s1Eva_IIT2018_T3 Interpolar con sistema de ecuaciones

El tema es semejante al tema 1, cambiando el método de interpolación.


Literal a

Se usan los puntos de las posiciones 0, 3 y 5.
en la fórmula:

p_2(x) = b_0 + b_1x + b_2 x^2

en la fórmula:

punto x[0] = 1, y[0]= 1.84

1.84 = b_0 + b_1(1) + b_2 (1)^2 1.84 = b_0 + b_1 + b_2

punto x[3] = 1.5, y[3]= 2.28

2.28 = b_0 + b_1(1.5) + b_2 (1.5)^2 2.28 = b_0 + 1.5 b_1 + 2.25 b_2

punto x[5] = 2.1, y[5]= 3.28

3.28= b_0 + b_1(2.1) + b_2 (2.1)^2 3.28= b_0 + 2.1 b_1 + 4.41 b_2

se obtiene el sistema de ecuaciones:

b_0 + b_1 + b_2 = 1.84 b_0 + 1.5 b_1 + 2.25 b_2 = 2.28 b_0 + 2.1 b_1 + 4.41 b_2 = 3.28

Con lo que se plantea la forma Ax=B:

A = \begin{bmatrix} 1 & 1 & 1\\ 1 & 1.5 & 2.25 \\1 & 2.1 & 4.41 \end{bmatrix} B = \begin{bmatrix} 1.84\\ 2.28 \\ 3.28 \end{bmatrix}

y se obtiene el resultado de la interpolación.


Literal b

Se requiere calcular una norma de suma de filas. es suficiente para demostrar el conocimiento del concepto el usar A.

Se adjunta el cálculo del número de condición y la solución al sistema de ecuaciones:

suma de columnas:  [3.   4.75 7.51]
norma A:  7.51
numero de condicion:  97.03737354737129
solucion: 
[ 2.03272727 -0.90787879  0.71515152]

El comentario importante corresponde al número de condición, que es un número muy alto para usar un método iterativo, por lo que la solución debe ser un método directo.
Se puede estimar será un número mucho mayor que 1, pues la matriz no es diagonal dominante.


Instrucciones en Python

# 1ra Evaluación II Término 2018
# Tema 3. Interpolar con sistema de ecuaciones

import numpy as np
import matplotlib.pyplot as plt

# --------------------------
# forma matricial para interpolar
A = np.array([[1, 1. , 1.  ],
              [1, 1.5, 2.25],
              [1, 2.1, 4.41]])

B = np.array([1.84, 2.28, 3.28])

# literal b
sumacolumnas = np.sum(A, axis =1)
norma = np.max(sumacolumnas)
print('suma de columnas: ', sumacolumnas)
print('norma A: ', norma)

numerocondicion = np.linalg.cond(A)
print('numero de condicion: ', numerocondicion)

solucion = np.linalg.solve(A,B)
print('solucion: ')
print(solucion)