3Eva_IIT2018_T2 Drenar tanque cilíndrico

3ra Evaluación II Término 2018-2019. 12/Febrero/2018. MATG1013

Tema 2. (30 puntos) En un tanque cilíndrico vertical, al abrir una válvula en la base el agua fluirá rápidamente cuando el tanque esté lleno; conforme el tanque se vacía irá fluyendo más lentamente.

Si la rapidez a la que disminuye el nivel del agua es:

\frac{\delta y}{\delta t} = -k\sqrt{y}

Donde k es una constante que depende del área de la sección transversal del tanque y del orificio de salida.

La profundidad el agua «y» se mide en pies; y el tiempo t en minutos.

Si k=0.5 e inicialmente el nivel del fluido es de 9 pies. ¿Cuál es el tiempo mínimo para que la altura del taque sea inferior a 6 pies?

a. Utilice el método de Taylor de segundo orden para resolver este problema con h= 0.5 minutos

b. Estime el error en cada paso.

Rúbrica: Plantear el método (5 puntos), desarrollo de la ecuación (10 puntos), valor numérico (5 puntos), planteo del error(5 puntos), valor del error (5 puntos)

1Eva_IIT2010_T1 Aproximar con polinomio

1ra Evaluación II Término 2010-2011. 7/Diciembre/2010. ICM00158

Tema 1. La función de variable real f(x) será aproximada con el polinomio de segundo grado P(x) que incluye los tres puntos f(0), f(π/2), f(π).

f(x) = e^x \cos (x) +1 0\leq x \leq \pi

Encuentre la magnitud del mayor error E(x) = f(x) -P(x), que se produciría al usar esta aproximación. Resuelva la ecuación no lineal resultante con la fórmula de Newton con un error máximo de 0.0001.

1Eva_IIT2017_T1 Aproximar a polinomio usando puntos

1ra Evaluación II Término 2017-2018. 28/Noviembre/2017. MATG1013

Tema 1. (25 puntos) Se sabe que f ∈ C3[a, b] y tiene la siguiente tabla:

 x  f(x)
 0  1
 0.2  1.6
 0.4  2.0

a) Encuentre el polinomio de Taylor de grado 2 alrededor de X0 = 0.2 para aproximar a f(x)

b) Aproxime \int_{0}^{0.4}f(x)dx por medio de \int_{0}^{0.4}P_{2}(x)dx
Estime el error suponiendo que f'''(\epsilon ) =1

Rúbrica: Plantear el polinomio hasta 5%, hallar las derivadas hasta 10%, hallar la integral hasta 5% hallar el error hasta 5%.