s1Eva_IT2017_T4 Componentes eléctricos

Desarrollo Analítico

Solo puede usar las cantidades disponibles de material indicadas, por lo que las cantidades desconocidas de produccion por componente se convieren en las incógnitas x0, x1, x2. Se usa el índice cero por compatibilidad con las instrucciones python.

Material 1 Material 2 Material 3
Componente 1 5 x0 9 x0 3 x0
Componente 2 7 x1 7 x1 16 x1
Componente 3 9 x2 3 x2 4 x2
Total 945 987 1049

Se plantean las fórmulas a resolver:

5 x0 +  7 x1 + 9 x2 = 945
9 x0 +  7 x1 + 3 x2 = 987
3 x0 + 16 x1 + 4 x2 = 1049

Se reescriben en la forma matricial AX=B

\begin{bmatrix} 5 & 7 & 9\\ 9 & 7 & 3 \\ 3& 16 & 4\end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}= \begin{bmatrix} 945 \\ 987 \\ 1049 \end{bmatrix}

Se reordena, pivoteando por filas para tener la matriz diagonalmente dominante:

\begin{bmatrix} 9 & 7 & 3\\ 3 & 16 & 4 \\ 5& 7 & 9\end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}= \begin{bmatrix} 987 \\ 1049 \\ 945 \end{bmatrix}

Se determina el número de condición de la matriz. Por facilidad con python:

numero de condicion: 4.396316324708121

Obtenido con:

# 1Eva_IT2017_T4 Componentes eléctricos
import numpy as np
import matplotlib.pyplot as plt

# INGRESO
A = np.array([[9., 7.,3.],
              [3.,16.,4.],
              [5., 7.,9.]])

B = np.array([987.,1049.,945.])
# PROCEDIMIENTO

# numero de condicion
ncond = np.linalg.cond(A)

# SALIDA
print('numero de condicion:', ncond)

Recordando que la matriz debe ser tipo real, se añade un punto a los dígitos.

El número de condición es cercano a 1, por lo que el sistema si debería converger a la solución.

Desarrollo con Python

La forma AX=B permite usar los algoritmos desarrollados, obteniendo la solución. Se verifica el resultado al realizar la multiplicación de A con el vector respuesta, debe ser el vector B con un error menor al tolerado.

respuesta con Jacobi
[[62.99996585]
 [44.99998037]
 [34.9999594 ]]
verificando:
[[ 986.99943346]
 [1048.99942111]
 [ 944.99932646]]

Si interpreta el resultado, se debe obtener solo la parte entera [63,45,35] pues las unidades producidas son números enteros.

instrucciones:

# 1Eva_IT2017_T4 Componentes eléctricos
import numpy as np

def jacobi(A,B,tolera,X,iteramax=100):
    tamano = np.shape(A)
    n = tamano[0]
    m = tamano[1]
    diferencia = np.ones(n, dtype=float)
    errado = np.max(diferencia)
    xnuevo = np.copy(X)

    itera = 0
    print(itera, X)
    while not(errado<=tolera or itera>iteramax):
        
        for i in range(0,n,1):
            nuevo = B[i]
            for j in range(0,m,1):
                if (i!=j): # excepto diagonal de A
                    nuevo = nuevo-A[i,j]*X[j]
            nuevo = nuevo/A[i,i]
            xnuevo[i] = nuevo
        diferencia = np.abs(xnuevo-X)
        errado = np.max(diferencia)
        print(itera, xnuevo)
        X = np.copy(xnuevo)
        itera = itera + 1
    # Vector en columna
    X = np.transpose([X])
    # No converge
    if (itera>iteramax):
        X=itera
    return(X)


# INGRESO
A = np.array([[9., 7.,3.],
              [3.,16.,4.],
              [5., 7.,9.]])

B = np.array([987.,1049.,945.])
tolera = 1e-4

X = [0.,0.,0.]

# PROCEDIMIENTO

# numero de condicion
ncond = np.linalg.cond(A)

respuesta = jacobi(A,B,tolera,X)

verifica = np.dot(A,respuesta)

# SALIDA
print('numero de condicion:', ncond)
print('respuesta con Jacobi')
print(respuesta)
print('verificando:')
print(verifica)

al ejecutar el algoritmo se determina que se requieren 83 iteraciones para cumplir con con el valor de error tolerado.