2Eva_IT2019_T1 Esfuerzo en pulso cardiaco

2da Evaluación I Término 2019-2020. 27/Agosto/2019. MATG1013

Tema 1. (30 Puntos) La conducción eléctrica del corazón se identifica en un electrocardiograma por segmentos de ondas P, R, T.

Mediante un sensor se obtuvo lecturas de un pulso cardiaco y se requiere obtener una medida del esfuerzo mediante el valor Xrms expresado como:

X_{rms} = \sqrt{\frac{1}{t_n-t_0}\int_{t_0}^{t_n}[f(t)]^2dt}
t 0.0 0.04 0.08 0.1 0.11 0.12 0.13 0.16 0.20 0.23 0.25
f(t) 10 18 7 -8 110 -25 9 8 25 9 9

a. Aproxime el valor Xrms usando el integral en todo el intervalo [0,0.25], minimice el error usando preferiblemente métodos de Simpson.
b. Estime la cota de error para el valor Xrms encontrado
Justifique sus respuestas escribiendo todas las expresiones

Rúbrica: literal a, expresiones (16 puntos), valor (8 puntos), literal b (6 puntos)


t  = np.array([0.0,0.04,0.08,0.1,0.11,0.12,0.13,0.16,0.20,0.23,0.25])
ft = np.array([10.0, 18, 7, -8, 110, -25, 9, 8, 25, 9, 9])

Referencia: Valor cuadrático medio, https://es.wikipedia.org/wiki/Media_cuadr%C3%A1tica
Sensor de pulso cardiaco arduino, http://blog.espol.edu.ec/edelros/pulso-cardiaco/

2Eva_IT2009_T1_AN Integral doble

2da Evaluación I Término 2009-2010. 1/Septiembre/2009. Análisis Numérico

Tema 1. (20 puntos) Calcular la integral doble usando el método de Simpson con n=m=3
\int_R\int (y^2 + x^3) \delta y \delta x

R = \{ (x,y) / 0\leq x \leq 1, x \leq y \leq 2 x\}

Rúbrica: Integración respecto eje x (10 puntos), Integración respecto eje y (10 puntos)

2Eva_IT2008_T2_MN Integral Simpson

2da Evaluación I Término 2008-2009. ICM02188 Métodos Numéricos

Tema 2. Para el siguiente integral

A = \int_1^{\infty}\frac{1}{1+x^4} \delta x

a. Aproxime el valor de A usando el método de Simpson con 4 subintervalos

b. Estime la cota de error para el resultado obtenido

2Eva_IT2008_T2_AN Volumen de montaña

2da Evaluación I Término 2008-2009. 2/Septiembre/2008. Análisis Numérico

Tema 2. La matriz F tiene la altura de una montaña en una región rectangular con Δx = Δy =0.2

Aproxime el volumen de la región bajo la superficie utilizando la regla de Simpson 1/3 en ambas direcciones

 

F = [[2.3, 2.5, 3.1, 3.2, 2.8],
     [2.4, 2.6, 2.9, 2.8, 2.7],
     [2.6, 2.8, 3.1, 3.0, 2.6]]

 

2Eva_IIT2007_T1 Integral regla Simpson

2da Evaluación II Término 2007-2008. 12/Febrero/2008. ICM00158

Tema 1. Use la regla de Simpson para calcular en forma aproximada

A = \int_0^1 y(x)dx

Use los puntos de y(x) que se obtienen resolviendo la ecuación diferencial

y» – y’ – y – x + 1 = 0,
y(0) = 1, y(1) = 2

con el método de diferencias finitas, h = 0.25