s1Eva_IIT2019_T3 Circuito eléctrico

Las ecuaciones del problema  son:

55 I_1 - 25 I_4 =-200 -37 I_3 - 4 I_4 =-250 -25 I_1 - 4 I_3 +29 I_4 =100 I_2 =-10

Planteo del problema en la forma A.X=B

A = np.array([[ 55, 0,   0,-25],
              [  0, 0, -37, -4],
              [-25, 0,  -4, 29],
              [  0, 1,   0,  0]],dtype=float)

B = np.array([[-200],
              [-250],
              [ 100],
              [ -10]],dtype=float)

El ejercicio se puede simplificar con una matriz de 3×3 dado que una de las corrientes I2 es conocida con valor -10, queda resolver el problema para
[I1 ,I3 ,I4 ]

A = np.array([[ 55,   0,-25],
              [  0, -37, -4],
              [-25,  -4, 29]],dtype=float)

B = np.array([[-200],
              [-250],
              [ 100]],dtype=float)

conformando la matriz aumentada

[[  55.    0.  -25. -200.]
 [   0.  -37.   -4. -250.]
 [ -25.   -4.   29.  100.]]

que se pivotea por filas para acercar a matriz diagonal dominante:

[[  55.    0.  -25. -200.]
 [   0.  -37.   -4. -250.]
 [ -25.   -4.   29.  100.]]

Literal a

Para métodos directos se aplica el método de eliminación hacia adelante.

Usando el primer elemento en la diagonal se convierten en ceros los números debajo de la posición primera de la diagonal

[[  55.    0.  -25.         -200.      ]
 [   0.  -37.   -4.         -250.      ]
 [   0.   -4.   17.636363      9.090909]]

luego se continúa con la segunda columna:

[[  55.    0.  -25.         -200.      ]
 [   0.  -37.   -4.         -250.      ]
 [   0.    0.   18.068796     36.117936]]

y para el método de Gauss se emplea sustitución hacia atras
se determina el valor de I4

18.068796 I_4 = 36.11793612 I_4 =\frac{36.11793612}{18.068796}= 1.99891216 -37 I_3 -4 I_4 = -250 -37 I_3= -250 + 4 I_4 I_3=\frac{-250 + 4 I_4}{-37} I_3=\frac{-250 + 4 (1.99891216)}{-37} = 6.54065815

y planteando se obtiene el último valor

55 I_1 +25 I_4 = -200 55 I_1 = -200 -25 I_4 I_1 = \frac{-200 -25 I_4}{55} I_1 = \frac{-200 -25(1.99891216)}{55} = -2.7277672

con lo que el vector solución es:

[[-2.7277672]
 [ 6.54065815]
 [ 1.99891216]]

sin embargo, para verificar la respuesta se aplica A.X=B

verificar que A.X = B, obteniendo nuevamente el vector B.
[[-200.]
 [-250.]
 [ 100.]]

literal b
La norma de la matriz infinito se determina como:

||x|| = max\Big[ |x_i| \Big]

considere que en el problema el término en A de magnitud mayor es 55.
El vector suma de filas es:

[[| 55|+|  0|+|-25|],    [[80],
 [|  0|+|-37|+| -4|],  =  [41],
 [[-25|+| -4|+| 29|]]     [58]]

por lo que la norma ∞ ejemplo ||A||∞ 
es el maximo de suma de filas: 80

para revisar la estabilidad de la solución, se observa el número de condición

>>> np.linalg.cond(A)
4.997509004325602

En éste caso no está muy alejado de 1. De resultar alejado del valor ideal de uno,  la solución se considera poco estable. Pequeños cambios en la entrada del sistema generan grandes cambios en la salida.

Tarea: Matriz de transición de Jacobi


Literal c

En el método de Gauss-Seidel acorde a lo indicado, se inicia con el vector cero. Como no se indica el valor de tolerancia para el error, se considera tolera = 0.0001

las ecuaciones para el método son:

I_1 =\frac{-200 + 25 I_4}{55} I_3 = \frac{-250+ 4 I_4}{-37} I_4 =\frac{100 +25 I_1 + 4 I_3}{29}

Como I2 es constante, no se usa en las iteraciones

I_2 =-10

teniendo como resultados de las iteraciones:

iteración:  1
 Xnuevo:      [-3.63636364  6.75675676  1.99891216]
 diferencia:  [3.63636364   6.75675676  1.99891216]
 error:  6.756756756756757
 iteración:  2
 Xnuevo:      [-2.7277672   6.54065815  1.99891216]
 diferencia:  [0.90859643   0.21609861  0.        ]
 error:  0.9085964348406557
 iteración:  3
 Xnuevo:      [-2.7277672   6.54065815  1.99891216]
 diferencia:  [0. 0. 0.]
 error:  0.0

con lo que el vector resultante es:

 Método de Gauss-Seidel
respuesta de A.X=B : 
[[-2.7277672 ]
 [ 6.54065815]
 [ 1.99891216]]

que para verificar, se realiza la operación A.X
observando que el resultado es igual a B

[[-200.00002751]
 [-249.9999956 ]
 [ 100.0000125 ]]


Solución alterna


Usando la matriz de 4×4, los resultados son iguales para las corrientes
[I1 ,I2 , I3 ,I4 ]. Realizando la matriz aumentada,

[[  55.    0.    0.  -25. -200.]
 [   0.    0.  -37.   -4. -250.]
 [ -25.    0.   -4.   29.  100.]
 [   0.    1.    0.    0.  -10.]]

que se pivotea por filas para acercar a matriz diagonal dominante:

[[  55.    0.    0.  -25. -200.]
 [   0.    1.    0.    0.  -10.]
 [   0.    0.  -37.   -4. -250.]
 [ -25.    0.   -4.   29.  100.]]

Literal a

Para métodos directos se aplica el método de eliminación hacia adelante.

Usando el primer elemento  en la diagonal.

[[  55.     0.     0.   -25.         -200.        ]
 [   0.     1.     0.     0.          -10.        ]
 [   0.     0.   -37.    -4.         -250.        ]
 [   0.     0.    -4.    17.63636364    9.09090909]]

para el segundo no es necesario, por debajo se encuentran valores cero.
Por lo que se pasa al tercer elemento de la diagonal

[[  55.     0.     0.     -25.         -200.        ]
 [   0.     1.     0.      0.          -10.        ]
 [   0.     0.   -37.     -4.         -250.        ]
 [   0.     0.     0.     18.06879607    36.11793612]]

y para el método de Gauss se emplea sustitución hacia atras.
para x4:

18.06879607 x_4 = 36.11793612 x_4 = 1.99891216

para x3:

-37 x_3 -4 x_3 = -250 37 x_3 = 250-4 x_4 = 250-4(1.99891216) x_3 = 6.54065815

como ejercicio, continuar con x1, dado que x2=-10

55 x_1 + 25 x_4 = -200

El vector solución obtenido es:

el vector solución X es:
[[ -2.7277672 ]
 [-10.        ]
 [  6.54065815]
 [  1.99891216]]

sin embargo, para verificar la respuesta se aplica A.X=B.

[[-200.]
 [-250.]
 [ 100.]
 [ -10.]]

Se revisa el número de condición de la matriz:

>>> np.linalg.cond(A)
70.21827416891405

Y para éste caso, el número de condición se encuentra alejado del valor 1, contrario a la respuesta del la primera forma de solución con la matriz 3×3. De resultar alejado del valor ideal de uno, la solución se considera poco estable. Pequeños cambios en la entrada del sistema generan grandes cambios en la salida.


Algoritmo en Python

Presentado por partes para revisión:

# Método de Gauss,
# Recibe las matrices A,B
# presenta solucion X que cumple: A.X=B
import numpy as np

# INGRESO
A = np.array([[ 55,   0,-25],
              [  0, -37, -4],
              [-25,  -4, 29]],dtype=float)

B = np.array([[-200],
              [-250],
              [ 100]],dtype=float)

# PROCEDIMIENTO
# Matriz Aumentada
casicero = 1e-15 # 0
AB = np.concatenate((A,B),axis=1)
print('aumentada: ')
print(AB)

# pivotea por fila AB
tamano = np.shape(AB)
n = tamano[0]
m = tamano[1]

for i in range(0,n-1,1):
    # columna desde diagonal i en adelante
    columna = np.abs(AB[i:,i])
    dondemax = np.argmax(columna)
    # revisa dondemax no está en la diagonal
    if (dondemax != 0):
        # intercambia fila
        temporal = np.copy(AB[i,:])
        AB[i,:] = AB[dondemax+i,:]
        AB[dondemax+i,:] = temporal
print('pivoteada: ')
print(AB)

# Gauss elimina hacia adelante
# tarea: verificar términos cero
print('Elimina hacia adelante')
for i in range(0,n,1):
    pivote = AB[i,i]
    adelante = i+1
    print('i: ', i)
    for k in range(adelante,n,1):
        print('k: ',k)
        if (np.abs(pivote)>=casicero):
            factor = AB[k,i]/pivote
            AB[k,:] = AB[k,:] - factor*AB[i,:]
        print(AB)
print('Elimina hacia adelante')
print(AB)

# Sustitución hacia atras
X = np.zeros(n,dtype=float) 
ultfila = n-1
ultcolumna = m-1
for i in range(ultfila,0-1,-1):
    suma = 0
    for j in range(i+1,ultcolumna,1):
        suma = suma + AB[i,j]*X[j]
    X[i] = (AB[i,ultcolumna]-suma)/AB[i,i]
X = np.transpose([X])

# Verifica resultado
verifica = np.dot(A,X)

# SALIDA
print('por sustitución hacia atras')
print('el vector solución X es:')
print(X)

print('verificar que A.X = B')
print(verifica)

# -------------------------------------------------
# # Algoritmo Gauss-Seidel,
# matrices, métodos iterativos
# Referencia: Chapra 11.2, p.310, pdf.334
#      Rodriguez 5.2 p.162
# ingresar iteramax si requiere más iteraciones

import numpy as np

def gauss_seidel(A,B,tolera,X,iteramax=100):
    tamano = np.shape(A)
    n = tamano[0]
    m = tamano[1]
    diferencia = np.ones(n, dtype=float)
    errado = np.max(diferencia)
    
    itera = 0
    while not(errado<=tolera or itera>iteramax):
        for i in range(0,n,1):
            nuevo = B[i]
            for j in range(0,m,1):
                if (i!=j): # excepto diagonal de A
                    nuevo = nuevo-A[i,j]*X[j]
            nuevo = nuevo/A[i,i]
            diferencia[i] = np.abs(nuevo-X[i])
            X[i] = nuevo
        errado = np.max(diferencia)
        print(' iteración: ', itera)
        print(' Xnuevo: ', X)
        print(' diferencia: ', diferencia)
        print(' error: ' ,errado)
        itera = itera + 1
    # Vector en columna
    X = np.transpose([X])
    # No converge
    if (itera>iteramax):
        X=0
    return(X)

# Programa de prueba #######
tolera = 0.0001

# PROCEDIMIENTO
# usando la pivoteada por filas
n = len(B)
Xgs = np.zeros(n, dtype=float)
respuesta = gauss_seidel(AB[:,:n],AB[:,n],tolera,Xgs)
verificags = np.dot(A,respuesta)

# SALIDA
print(' Método de Gauss-Seidel')
print('respuesta de A.X=B : ')
print(respuesta)
print('verificar A.X: ')
print(verificags)