s1Eva_IT2015_T4 lingotes metales

Se plantea que cada lingote debe aportar una proporción xi al lingote nuevo a ser fundido.

Se dispone de los compuestos de cada lingote por filas:

compuesto = np.array([[ 20, 50, 20, 10],
                      [ 30, 40, 10, 20],
                      [ 20, 40, 10, 30],
                      [ 50, 20, 20, 10]])
proporcion = np.array([ 27, 39.5, 14, 19.5])

El contenido final de cada componente basado en los aportes xi de cada lingote para cada componente.

Ejemplo para los 27 gramos de oro

20x_1 + 30x_2+ 20x_3 + 50x_4 = 27

se realiza el mismo procedimiento para los otros tipos de metal.

50x_1 + 40x_2+ 40x_3 + 20x_4 = 39.5 20x_1 + 10x_2+ 10x_3 + 20x_4 = 14 10x_1 + 20x_2+ 30x_3 + 10x_4 = 19.5

Las ecuaciones se escriben en la forma matricial Ax=B

\begin{bmatrix} 20 && 30&& 20 &&50 \\ 50 && 40 && 40 && 20 \\ 20 && 10 && 10 && 20 \\ 10 && 20 && 30 && 10 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 27 \\ 39.5 \\ 14 \\ 19.5 \end{bmatrix}

Para resolver se plantea la matriz aumentada

\begin{bmatrix} 20 && 30&& 20 &&50 && 27\\ 50 && 40 && 40 && 20 && 39.5\\ 20 && 10 && 10 && 20 && 14 \\ 10 && 20 && 30 && 10 && 19.5 \end{bmatrix}

se pivotea por filas la matriz:

\begin{bmatrix} 50 && 40 && 40 && 20 && 39.5\\ 20 && 30&& 20 &&50 && 27\\ 10 && 20 && 30 && 10 && 19.5 \\ 20 && 10 && 10 && 20 && 14 \end{bmatrix}

Para eliminar hacia adelante:

\begin{bmatrix} 50 && 40 && 40 && 20 && 39.5 \\ 20 - 50\frac{20}{50} && 30-40\frac{20}{50} && 20-40\frac{20}{50} && 50-20\frac{20}{50} && 27-39.5\frac{20}{50}\\ 10 - 50\frac{10}{50} && 20-40\frac{10}{50} && 30-40\frac{10}{50} && 10-20\frac{10}{50} && 19.5-39.5\frac{10}{50} \\ 20 - 50\frac{20}{50} && 10-40\frac{20}{50} && 10-40\frac{20}{50} && 20-20\frac{20}{50} && 14-39.5\frac{20}{50} \end{bmatrix}

continuando con el desarrollo:

Elimina hacia adelante
[[50.  40.  40.  20.  39.5]
 [ 0.  14.   4.  42.  11.2]
 [ 0.  12.  22.   6.  11.6]
 [ 0.  -6.  -6.  12.  -1.8]]
Elimina hacia adelante
[[ 50.  40.  40.      20.  39.5]
 [  0.  14.   4.      42.  11.2]
 [  0.   0.  18.5714 -30.   2. ]
 [  0.   0.  -4.2857  30.   3. ]]
Elimina hacia adelante
[[ 50.  40.  40.      20.     39.5   ]
 [  0.  14.   4.      42.     11.2   ]
 [  0.   0.  18.5714 -30.      2.    ]
 [  0.   0.   0.      23.0769  3.4615]]
Elimina hacia adelante
[[ 50.  40.   40.      20.     39.5  ]
 [  0.  14.    4.      42.     11.2  ]
 [  0.   0.   18.5714 -30.      2.   ]
 [  0.   0.    0.      23.0769  3.4615]]
Elimina hacia atras
[[ 1.    0.    0.    0.    0.25]
 [ 0.    1.    0.    0.    0.25]
 [ 0.    0.    1.   -0.    0.35]
 [ 0.    0.    0.    1.    0.15]]
el vector solución X es:
[[0.25]
 [0.25]
 [0.35]
 [0.15]]
verificar que A.X = B
[[39.5]
 [27. ]
 [19.5]
 [14. ]]

Las proporciones de cada lingote a usar para el nuevo lingote que cumple con lo solicitado son: [0.25, 0.25, 0.35, 0.15]


Algoritmo en python usado para la solución es:

# Método de Gauss-Jordan ,
# Recibe las matrices A,B
# presenta solucion X que cumple: A.X=B
import numpy as np
import matplotlib.pyplot as plt

# INGRESO
A = np.array([[ 50., 40, 40, 20],
              [ 20., 30, 20, 50],
              [ 10., 20, 30, 10],
              [ 20., 10, 10, 20]])
B1 = np.array([ 39.5, 27, 19.5, 14])

B = np.transpose([B1])

# PROCEDIMIENTO
casicero = 1e-15 # 0
AB = np.concatenate((A,B),axis=1)
tamano = np.shape(AB)
n = tamano[0]
m = tamano[1]

print('matriz aumentada: ')
print(AB)
# Gauss elimina hacia adelante
# tarea: verificar términos cero
for i in range(0,n,1):
    pivote = AB[i,i]
    adelante = i+1 
    for k in range(adelante,n,1):
        if (np.abs(pivote)>=casicero):
            factor = AB[k,i]/pivote
            AB[k,:] = AB[k,:] - factor*AB[i,:]
    print('Elimina hacia adelante')
    print(AB)

# Gauss-Jordan elimina hacia atras
ultfila = n-1
ultcolumna = m-1
for i in range(ultfila,0-1,-1):
    # Normaliza a 1 elemento diagonal
    AB[i,:] = AB[i,:]/AB[i,i]
    pivote = AB[i,i] # uno
    # arriba de la fila i
    atras = i-1 
    for k in range(atras,0-1,-1):
        if (np.abs(AB[k,i])>=casicero):
            factor = pivote/AB[k,i]
            AB[k,:] = AB[k,:]*factor - AB[i,:]
        else:
            factor= 'division para cero'
print('Elimina hacia atras')
print(AB)

X = AB[:,ultcolumna]

# Verifica resultado
verifica = np.dot(A,X)

# SALIDA
print('el vector solución X es:')
print(np.transpose([X]))

print('verificar que A.X = B')
print(np.transpose([verifica]))

Tarea: Revisar sobre la última pregunta.