NOTA: PARA ESTA EVALUACIÓN EL SIGNO COMA (,) SE TOMARÁ PARA REPRESENTAR MILES, EJEMPLO: 10¹³ = 1,000. EL PUNTO (.) SE TOMARÁ PARA REPRESENTAR DECIMALES, EJEMPLO: 10¹¹ = 0.1. / OBSERVACIÓN: SIRVASE LEER CUIDADOSAMENTE CADA UNO DE LOS TEMAS PLANTEADOS, ESTO A FIN DE CONTESTARLOS EN BASE A LO SOLICITADO EN LOS MISMOS. PARTICULAR QUE SIGNIFICA: COMPRENDERLO, INTERPRETARLO, ANALIZARLO, RESOLVERLO Y EXPRESAR SU RESPUESTA CON CLARIDAD.

Relación de las velocidades de aparición de productos con la de desaparición de reactivos. (10 puntos).

2. La descomposición del N₂O₅ se lleva a cabo de acuerdo a la siguiente ecuación:

$$2 N_2 O_5(g) \rightarrow 4 NO_2(g) + O_2(g)$$

La velocidad de descomposición del reactivo N_2O_5 en un instante especifico en el recipiente de reacción alcanza el valor de $4.2 \times 10^{-7} \text{ M/s}$.

Datos adicionales:

Velocidad =
$$(-1/a)$$
 ($\Delta A/\Delta t$) = $(-1/b)$ ($\Delta B/\Delta t$) = $(1/c)$ ($\Delta C/\Delta t$) = $(1/d)$ ($\Delta D/\Delta t$)

En base a lo proporcionado, paso a paso y en forma ordenada, determinen en primer lugar la velocidad de aparición de producto NO₂.

Su respuesta con sus respectivas unidades:

Luego, en forma similar determine la velocidad de aparición del O₂:

Su respuesta con sus respectivas unidades: