s1Eva_IIT2007_T3_AN Interpolación inversa

f(0.50) = 1.648
f(0.65) = 1.915
f( x ) = 2.117
f(0.80) = 2.225
f(0.95) = 2.5857

Para el algoritmo se intercambian las variables previo a usarlo.
Luego se evalua en el punto buscado, en éste caso: fi=2.117, obteniendo que x es: 0.750321134121361

fi = np.array([0.50 , 0.65 , 0.80,  0.95   ])
x = np.array([1.648, 1.915, 2.225, 2.5857 ])
Polinomio de Lagrange
0.924124055152463*(-3.74531835205992*x + 7.17228464419475)*(x - 2.5857)*(x - 2.225) + 3.12624749298999*(x - 2.5857)*(x - 2.225)*(3.74531835205992*x - 6.17228464419475) - 7.15454716188057*(x - 2.5857)*(x - 1.915)*(1.73310225303293*x - 2.85615251299827) + 3.92689380344011*(x - 2.225)*(x - 1.915)*(1.06643915964594*x - 1.75749173509651)
Expandiendo: 
0.0358848473081501*x**3 - 0.342756582990887*x**2 + 1.44073214117566*x - 1.10404634485226
>>> px
0.0358848473081501*x**3 - 0.342756582990887*x**2 + 1.44073214117566*x - 1.10404634485226
>>> px.subs(x,2.117)
0.750321134121361

El algortmo modificado usado es:

# Interpolacion de Lagrange
import numpy as np
import matplotlib.pyplot as plt
import sympy as sp

# INGRESO , Datos de prueba
fi = np.array([0.50 , 0.65 , 0.80,  0.95   ])
xi = np.array([1.648, 1.915, 2.225, 2.5857 ])

# PROCEDIMIENTO
n = len(xi)
x = sp.Symbol('x')
# Polinomio
polinomio = 0
for i in range(0,n,1):
    # Termino de Lagrange
    termino = 1
    for j  in range(0,n,1):
        if j!=i:
            termino = termino*(x-xi[j])/(xi[i]-xi[j])
    polinomio = polinomio + termino*fi[i]
# Expande el polinomio
px = polinomio.expand()

# Salida
print('Polinomio de Lagrange')
print(polinomio)
print('Expandiendo: ')
print(px)

para visualizar el resultado, intercambiando nuevamente los ejes:

>>> px
0.0358848473081501*x**3 - 0.342756582990887*x**2 + 1.44073214117566*x - 1.10404634485226
>>> px.subs(x,2.117)
0.750321134121361
>>> px
0.0358848473081501*x**3 - 0.342756582990887*x**2 + 1.44073214117566*x - 1.10404634485226
>>> polinomio = sp.lambdify(x,px)
>>> y = np.linspace(1,3,100)
>>> pyi= polinomio(y)
>>> plt.plot(pyi,y)
>>> plt.show()

1Eva_IIIT2007_T2 Función Cobb-Douglas

1ra Evaluación III Término 2007-2008. 3/Marzo/2008. ICM00158

Tema 2. La función de producción llamada Cobb-Douglas relaciona funcionalmente a los insumos de capital y trabajo necesarios para producir de la manera más óptima de una determinada cantidad de un bien.

Y = f(K,L) es la cantidad máxima del bién que se puede producir dados los insumos utilizados de capital y trabajo. K y L representan las cantidades de capital y trabajo respectivamente.

En la industria de lácteos se han observado los siguientes valores óptimos de producción Y (en miles de Kg) para diferentes valores de L  (# de trabajadores)  y capital invertido K (en miles de dólares).

 L\K  10 20 30 40
0  0  0  0  0
10  11.0000  13.0813  14.4768  15.5563
20  18.4997  22.0000  24.3470  26.1626
30  25.0746  29.8189  33.0000  35.4608

a. Determinar usando el polinomio de interpolación de Lagrange cuál será la producción óptima de lácteos en una empresa que emplea 25 trabajadores y que invierte un capital de $ 25000 en el plan de producción.

b.  Una empresa que tiene 25 trabajadores desea producir 30000 kg de lácteos. ¿cuánto dinero deberá invertir?, use el polinomio de interpolación y el método de Newton con una precisión de 10-5

Referencia: Wikipedia/Cobb-Douglas

M = np.array([[0, 0, 0, 0],
              [11.0000, 13.0813, 14.4768, 15.5563],
              [18.4997, 22.0000, 24.3470, 26.1626],
              [25.0746, 29.8189, 33.0000, 35.4608]])
li = np.array([0, 10, 20, 30])
kj = np.array([10, 20, 30, 40])

1Eva_IT2008_T3 Polinomio de Lagrange

1ra Evaluación I Término 2008-2009. 8/Julio/2008. ICM00158

Tema 3. Dada la tabla:

t v(t)
3 65.041
5 64.385
7 y
9 63.210
x 62.576
13 61.993
15 61.417

Aproximar los valores de x,y con ayuda de polinomios de Lagrange

1Eva_IT2009_T3 Precio y demanda con competencia

1ra Evaluación I Término 2009-2010. 7/Julio/2009. ICM00158

Tema 3. Una empresa que vende cierto producto ha observado que su demanda depende del precio al que se lo vende (P en $/unidad) y también del precio al que la competencia vende un producto de similares características (Q en $/unidad).

Recopilando información histórica respecto a lo que ha sucedido en el pasado, se observó que la demanda diaria (unidades vendidas por día) de este producto fueron de:

Q\P 1 1.1 1.2
1 100 91 83
1.1 110 100 92
1.2 120 109 100
1.3 130 118 108

Use todos los datos dados y el polinomio de interpolación de Lagrange para estimar los Ingresos mensuales de la empresa por la venta de este producto si decide venderlo a $1.15 por unidad y conoce que la competencia estableció un precio de $1.25 por unidad.

1Eva_IIT2009_T3 Factor de riesgo en avenida

1ra Evaluación II Término 2009-2010. 1/Diciembre/2009. ICM00158

Tema 3. Para el control de los accidentes de tránsito, se requiere modelar un factor de riesgo de que ocurra un accidente de tránsito en cierta avenida, en función del número de vehículos que circulan por ella a la semana. 

Por observación directa se han determinado los siguientes factores:

(No. de vehículos que circulan por la avenida a la semana) vs (Factor de riesgo)

 vehículos 10000 7000 6000 5000
Factor de riesgo 0.8 0.5 0.4 0.2

Empleando toda la información de la tabla anterior, estime con un polinomio de Lagrange el factor de riesgo que tendrá la avenida si el número de vehículos que circula a la semana es 6500.


vehiculos = np.array([10000, 7000, 6000, 5000])
riesgo = np.array([0.8, 0.5, 0.4, 0.2])

1Eva_IIT2011_T3 Polinomio Lagrange

1ra Evaluación II Término 2011-2012. 29/Noviembre/2011. ICM00158

Tema 3. Sea f \in C^{4}[0,1] , tal que
f(0.50) = 1.648
f(0.65) = 1.915
f(0.80) = 2.225
f(0.95) = 2.5857

Usando el polinomio interpolante de Lagrange, aproxime:
f(0.76) y
f(0.87).


datos = [[0.50, 1.648],
         [0.65, 1.915],
         [0.80, 2.225],
         [0.95, 2.5857]]

1Eva_IT2011_T3 Velocidad automobil

1ra Evaluación I Término 2011-2012. 5/Julio/2011. ICM00158

Tema 3. Suponga que se tiene un automóvil viajando a lo largo de un camino recto. En diferentes puntos de su recorrido se mide lo siguiente:

Tiempo [s] 0 3 5 8 13
Distancia [m] 0 69 117 190 303
Velocidad [m/s]  22.9  23.5  24.4  22.6  21.9

Usando interpolación de Lagrange aproxime el valor de la velocidad del automóvil en t =10 segundos.


Tiempo =    [ 0.0,  3,   5,   8,  13]
Distancia = [ 0.0, 69, 117, 190, 303]
Velocidad = [22.9, 23.5, 24.4, 22.6, 21.9]

Referencia:

 

1Eva_IIT2014_T3 Oxigeno y temperatura en mar

1ra Evaluación II Término 2014-2015. 9/Diciembre/2013. ICM00158

Tema 3. Los siguientes datos definen la concentración de oxígeno disuelto a nivel del mar para agua dulce como función de la temperatura:

Temp (ºC) 0 8 16 24 32 40
Oxigeno (mg/L) 4.621 11.483 9.870 8.418 7.305 6.413

Estime Oxigeno(27) usando:

  1. interpolación lineal,
  2. polinomio de Lagrange a lo sumo de grado 2 y
  3. polinomio de Lagrange de grado a lo sumo 3.

Observe que el resultado exacto es 7.986
Calcule el error para cada caso


Temp = [0.0, 8, 16, 24, 32, 40]
Oxigeno = [4.621, 11.483, 9.870, 8.418, 7.305, 6.413]

1Eva_IT2012_T3 Interpolar con Lagrange

1ra Evaluación I Término 2012-2013. 3/Julio/2012. ICM00158

Tema 3. (20 puntos) Se conocen los valores de una función en los siguientes puntos

f(1) = 0.75
f(1.5) = 1.34375
f(2) = 2.5
f(2.25) = 3.34765625
f(2.5) = 4.40625
f(3) = 7.25

Aproximar con el método de Lagrange, p3(x)