
muestrasd = 31
# oferta
ao = 1
bo = 3
muestras0  = 21

demanda = lambda t: np.sin(t)
oferta = lambda t: np.log(t)
f = lambda t: demanda(t)-oferta(t)

# PROCEDIMIENTO
tid = np.linspace(ad,bd,muestrasd)
demandai = demanda(tid)

tio = np.linspace(ao,bo,muestras0)
ofertai = oferta(tio)

fi = f(tio)

# SALIDA
plt.plot(tid,demandai, label='demanda')
plt.plot(tio,ofertai, label ='oferta')
plt.plot(tio,fi,label='f(t)= demanda-oferta')
plt.axhline(0,color='black')
plt.axvline(2.2185, color = 'magenta')
plt.xlabel('tiempo')
plt.ylabel('unidades')
plt.legend()
plt.grid()
plt.show()

s1Eva_IT2017_T4 Componentes eléctricos

Desarrollo Analítico

Solo puede usar las cantidades disponibles de material indicadas, por lo que las cantidades desconocidas de produccion por componente se convieren en las incógnitas x0, x1, x2. Se usa el índice cero por compatibilidad con las instrucciones python.

Material 1 Material 2 Material 3
Componente 1 5 x0 9 x0 3 x0
Componente 2 7 x1 7 x1 16 x1
Componente 3 9 x2 3 x2 4 x2
Total 945 987 1049

Se plantean las fórmulas a resolver:

5 x0 +  7 x1 + 9 x2 = 945
9 x0 +  7 x1 + 3 x2 = 987
3 x0 + 16 x1 + 4 x2 = 1049

Se reescriben en la forma matricial AX=B

\begin{bmatrix} 5 & 7 & 9\\ 9 & 7 & 3 \\ 3& 16 & 4\end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}= \begin{bmatrix} 945 \\ 987 \\ 1049 \end{bmatrix}

Se reordena, pivoteando por filas para tener la matriz diagonalmente dominante:

\begin{bmatrix} 9 & 7 & 3\\ 3 & 16 & 4 \\ 5& 7 & 9\end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}= \begin{bmatrix} 987 \\ 1049 \\ 945 \end{bmatrix}

Se determina el número de condición de la matriz. Por facilidad con python:

numero de condicion: 4.396316324708121

Obtenido con:

# 1Eva_IT2017_T4 Componentes eléctricos
import numpy as np
import matplotlib.pyplot as plt

# INGRESO
A = np.array([[9., 7.,3.],
              [3.,16.,4.],
              [5., 7.,9.]])

B = np.array([987.,1049.,945.])
# PROCEDIMIENTO

# numero de condicion
ncond = np.linalg.cond(A)

# SALIDA
print('numero de condicion:', ncond)

Recordando que la matriz debe ser tipo real, se añade un punto a los dígitos.

El número de condición es cercano a 1, por lo que el sistema si debería converger a la solución.

Desarrollo con Python

La forma AX=B permite usar los algoritmos desarrollados, obteniendo la solución. Se verifica el resultado al realizar la multiplicación de A con el vector respuesta, debe ser el vector B con un error menor al tolerado.

respuesta con Jacobi
[[62.99996585]
 [44.99998037]
 [34.9999594 ]]
verificando:
[[ 986.99943346]
 [1048.99942111]
 [ 944.99932646]]

Si interpreta el resultado, se debe obtener solo la parte entera [63,45,35] pues las unidades producidas son números enteros.

instrucciones:

# 1Eva_IT2017_T4 Componentes eléctricos
import numpy as np

def jacobi(A,B,tolera,X,iteramax=100):
    tamano = np.shape(A)
    n = tamano[0]
    m = tamano[1]
    diferencia = np.ones(n, dtype=float)
    errado = np.max(diferencia)
    xnuevo = np.copy(X)

    itera = 0
    print(itera, X)
    while not(errado<=tolera or itera>iteramax):
        
        for i in range(0,n,1):
            nuevo = B[i]
            for j in range(0,m,1):
                if (i!=j): # excepto diagonal de A
                    nuevo = nuevo-A[i,j]*X[j]
            nuevo = nuevo/A[i,i]
            xnuevo[i] = nuevo
        diferencia = np.abs(xnuevo-X)
        errado = np.max(diferencia)
        print(itera, xnuevo)
        X = np.copy(xnuevo)
        itera = itera + 1
    # Vector en columna
    X = np.transpose([X])
    # No converge
    if (itera>iteramax):
        X=itera
    return(X)


# INGRESO
A = np.array([[9., 7.,3.],
              [3.,16.,4.],
              [5., 7.,9.]])

B = np.array([987.,1049.,945.])
tolera = 1e-4

X = [0.,0.,0.]

# PROCEDIMIENTO

# numero de condicion
ncond = np.linalg.cond(A)

respuesta = jacobi(A,B,tolera,X)

verifica = np.dot(A,respuesta)

# SALIDA
print('numero de condicion:', ncond)
print('respuesta con Jacobi')
print(respuesta)
print('verificando:')
print(verifica)

al ejecutar el algoritmo se determina que se requieren 83 iteraciones para cumplir con con el valor de error tolerado.

Soluciones Propuestas

Presentadas procurando usar la forma más simple de los algoritmos presentados en clase.

Contienen tareas por desarrollar, observaciones a otras formas de algoritmos.

s3Eva_IIT2018_T2 Drenar tanque cilíndrico

la ecuación a desarrollar es:

\frac{\delta y}{\delta t} = -k\sqrt{y}

con valores de k =0.5, y(0)=9


Formula de Taylor con término de error:

P_{n}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k P_{n}(x) = f(x_0)+\frac{f'(x_0)}{1!} (x-x_0) + + \frac{f''(x_0)}{2!}(x-x_0)^2 + + \frac{f'''(x_0)}{3!}(x-x_0)^3 + \text{...}

Se requiere la 2da y 3ra derivadas:

\frac{\delta^2 y}{\delta t^2} = -k\frac{1}{2} y^{(\frac{1}{2}-1)} = -\frac{k}{2} y^{-\frac{1}{2}} \frac{\delta^3 y}{\delta t^3} = -\frac{k}{2}\Big(-\frac{1}{2}\Big) y^{(-\frac{1}{2}-1)} = \frac{k}{4} y^{-\frac{3}{2}}

con lo que inicia las iteraciones y cálculo del error, con avance de 0.5 para t.


t=0 , y(0) = 9


t = 0.5

\frac{\delta y(0)}{\delta t} = -(0.5)\sqrt{9} = -1.5 \frac{\delta^2 y(0)}{\delta t^2} = -\frac{0.5}{2} 9^{-\frac{1}{2}} = - 0.08333 \frac{\delta^3 y(0)}{\delta t^3} = \frac{0.5}{4} 9^{-\frac{3}{2}} = 0.004628 P_{2}(0.5) = 9 - 1.5 (0.5-0) + \frac{-0.08333}{2}(0.5-0)^2 P_{2}(0.5) = 8.2395

Error orden de:

Error = \frac{0.004628}{3!}(0.5-0)^3 = 9.641 . 10^{-5}

t = 1

\frac{\delta y(0.5)}{\delta t} = -(0.5)\sqrt{8.2395} = -1.4352 \frac{\delta^2 y(0.5)}{\delta t^2} = -\frac{0.5}{2} (8.2395)^{-\frac{1}{2}} = - 0.08709 \frac{\delta^3 y(0.5)}{\delta t^3} = \frac{0.5}{4} (8.2395)^{-\frac{3}{2}} = 0.005285 P_{2}(1) = 8.2395 - 1.4352(1-0.5) + \frac{-0.08709}{2}(1-0.5)^2 P_{2}(1) = 7.5110

Error orden de:

Error = \frac{0.005285}{3!}(1-0.5)^3 = 4.404 . 10^{-4}

t = 1.5

\frac{\delta y(1)}{\delta t} = -(0.5)\sqrt{7.5110} = -1.3703 \frac{\delta^2 y(1)}{\delta t^2} = -\frac{0.5}{2} (7.5110)^{-\frac{1}{2}} = - 0.09122 \frac{\delta^3 y(1)}{\delta t^3} = \frac{0.5}{4} (7.5110)^{-\frac{3}{2}} = 0.006072 P_{2}(1.5) = 7.5110 - 1.3703(1.5-1) + \frac{-0.09122}{2}(1.5-1)^2 P_{2}(1.5) = 6.8144

Error orden de:

Error = \frac{0.006072}{3!}(1.5-1)^3 = 1.4 . 10^{-4}

t = 2

\frac{\delta y(1.5)}{\delta t} = -(0.5)\sqrt{6.8144} = -1.3052 \frac{\delta^2 y(1.5)}{\delta t^2} = -\frac{0.5}{2} (6.8144)^{-\frac{1}{2}} = - 0.09576 \frac{\delta^3 y(1.5)}{\delta t^3} = \frac{0.5}{4} (6.8144)^{-\frac{3}{2}} = 0.007026 P_{2}(2) = 6.8144 - 1.3052 (2-1.5) - \frac{0.09576}{2}(2-1.5)^2 P_{2}(2) = 6.1498

Error orden de:

Error = \frac{0.007026}{3!}(2-1.5)^3 = 1.4637 . 10^{-4}

Se estima que el próximo término pasa debajo de 6 pies.
Por lo que estima esperar entre 2 y 2.5 minutos.

Usando Python:

ti, p_i,  error
[[0.00000000e+00 9.00000000e+00 0.00000000e+00]
 [5.00000000e-01 8.23958333e+00 9.64506173e-05]
 [1.00000000e+00 7.51107974e+00 1.10105978e-04]
 [1.50000000e+00 6.81451855e+00 1.26507192e-04]
 [2.00000000e+00 6.14993167e+00 1.46391550e-04]
 [2.50000000e+00 5.51735399e+00 1.70751033e-04]]

# Tema 2. Tanque cilindrico
import numpy as np
import matplotlib.pyplot as plt

# INGRESO
y0 = 9
t0 = 0
buscar = 6
k = 0.5
h = 0.5

dy  = lambda t,y: -k*np.sqrt(y)
d2y = lambda t,y: -(k/2)*(y**(-1/2))
d3y = lambda t,y: (k/4)*(y**(-3/2))
# PROCEDIMIENTO
resultado = [[t0,y0,0]]
yi = y0
ti = t0
while not(yi<buscar):
    ti = ti+h
    dyi = dy(ti,yi)
    d2yi = d2y(ti,yi)
    d3yi = d3y(ti,yi)
    p_i = yi +dyi*(h) + (d2yi/2)*(h**2)
    errado = (d3yi/6)*(h**3)
    yi = p_i
    resultado.append([ti,p_i,errado])
resultado = np.array(resultado)
# SALIDA
print('ti, p_i,  error')
print(resultado)
# Grafica
plt.plot(resultado[:,0],resultado[:,1])
plt.ylabel('nivel de agua')
plt.xlabel('tiempo')
plt.grid()
plt.show()

s2Eva_IIT2018_T3 EDP

Tema 3.  Se indica en el enunciado que b = 0

\frac{\delta u}{\delta t} = \frac{\delta ^2 u}{\delta x^2} + b\frac{\delta u}{\delta x}

simplificando la ecuación a:

\frac{\delta u}{\delta t} = \frac{\delta ^2 u}{\delta x^2}

Reordenando la ecuación a la forma estandarizada:

\frac{\delta ^2 u}{\delta x^2} = \frac{\delta u}{\delta t}

Seleccione un método: explícito o implícito.
Si el método es explícito, las diferencias finitas a usar son hacia adelante y centrada:

U'(x_i,t_j) = \frac{U(x_i,t_{j+1})-U(x_i,t_j)}{\Delta t} + O(\Delta t) U''(x_i,t_j) = \frac{U(x_{i+1},t_j)-2U(x_{i},t_j)+U(x_{i-1},t_j)}{\Delta x^2} + O(\Delta x^2)

como referencia se usa la gráfica.

Se selecciona la esquina inferior derecha como 0,  por la segunda ecuación de condiciones y facilidad de cálculo. (No hubo indicación durante el examen que muestre lo contrario)

condiciones de frontera U(0,t)=0, U(1,t)=1
condiciones de inicio U(x,0)=0, 0≤x≤1

aunque lo más recomendable sería cambiar la condición de inicio a:

condiciones de inicio U(x,0)=0, 0<x<1

Siguiendo con el tema de la ecuación, al reemplazar las diferencias finitas en la ecuación:


\frac{U(x_{i+1},t_j)-2U(x_{i},t_j)+U(x_{i-1},t_j)}{\Delta x^2} = = \frac{U(x_i,t_{j+1})-U(x_i,t_j)}{\Delta t}

se reagrupan los términos que son constantes y los términos de error se acumulan:

\frac{\Delta t}{\Delta x^2} \Big[U(x_{i+1},t_j)-2U(x_i,t_j)+U(x_{i-1},t_j) \Big] = U(x_i,t_{j+1})-U(x_i,t_j)

siendo,

\lambda= \frac{\Delta t}{\Delta x^2} error \cong O(\Delta t) + O(\Delta x^2)

continuando con la ecuación, se simplifica la escritura usando sólo los índices i,j y se reordena de izquierda a derecha como en la gráfica

\lambda \Big[U[i-1,j]-2U[i,j]+U[i+1,j] \Big] = U[i,j+1]-U]i,j] \lambda U[i-1,j]+(-2\lambda+1)U[i,j]+\lambda U[i+1,j] = U[i,j+1] U[i,j+1] = \lambda U[i-1,j]+(-2\lambda+1)U[i,j]+\lambda U[i+1,j] U[i,j+1] = P U[i-1,j]+QU[i,j]+R U[i+1,j] P=R = \lambda Q = -2\lambda+1

En las iteraciones, el valor de P,Q y R se calculan a partir de λ ≤ 1/2

iteraciones: j=0, i=1

U[1,1] = P*0+Q*0+R*0 = 0

j=0, i=2

U[2,1] = P*0+Q*0+R*0=0

j=0, i=3

U[3,1] = P*0+Q*0+R*1=R=\lambda=\frac{1}{2}

iteraciones: j=1, i=1

U[1,2] = P*0+Q*0+R*0 = 0

j=1, i=2

U[2,2] = P*0+Q*0+R*\lambda = \lambda ^2 = \frac{1}{4}

j=1, i=3

U[3,2] = P*0+Q*\frac{1}{4}+R (\lambda) U[3,2] = (-2\lambda +1) \frac{1}{4}+\lambda^2 = \Big(-2\frac{1}{2}+1\Big) \frac{1}{4}+\Big(\frac{1}{2}\Big)^2 U[3,2] =0\frac{1}{4} + \frac{1}{4} = \frac{1}{4}

Literal b. Para el cálculo del error:

\lambda \leq \frac{1}{2} \frac{\Delta t}{\Delta x^2} \leq \frac{1}{2} \Delta t \leq \frac{\Delta x^2}{2}

en el enunciado se indica h = 0.25 = ¼ = Δ x

\Delta t \leq \frac{(1/4)^2}{2} = \frac{1}{32} error \cong O(\Delta t) + O(\Delta x^2) error \cong \frac{\Delta x^2}{2}+ \Delta x^2 error \cong \frac{3}{2}\Delta x^2 error \cong \frac{3}{2}( \frac{1}{4})^2 error \cong \frac{3}{32} = 0.09375

s2Eva_IIT2018_T2 Kunge Kutta 2do Orden x»

Tema 2.

\frac{\delta ^2 x}{\delta t^2} + 5t\frac{\delta x}{\delta t} +(t+7)\sin (\pi t) = 0 x'' + 5tx' +(t+7)\sin (\pi t) = 0 x'' = -5tx' +(t+7)\sin (\pi t) = 0

si se usa z=x’

z' = -5tz +(t+7)\sin (\pi t) = 0

se convierte en:
f(t,x,z) = x’ = z
g(t,x,z) = x» = z’ = -5tz +(t+7)sin (π t) = 0

Donde se aplica el algoritmo de Runge Kutta
http://blog.espol.edu.ec/matg1013/8-2-2-runge-kutta-d2y-dx2/

   t,              x,              z
[[ 0.00000000e+00  6.00000000e+00  1.50000000e+00]
 [ 2.00000000e-01  6.30000000e+00  1.77320538e+00]
 [ 4.00000000e-01  6.70381805e+00  2.26987703e+00]
 [ 6.00000000e-01  7.20775473e+00  2.41163944e+00]
 [ 8.00000000e-01  7.68994485e+00  1.90531839e+00]
 [ 1.00000000e+00  8.01027755e+00  9.52659193e-01]
 [ 1.20000000e+00  8.10554347e+00 -5.65431040e-03]
 [ 1.40000000e+00  8.00869435e+00 -6.09147239e-01]
 [ 1.60000000e+00  7.81236802e+00 -7.16247408e-01]
 [ 1.80000000e+00  7.62013640e+00 -3.92947221e-01]
 [ 2.00000000e+00  7.50882725e+00  1.63598524e-01]]

instrucciones Python:

# 2Eva_IIT2018_T2 Kunge Kutta 2do Orden x''
import numpy as np

def rungekutta2_fg(f,g,x0,y0,z0,h,muestras):
    tamano = muestras + 1
    estimado = np.zeros(shape=(tamano,3),dtype=float)
    # incluye el punto [x0,y0]
    estimado[0] = [x0,y0,z0]
    xi = x0
    yi = y0
    zi = z0
    for i in range(1,tamano,1):
        K1y = h * f(xi,yi,zi)
        K1z = h * g(xi,yi,zi)
        
        K2y = h * f(xi+h, yi + K1y, zi + K1z)
        K2z = h * g(xi+h, yi + K1y, zi + K1z)

        yi = yi + (K1y+K2y)/2
        zi = zi + (K1z+K2z)/2
        xi = xi + h
        
        estimado[i] = [xi,yi,zi]
    return(estimado)

# PROGRAMA
# INGRESO
f = lambda t,x,z: z
g = lambda t,x,z: -5*t*z+(t+7)*np.sin(np.pi*t)
t0 = 0
x0 = 6
z0 = 1.5
h = 0.2
muestras = 10

# PROCEDIMIENTO
tabla = rungekutta2_fg(f,g,t0,x0,z0,h,muestras)

# SALIDA
print(tabla)
# GRAFICA
import matplotlib.pyplot as plt
plt.plot(tabla[:,0],tabla[:,1])
plt.xlabel('t')
plt.ylabel('x(t)')
plt.show()