s2Eva_IT2018_T4 Dragado acceso marítimo

a) La matriz para remover sedimentos se determina como la diferencia entre la profundidad y la matriz de batimetría.

Considere el signo de la profundidad para obtener el resultado:

matriz remover sedimentos: 
[[ 4.21  0.    0.96  0.    3.76  3.09]
 [ 2.15  0.11  2.05  3.77  0.    3.07]
 [ 0.    1.14  1.65  0.    1.62  1.35]
 [ 3.7   0.    0.59  2.33  0.    4.23]
 [ 0.    1.38  3.53  4.49  1.98  1.4 ]
 [ 0.    0.77  0.32  1.06  4.24  3.54]]

se obtiene con la instrucciones:

# 2da Evaluación I Término 2018
# Tema 4. canal acceso a Puertos de Guayaquil
import numpy as np

# INGRESO
profcanal = 11

xi = np.array([ 0.,  50., 100., 150., 200., 250.])
yi = np.array([ 0., 100., 200., 300., 400., 500.])

batimetria = [[ -6.79,-12.03,-10.04,-11.60, -7.24,-7.91],
              [ -8.85,-10.89, -8.95, -7.23,-11.42,-7.93],
              [-11.90, -9.86, -9.35,-12.05, -9.38,-9.65],
              [ -7.30,-11.55,-10.41, -8.67,-11.84,-6.77],
              [-12.17, -9.62, -7.47, -6.51, -9.02,-9.60],
              [-11.90,-10.23,-10.68, -9.94, -6.76,-7.46]]

batimetria = np.array(batimetria)
# PROCEDIMIENTO
[n,m] = np.shape(batimetria)

# Matriz remover sedimentos
remover = batimetria + profcanal
for i in range(0,n,1):
    for j in range(0,m,1):
        if remover[i,j]<0:
            remover[i,j]=0
# SALIDA
print('matriz remover sedimentos: ')
print(remover)

b) el volumen se calcula usando el algoritmo de Simpson primero por un eje, y luego con el resultado se continúa con el otro eje,

Considere que existen 6 puntos, o 5 tramos integrar en cada eje.

  • Al usar Simpson de 1/3 que usan tramos pares, faltaría integrar el último tramo.
  • En el caso de Simpson de 3/8 se requieren tramos multiplos de 3, porl que faltaría un tramo para volver a usar la fórmula.

La solución por filas se implementa usando una combinación de Simpson 3/8 para los puntos entre remover[i, 0:3] y Simpson 1/3 para los puntos entre remover[i, 3:5].

Luego se completa el integral del otro eje con el resultado anterior, aplicando el mismo método.

Se obtuvieron los siguientes resultados:

Integral en eje x: 
[ 219.1   309.83  260.44  217.75  511.21  137.85]
Volumen:  160552.083333

que se obtiene usando las instrucciones a continuación de las anteriores:

# literal b) ---------------------------
def simpson13(fi,h):
    s13 = (h/3)*(fi[0] + 4*fi[1] + fi[2])
    return(s13)
def simpson38(fi,h):
    s38 = (3*h/8)*(fi[0] + 3*fi[1] + 3*fi[2]+ fi[3])
    return(s38)

Integralx = np.zeros(n,dtype = float)

for i in range(0,n,1):
    hx = xi[1]-xi[0]
    fi = remover[i, 0:(0+4)]
    s38 = simpson38(fi,hx)
    f = remover[i, 3:(3+3)]
    s13 = simpson13(fi,hx)
    Integralx[i] = s38 + s13

hy = yi[1] - yi[0]
f = Integralx[0:(0+4)]
s38 = simpson38(f,hy)
f = Integralx[3:(3+3)]
s13 = simpson13(f,hy)
volumen = s38 + s13

# Salida
np.set_printoptions(precision=2)
print('Integral en eje x: ')
print(Integralx)
print('Volumen: ', volumen)

Para el examen escrito, se requieren realizar al menos 3 iteraciones/ filas para encontrar el integral.