s1eva_iit2008_t1_mn-bacterias-contaminantes

Pasos a Seguir usando: BISECCION

  1. Plantear la fórmula estandarizada f(x) = 0
  2. Seleccionar el rango de análisis [a,b] donde exista cambio de signo.
  3. Calcular el número de iteraciones para llegar a la raíz con el error tolerado
  4. Calcular la raíz:
    4.1 Solución manual en papel: Realizar la tabla que muestre las iteraciones del método:
    4.2 Solución usando el algoritmo: Usar el algoritmo para encontrar la raiz.

1. Plantear la fórmula estandarizada f(x) = 0

c = 70 e^{-1.5t} + 25 e^{-0.075t}

el valor que debe tomar c = 9, por lo que la función a desarrollar se convierte en:

9 = 70 e^{-1.5t} + 25 e^{-0.075t}

y la que se usará en el algoritmo de búsqueda de raices es:

f(t) = 70 e^{-1.5t} + 25 e^{-0.075t} -9 = 0

Como la variable t se relaciona al tiempo, se usan tiempos positivos, por ejemplo  se inicia el análisis con cero, o un poco mayor.

2. Seleccionar el rango de análisis [a,b] donde exista cambio de signo

La función depende de tiempo, por lo que a = 0, y b seleccionar un valor mayor. Se verifica que exista cambio de signo en el rango usando la función evaluada en el rando de observación:

a = 0
b = 15
f(a) = f(0) = 70*e0 + 25 e0 -9 = 86
f(b) = f(15) = 70*e-1.5*15. + 25 e-0.075*15 -9 = - 0.0036

3. Calcular el número de iteraciones para llegar a la raíz con el error tolerado

error = 0.001

\frac{|15-0|}{2^n} = 0.001 15/0.001 = 2^n log(15/0.001) = nlog(2) n = \frac{log(15/0.001)}{log(2)} = 13.87 n = 14

Verificando la selección usando una gráfica, usando 50 tramos entre [a,b] o 51 muestras en el rango.

4. Calcular la raíz:

Usando el algoritmo se encuentra que la raiz está en:

raiz en:  13.62213134765625
f(raiz) = -7.733799068e-05
si realiza la tabla:

[i,a,b,c,sign(fa),sign(fb),sign(fc),paso]
[[1, 0, 15, 7.5, 1.0, -1.0, 1.0, 15], 
 [2, 7.5, 15, 11.25, 1.0, -1.0, 1.0, 7.5], 
 [3, 11.25, 15, 13.125, 1.0, -1.0, 1.0, 3.75], 
 [4, 13.125, 15, 14.0625, 1.0, -1.0, -1.0, 1.875], 
 [5, 13.125, 14.0625, 13.59375, 1.0, -1.0, 1.0, 0.9375], 
 [6, 13.59375, 14.0625, 13.828125, 1.0, -1.0, -1.0, 0.46875], 
 [7, 13.59375, 13.828125, 13.7109375, 1.0, -1.0, -1.0, 0.234375], 
 [8, 13.59375, 13.7109375, 13.65234375, 1.0, -1.0, -1.0, 0.1171875], 
 [9, 13.59375, 13.65234375, 13.623046875, 1.0, -1.0, -1.0, 0.05859375], 
 [10, 13.59375, 13.623046875, 13.6083984375, 1.0, -1.0, 1.0, 0.029296875],
 [11, 13.6083984375, 13.623046875, 13.61572265625, 1.0, -1.0, 1.0, 0.0146484375], 
 [12, 13.61572265625, 13.623046875, 13.619384765625, 1.0, -1.0, 1.0, 0.00732421875], 
 [13, 13.619384765625, 13.623046875, 13.6212158203125, 1.0, -1.0, 1.0, 0.003662109375], 
 [14, 13.6212158203125, 13.623046875, 13.62213134765625, 1.0, -1.0, -1.0, 0.0018310546875]]

Newton –  Raphson Se encuentra la derivada f'(t) y se aplica el algoritmo Newton-Raphson con valor inicial cero.

f'(t) = 70(-1.5) e^{-1.5t} + 25(-0.075) e^{-0.075t}
raiz en:  13.622016772385583

Se usa el algoritmo en python para encontrar el valor. El algoritmo newton Raphson mostrado es más pequeño que por ejemplo la bisección, pero requiere realizar un trabajo previo para encontrar la derivada de la función.

# 1ra Eval II Termino 2008 tema 1
# Método de Newton-Raphson
import numpy as np

def newtonraphson(funcionx, fxderiva, c, tolera):
    tramo = abs(2*tolera)
    while (tramo>=tolera):
        xnuevo = c - funcionx(c)/fxderiva(c)
        tramo = abs(xnuevo-c)
        c = xnuevo
    return(c)


# PROGRAMA #######################
funcionx = lambda t: 70*(np.e**(-1.5*t)) +25*(np.e**(-0.075*t))-9
fxderiva = lambda t: -70*1.5*(np.e**(-1.5*t)) -25*0.075*(np.e**(-0.075*t))

# INGRESO
c = 0.1
tolera = 0.001

# PROCEDIMIENTO
raiz = newtonraphson(funcionx, fxderiva, c, tolera)

# SALIDA
print('raiz en: ', raiz)

# Gráfica
import matplotlib.pyplot as plt
xi = np.linspace(0,15,100)
yi = funcionx(xi)
plt.plot(xi,yi)
plt.axhline(0, color = 'k')
plt.show()

Tarea: Para el problema, realice varios métodos y compare el número de iteraciones y el trabajo realizado al plantear el problema al implementar cada uno.