s1Eva_IT2008_T1_AN Raíz de funcion(f)

Pasos a Seguir usando: BISECCION

  1. Plantear la fórmula estandarizada f(x) = 0
  2. Seleccionar el rango de análisis [a,b] donde exista cambio de signo.
  3. Calcular el número de iteraciones para llegar a la raíz con el error tolerado
  4. Calcular la raíz:
    4.1 Solución manual en papel: Realizar la tabla que muestre las iteraciones del método:
    4.2 Solución usando el algoritmo: Usar el algoritmo para encontrar la raiz.

1. Plantear la fórmula estandarizada f(x) = 0

\sqrt{f} . ln \Big( R\frac{\sqrt{f}}{2.51} \Big) - 1.1513 = 0

La función depende de la variable f, por lo que por facilidad de trabajo se cambiará a x para no ser confundida con una función f(x).
El valor de R también se reemplaza con R=5000 como indica el problema.
El error tolerado para el problema es de 0.00001

\sqrt{x} . ln \Big( 5000\frac{\sqrt{x}}{2.51} \Big) - 1.1513 = 0

2. Seleccionar el rango de análisis [a,b] donde exista cambio de signo

La función tiene un logaritmo, por lo que no será posible iniciar con cero, sin o con  valor un poco mayor a=0.01. Para el límite superior se escoge para prueba b=2. y se valida el cambio de signo en la función.

>>> import numpy as np
>>> fx = lambda x: np.sqrt(x)*np.log((5000/2.51)*np.sqrt(x))-1.1513
>>> fx(0.01)
-0.62186746547214999
>>> fx(2)
10.082482845673042

validando el rango por cambio de signo en la función [0.01 ,2]

3. Calcular el número de iteraciones para llegar a la raíz con el error tolerado

error = 0.00001

\frac{|2-0.01|}{2^n} = 0.001 1.99/0.00001 = 2^n log(1.99/0.00001) = nlog(2) n = \frac{log(1.99/0.00001)}{log(2)} = 17.6 n = 18

4. Calcular la raíz:

Usando el algoritmo se encuentra que la raiz está en:

raiz:  0.0373930168152
f(raiz) =  -2.25294254252e-06

Primeras iteraciones de la tabla resultante:

 
a,b,c, fa, fb, fc, error
[[  1.00000000e-02   2.00000000e+00   1.00500000e+00  -6.21867465e-01
    6.46707903e+00   6.46707903e+00   1.99000000e+00]
 [  1.00000000e-02   1.00500000e+00   5.07500000e-01  -6.21867465e-01
    4.01907320e+00   4.01907320e+00   9.95000000e-01]
 [  1.00000000e-02   5.07500000e-01   2.58750000e-01  -6.21867465e-01
    2.36921961e+00   2.36921961e+00   4.97500000e-01]
 [  1.00000000e-02   2.58750000e-01   1.34375000e-01  -6.21867465e-01
    1.26563722e+00   1.26563722e+00   2.48750000e-01]
 [  1.00000000e-02   1.34375000e-01   7.21875000e-02  -6.21867465e-01
    5.36709904e-01   5.36709904e-01   1.24375000e-01]
 [  1.00000000e-02   7.21875000e-02   4.10937500e-02  -6.21867465e-01
    6.51903790e-02   6.51903790e-02   6.21875000e-02]
...

el número de iteraciones es filas-1 de la tabla

>>> len(tabla)
19

con lo que se comprueba los resultados.