s1Eva_IT2019_T2 Catenaria cable2

Desarrollo con error en fórmula ‘y’, en argumento Cosh(), revisar fórmulas en referencia del problema por error de tipografía:
————————-
Las fórmulas con las que se requiere trabajar son:

y = \frac{T_A}{w} cosh \Big( \frac{T_A}{w}x \Big) + y_0 - \frac{T_A}{w}

Donde la altura y del cable está en función de la distancia x.

Además se tiene que:

cosh(z) = \frac{e^z+ e^{-z}}{2}

que sustituyendo la segunda en la primera se convierte en:

y = \frac{T_A}{w} \frac{e^{\Big( \frac{T_A}{w}x \Big)} + e^{-\Big( \frac{T_A}{w}x \Big)}}{2} + y_0 - \frac{T_A}{w}

y usando los valores del enunciado w=12, y0=6 , y=15, x=50 se convierte en:

15 = \frac{T_A}{12} \frac{e^{\Big( \frac{T_A}{12}50 \Big)} + e^{-\Big( \frac{T_A}{12}50 \Big)}}{2} + 6 - \frac{T_A}{12}

simplificando, para usar el método de búsqueda de raices:

\frac{T_A}{24} e^{\Big( \frac{50}{12} T_A\Big)} + \frac{T_A}{24} e^{-\Big( \frac{50}{12} T_A\Big)} - \frac{T_A}{12} -9 =0

estandarizando a TA/12 =x

\frac{x}{2}e^{50x} + \frac{x}{2} e^{-50x} - x -9 =0

la función a usar es:

f(x) = \frac{x}{2}e^{50x} + \frac{x}{2} e^{-50x} - x -9

Para el méodo de Newton-Raphson se tiene que:

x_{i+1} = x_i -\frac{f(x_i)}{f'(x_i)}

por lo que se determina:

f'(x) = \frac{x}{2}(50)e^{50x} + \frac{1}{2}e^{50x} + + \frac{x}{2}(-50) e^{-50x} + \frac{1}{2} e^{-50x} - 1 f'(x) = 25x(e^{50x}-e^{-50x}) + + \frac{1}{2}(e^{50x} +e^{-50x}) - 1