NOTA: PARA ESTA EVALUACIÓN EL SIGNO COMA (,) SE TOMARÁ PARA REPRESENTAR MILES, EJEMPLO: $10^{+3} = 1,000$. EL PUNTO (.) SE TOMARÁ PARA REPRESENTAR DECIMALES, EJEMPLO: $10^{-1} = 0.1$.

OBSERVACIÓN: SIRVASE LEER CUIDADOSAMENTE CADA UNO DE LOS TEMAS PLANTEADOS, ESTO A FIN DE CONTESTARLOS EN BASE A LO SOLICITADO EN LOS MISMOS. PARTICULAR QUE SIGNIFICA: COMPRENDERLO, INTERPRETARLO, ANALIZARLO, RESOLVERLO Y EXPRESAR SU RESPUESTA CON CLARIDAD.

"Produce una inmensa tristeza pensar que la naturaleza habla, mientras el género humano no la escucha."

- Víctor Hugo

(RELACIÓN Q CON EL DESPLAZAMIENTO DEL EQUILIBRIO) / (10 PUNTOS)

10. Al principio de la reacción N_2 (g) + $3H_2$ (g) \leftrightarrow $2NH_3$ (g), en un matraz de 3.50 litros a 375°C, están presentes:

0.249 moles de NH₃;

 3.21×10^{-2} moles de H₂, y;

6.42 x 10⁻⁴ moles de N₂.

La constante de equilibrio Kc para la reacción referida es igual a 1.2 a la referida temperatura.

Con los datos proporcionados determine si el sistema está en equilibrio. Si no es así prediga en qué dirección precederá la reacción neta.

CÁLCULOS DE LAS CONCENTRACIONES		
[N ₂]	[H ₂]	[NH ₃]
CÁLCULO de Q		Registro de Kc
COMPARACIÓN de Q VERSUS Kc		
CONCLUSIÓN		
¿EN QUE DIRECCIÓN PRECEDERÁ LA REACCIÓN NETA?		