
NOTA: PARA ESTA EVALUACIÓN EL SIGNO COMA (,) SE TOMARÁ PARA REPRESENTAR MILES, EJEMPLO: $10^{+3} = 1,000$. EL PUNTO (.) SE TOMARÁ PARA REPRESENTAR DECIMALES, EJEMPLO: $10^{-1} = 0.1$. / **OBSERVACIÓN:** SIRVASE LEER CUIDADOSAMENTE CADA UNO DE LOS TEMAS PLANTEADOS, ESTO A FIN DE CONTESTARLOS EN BASE A LO SOLICITADO EN LOS MISMOS. PARTICULAR QUE SIGNIFICA: COMPRENDERLO, INTERPRETARLO, ANALIZARLO, RESOLVERLO Y EXPRESAR SU RESPUESTA CON CLARIDAD.

Lectura de la curva de presión de Vapor / (10 Puntos)

7.- Mediante el uso de la siguiente gráfica de datos de la variación de la presión de vapor del sulfuro de carbono (CS₂) a varias temperaturas:

Variación de la presión de vapor (mm Hg) versus Temperatura para el CS2.

Sírvase **DETERMINAR** y **MARCAR** en la figura lo solicitado más abajo:

- #1 La presión de vapor aproximada del CS₂ a 30 °C: aproximadamente a 400 torr.
- #2 La temperatura a la cual la presión de vapor es igual a 300 torr: aproximadamente a 23 °C
- #3 El punto normal de ebullición del CS₂: aproximadamente a 50 °C
- #4 Determinar, a continuación, la entalpia molar de evaporación del CS₂ considerando dos puntos de la gráfica:

 $(\ln P_1) = (-(\text{entalpía molar de vaporización}) / (RT_1)) + C; (\ln P_2) = (-(\text{entalpía molar de vaporización}) / (RT_2)) + C$

Al restar la ecuación se obtiene,

 $(\ln P_1)$ - $(\ln P_2)$ = [(- (entalpía molar de vaporización) / (RT_1))] – [(- (entalpía molar de vaporización) / (RT_2))] = ((entalpía molar de vaporización) / (R)) \mathbf{x} [(1/ T_2)- (1/ T_1)]

Por lo tanto,

 $(\ln P_1/P_2) = ((\text{entalpía molar de vaporización}) / (R)) \mathbf{x} [(1/T_2) - (1/T_1)]$ $(\ln P_1/P_2) = ((\text{entalpía molar de vaporización}) / (R)) \mathbf{x} [(T_1 - T_2)/(T_1 \mathbf{x} T_2)]$

Para nuestro caso hemos tomado los siguientes puntos, a saber:

Punto #1 = Presión de vapor del CS₂ a 25 °C y presión normal del CS₂ y su correspondiente temperatura.

Punto #1 =
$$P_1$$
 (25 °C, 302 mm Hg) \rightarrow P_1 (298 K, 302 mm Hg)

Punto #2 = Presión de vapor del CS₂ a 30 °C y presión normal del CS₂ y su correspondiente temperatura.

Punto #2 =
$$P_2$$
 (30°C, 380 mm Hg) > P_2 (303 K, 380 mm Hg)

 $(\operatorname{Ln} P_1/P_2) = ((\operatorname{entalpía} \operatorname{molar} \operatorname{de vaporización}) / (R)) \mathbf{x} [(T_1 - T_2)/(T_1 \mathbf{x} T_2)]$

(Ln (302)/ ln (380)) = ((entalpía molar de vaporización) / (8.314 J / (K x mol)) x [(298 - 303)/ (298 x 303)]

-0.23 = ((entalpía molar de vaporización) / (8.314 J / (K x mol)) x [(-5)/ (90,294)]

 $(0.23 \times 8.314 \times 90,294) / 5 = (Entalpía molar de vaporización) =$

(Entalpía molar de vaporización) = 34,532 J/mol

(Entalpía molar de vaporización) = 34.53 kJ/mol

Las respuestas con sus respectivas unidades.