Transformada de Laplace - Tabla

Referencia: Lathi Tabla 4.1 p334. Oppenheim Tabla 9.2 p692. Hsu Tabla 3-1 p115

No.x(t)X(s)ROC
1aδ(t)1Toda s
1bδ(t-T)e-sTToda s
2aμ(t)\frac{1}{s}Re{s}>0
2b-μ(-t)\frac{1}{s}Re{s}<0
3tμ(t)\frac{1}{s^2}Re{s}>0
4atnμ(t)\frac{n!}{s^{n+1}}Re{s}>0
4b \frac{t^{n-1}}{(n-1)!} \mu (t)\frac{1}{s^n}Re{s}>0
4c -\frac{t^{n-1}}{(n-1)!} \mu (-t)\frac{1}{s^n}Re{s}<0
5eλtμ(t)\frac{1}{s-\lambda}Re{s}>0
6teλtμ(t)\frac{1}{(s-\lambda)^2}Re{s}>0
7tneλtμ(t)\frac{n!}{(s-\lambda)^{n+1}} 
8acos (bt) μ(t)\frac{s}{s^2+b^2}Re{s}>0
8bsin (bt) μ(t)\frac{b}{s^2+b^2}Re{s}>0
9ae-atcos (bt) μ(t)\frac{s+a}{(s+a)^2+b^2}Re{s}>-a
9be-atsin (bt) μ(t)\frac{b}{(s+a)^2+b^2}Re{s}>-a
10\mu_n (t) = \frac{\delta ^n}{\delta t^n} \delta (t)snToda s
11 \mu_{-n} (t) = \mu (t) \circledast \text{...} \circledast \mu (t)

n veces

\frac{1}{s^n}Re{s}>0
12are-atcos (bt+θ) μ(t)\frac{\Big( r\cos (\theta)s + (ar \cos (\theta) - br \sin (\theta)\Big)}{s^2+2as+(a^2+b^2)}
12bre-atcos (bt+θ) μ(t)\frac{0.5 re^{j \theta}}{s+a-jb} + \frac{0.5 re^{-j \theta}}{s+a+jb}
12cre-atcos (bt+θ) μ(t) \frac{As+B}{s^2+2as+c}
r = \sqrt{\frac{A^2 c +B^2 -2ABa}{c-a^2}} \theta = \tan ^{-1} \Big( \frac{Aa-B}{A\sqrt{c-a^2}}\Big)

b = \sqrt{c-a^2}
12d e^{-at}\Big[A \cos (bt) + \frac{B-Aa}{b} \sin (bt) \Big] \mu (t) \frac{As+B}{s^2 + 2as+c}

b = \sqrt{c-a^2}

Transformada Laplace - Tabla de Propiedades

Transformada de Laplace – Concepto con Python


Unidades SS