NOTA: PARA ESTA EVALUACIÓN EL SIGNO COMA (,) SE TOMARÁ PARA REPRESENTAR MILES, EJEMPLO: 10⁺³ = 1,000. EL PUNTO (.) SE TOMARÁ PARA REPRESENTAR DECIMALES, EJEMPLO: 10⁻¹ = 0.1.

OBSERVACIÓN: SIRVASE LEER CUIDADOSAMENTE CADA UNO DE LOS TEMAS PLANTEADOS, ESTO A FIN DE CONTESTARLOS EN BASE A LO SOLICITADO EN LOS MISMOS. PARTICULAR QUE SIGNIFICA: COMPRENDERLO, INTERPRETARLO, ANALIZARLO, RESOLVERLO Y EXPRESAR SU RESPUESTA CON CLARIDAD.

Disminución del Punto de Congelación / (10 Puntos)

9. - El etilenglicol (EG), CH₂ (OH) CH₂ (OH), es un anticongelante comúnmente utilizado en automóviles. Es soluble en agua y bastante no volátil. Se sabe mantener esta sustancia en el radiador del automóvil durante época tropicales.

Con la ayuda de los datos pertinente de las tablas, proceda a calcular el **punto** de **congelación** de una **disolución** que contiene 651 g de etilenglicol (EG) en 2505 g de agua.

DATOS				
Masa molecular (etilenglicol)		p. eb		Formula
62.01 g /mol		197 °C		$\Delta T_{fusión} = K_{fusión} \times m$
CONSTANTES MOLALES DE ELEVACIÓN DEL PUNTO DE EBULLICIÓN Y DE DISMINUCIÓN DEL PUNTO DE CONGELACIÓN DE TRES LÍQUIDOS COMUNES				
DISOLVENTE	PUNTO DE CONGELACION (°C)	Kf (°C/m)	PUNTO DE EBULLICIÓN (°C)	Kb (°C/m)
BENCENO	5.5	5.12	80.1	2.53
AGUA	0	1.86	100	0.52
ETANOL	-117.3	1.99	78.4	1.22

Para la molalidad de la disolución se necesita conocer el número de moles de EG y la masa del disolvente en kilogramos. Se encontrando la masa molar del EG.

 $(651 \text{ g EG}) \times (1 \text{mol EG} / 62.07 \text{ g EG}) = 10.5 \text{ mol EG}.$

m = moles de soluto / masa disolvente (kg)

 $\mathbf{m} = 10.5 \text{ mol EG} / 2.505 \text{ kg } H_2\text{O} = 4.19 \text{ mol EG} / \text{ kg } H_2\text{O} = 4.19 \text{ m}$

$$\Delta T_f = K_f \text{m} = (1.86 \, ^{\circ}\text{C} / \text{m}) (4.19 \, \text{m}) = 7.79 \, ^{\circ}\text{C}$$

Debido a que el agua pura se congela a 0 °C, la disolución se congelara a - 7.79 °C.

En nuestro medio se sabe mantener esta sustancia en el radiador del automóvil durante época tropicales. En nuestro caso la disolución tendría el siguiente punto de ebullición (2.2 °C), ver:

$$\Delta T_b = K_b \text{m} = (0.52 \text{ °C/m}) (4.19 \text{ m}) = 2.2 \text{ °C}$$
T ebullición SOLUCIÓN = 102.2 °C

Las respuestas con sus respectivas unidades.