2Eva_IT2019_T2 Péndulo vertical

2da Evaluación I Término 2019-2020. 27/Agosto/2019. MATG1013

Tema 2. (40 Puntos) Suponga que un péndulo tiene 0.6 m de Longitud, se desplaza θ desde la posición vertical de equilibrio.

\frac{d^2\theta }{dt^2}+\frac{g}{L}\sin (\theta)=0 0\lt t \lt 1 g = 9.81 \frac{m}{s^2} \theta(0) = \frac{\pi}{6} \theta '(0) = 0

a. Aproxime la solución de la ecuación para t = [0,1] con pasos de h=0.2
b. Aproxime el valor del error

Rúbrica: literal a, expresiones (20 puntos), valor (10 puntos), literal b (10 puntos)


Referencia: Ejercicio 5.9.8, Burden 9Ed, p338.
2Eva_IT2010_T2 Movimiento angular

Professor of Physics Emeritus Walter Lewin.  Lec 11 | 8.01 Physics I: Classical Mechanics, Fall 1999.

2Eva_IT2012_T3_MN EDO Taylor 2 Contaminación de estanque

2da Evaluación I Término 2012-2013. 28/Agosto/2012. ICM02188 Métodos Numéricos

Tema 3. (30 puntos) Suponga un estanque de cierto tamaño con agua, la cual está siendo contaminada por una corriente que ingresa constantemente.

En la siguiente ecuación s representa la cantidad de contaminación en el tiempo t:

s'- \frac{26s}{200-t} - \frac{5}{2} = 0 0\leq t \lt 200

Con la condición inicial s(0) = 0, la cual significa que inicialmente el agua está limpia.

Determine la cantidad de contaminación s(t) para

t =  [0.1, 0.2, 0.3, 0.4]

usando la fórmula de Euler, es decir los dos primeros términos de la Serie de Taylor.

2Eva_IIT2016_T3_MN EDO Taylor 2, Tanque de agua

2da Evaluación II Término 2016-2017. 14/Febrero/2017. ICM02188 Métodos Numérico

Tema 3.  Si se drena agua desde un tanque cilíndrico vertical por medio de abrir una válvula en la base, el líquido fluirá rápido cuando el tanque está lleno y disminuye el flujo a medida que se drene.

Como se ve, la tasa a la que el nivel del agua disminuye es:

\frac{dy}{dt} = -k \sqrt{y}

Donde k es una constante que depende de la forma del agujero y del área de la sección transversal del tanque y agujero del drenaje. La profundidad del agua del agua se mide en metros y el tiempo t en minutos.

Si k=0.06,

a) Determine en que tiempo la altura del nivel del agua llega a la mitad del nivel inicial que es 3 m. (Solo formule el método de Taylor de orden 2)

b) Realice 3 pasos con h=0.5 min

3Eva_IIT2018_T3 EDO

3ra Evaluación II Término 2018-2019. 12/Febrero/2018. MATG1013

Tema 3. (40 puntos)

y'' = 2y'-y +xe^{x} -x

0 ≤ x ≤ 2
y(0) = 0
y(2) = -4

a. Use las fórmulaas en diferencias finitas para aproximar las soluciones en los nodos indicados con h = 0.25
b. Estime el error

c. Con los puntos calculados, construya el trazador cúbico natural

Rúbrica: Plantear malla (5 puntos), plantear método (5 puntos), desarollo de la ecuación (10 puntos), planteo del error (5 puntos), obtención del trazador (10 puntos)

2Eva_IIT2018_T2 Kunge Kutta 2do Orden x»

2da Evaluación II Término 2018-2019. 29/Enero/2019. MATG1013

Tema 2. (30 puntos) Se tiene una ecuación diferencial de segundo orden con valores inciales.

\frac{\delta ^2 x}{\delta t^2} + 5t\frac{\delta x}{\delta t} +(t+7)\sin (\pi t) = 0 0<t<2 x(0)=6,\frac{\delta x}{\delta t}(0) = 1.5

a) Transforme la ecuación en un sistema de primer orden.

b) Use el método de Runge-Kutta de orden 2 (modificado de Euler) con h=0.2 para aproximar x para 3 pasos.

c) Estime el error.

Rúbrica: literal a, aplica el cambio de variables (5 puntos).
literal b, Conoce una fórmula de RK2orden (5 puntos). Plantea la fórmula de RK2 orden al sistema (5 puntos). Realiza al menos 3 pasos (5 puntos).
literal c, conoce las fórmulas del error hasta (5 puntos), calcula el error hasta (5 puntos)

 

2Eva_IT2010_T2 Movimiento angular

2da Evaluación I Término 2010-2011. 31/Agosto/2010. ICM00158

Tema 2. La ecuación de un movimiento angular está dada por

y'' + 10 \sin (y) =0 0\leq t \leq 1 y(0)=0, y'(0)=0.1

Empleando el método de Runge-Kutta de 4to orden generalizado y un paso de 0.25, aproximar la solución de la ecuación en t=0.50


Referencia:  Chapra 28.4 p842 pdf 866

https://nitanperdida.com/2017/12/24/banos-y-el-columpio-del-fin-del-mundo/
BAÑOS DE AGUA SANTA Y EL COLUMPIO DEL FIN DEL MUNDO

2Eva_IT2018_T1 Paracaidista wingsuit

2da Evaluación I Término 2018-2019. 28/Agosto/2018. MATG1013

Tema 1. (25 puntos) Si suponemos que el arrastre es proporcional al cuadrado de la velocidad, se puede modelar la velocidad de un objeto que cae, como un paracaidista, por medio de la ecuación diferencial ordinaria:

\frac{dv}{dt} = g - \frac{cd}{m} v^2

Donde:  http://www.elperiodicodearagon.com/noticias/sociedad/alarma-francia-cinco-muertes-verano-moda-hombres-pajaro-wingsuit_877164.html

  • v es la velocidad en m/s
  • cd es el coeficiente de arrastre de segundo orden Kg/m
  • m es la masa en Kg
  • v = \frac{dy}{dt}
  • y es la distancia que recorre en m

Resuelva para la velocidad y distancia que recorre un objeto de 90 Kg con coeficiente de arrastre de 0.225 kg/m.

Si la velocidad inicial es 0 y la altura inicial es 1 Km, determine la velocidad y posición en cada tiempo, usando un tamano de paso de 2s.

a) Plantee la solución de las ecuaciones para la velocidad y distancia usando el método de Runge-Kutta de segundo orden

b) Realice tres iteraciones

Rúbrica: literal a (15 puntos), literal b (10 puntos)


Referencia: Alarma en Francia … por moda wingsuit. 23 Agosto 2013. www.elperiodicodearagon.com.  http://www.elperiodicodearagon.com/noticias/sociedad/alarma-francia-cinco-muertes-verano-moda-hombres-pajaro-wingsuit_877164.html

 

 

2Eva_IT2015_T2 Deflexión de mástil

2da Evaluación I Término 2015-2016. 8/Septiembre/2015. ICM00158

Tema 2. (30 puntos) La ecuación siguiente se utiliza para modelar la deflexión del mástil de un bote expuesto a la fuerza del viento:

\frac{\delta ^2 y}{\delta x^2} = \frac{f}{2EI} (L-x)^2

Donde:
f = fuerza,
E = módulo de elasticidad,
L = longitud del mástil
I = momento de inercia.

Calcule la deflexión si y = 0 y \frac{\delta y}{\delta x} = 0 en x = 0.

Para sus cálculos considere f=60, L =30, E = 1.25×108 e I = 0.05.

a. Encuentre el sistema de ecuaciones diferenciales equivalente a dicha ecuación.

b. Aproxime usando Runge-Kutta 4to orden, para n=30 sub-intervalos. (solo expresado)

c. Aproxime considerando h=2 y realice 2 pasos usando Runge-Kutta de 2do orden.


Referencias: Chapra 24.2 p284 pdf121

 

2Eva_IIT2017_T4 EDO valor en frontera

2da Evaluación II Término 2017-2018. Febrero 7, 2018. MATG1013

Tema 4. Use el algoritmo lineal de diferencias finitas para aproximar la solución del problema con valor en las fronteras

\frac{d^2T}{dx^2} + \frac{1}{x}\frac{dT}{dx} +S =0 0 \leq x \leq 1

con condiciones de frontera

T(x=0) =2, T(x=1) = 1

a) Plantee las ecuaciones con h = 0.25

b) Plantee el error para Ti

c) Realice los cálculos con S=1