
PARA LA EVALUACIÓN EL SIGNO COMA (,) SE TOMARÁ PARA REPRESENTAR MILES, EJEMPLO: 10⁻¹ = 1,000. EL PUNTO (.) SE TOMARÁ PARA REPRESENTAR DECIMALES, EJEMPLO: 10⁻¹ = 0.1

Tema #9 (10 puntos). Determinación variación de presión de vapor en soluciones y captura de datos en dependencias

Calcular la presión de vapor de una disolución preparada al disolver 82.4 g de urea (masa molecular = 60.06 g / mol) en 212 mL de agua a 35°C. ¿Cuál es la disminución de la presión de vapor?

De la figura tomar los datos pertinentes, además suponga que la densidad de la disolución es 1.0 g/mL. Paralelamente, recuerde que un mol de agua es igual a 18 g.

Variación de la presión de vapor del agua con la t

SOLUCIÓN

La presión de vapor de una disolución (P_1) es igual a X_1P_1 °, donde P_1 ° se conoce de la gráfica, P_1 se requiere calcular, una vez que hemos calculado X_1 .

El valor de P_1° de la lectura de la gráfica arroja un valor $\frac{de \approx 60}{de \approx 60}$ mmHg, a mano alzada. Tomaremos este valor como referencial.

de moles agua = n_1 = 212mL * (1.00 g / 1mL) * (1 mol de agua / 18.0 g de agua) = 11.77 mol

de moles urea = n_2 = 82.4 g de urea * (1 mol de urea / 60.06 g de urea) = 1.36 mol

La fracción molar del agua, X₁, está dada por:

$$X_1 = n_1 / n_1 + n_2$$

 $X_1 = 11.77 \text{ mol} / 11.77 \text{ mol} + 1.36 \text{ mol} = 11.77 \text{ mol} / 13.13 \text{ mol} = 0.896$

Conocemos que la presión del vapor del agua a 35° C es de 60 mmHg. Por lo tanto, la presión de vapor de la disolución acuosa $(X_1P_1^{\circ})$ es de.

P1 = 0.896 * 60 mmHg = 53.76 mmHg

La variación de la presión de vapor será, para nuestro caso, de:

 $\Delta P = (P_1^{\circ} - P_1) = 60 \text{ mmHg} - 53.76 \text{ mmHg} = 6.24 \text{ mmHg}.$