Transformadas de Fourier - Tabla

Referencia: Lathi Tabla 7.1 p699. Shaum Hsu Tabla 5-2 p223. Oppenheim Tabla 4.2 p329 pdf357

Transformada Fourier - Propiedades

Series de Fourier de señales periódicas con Python

Nox(t)X(ω) 
1e-at μ (t) \frac{1}{a + j \omega}a>0
2eat μ (-t) \frac{1}{a - j \omega}a>0
3e-a|t| \frac{2a}{a^2+ \omega ^2}a>0
4t e-at μ (t) \frac{1}{(a+j \omega)^2}a>0
5tn  e-at μ (t) \frac{n!}{(a+j \omega)^{n+1}}a>0
6aδ(t)1 
6bδ(t-t0)e-jωt0 
71 2\pi \delta (\omega) 
8e0t 2\pi \delta (\omega-\omega_0) 
9cos (ω0 t) \pi [\delta (\omega - \omega_0) +\delta (\omega + \omega_0)]  
10sin (ω0 t) \pi [\delta (\omega + \omega_0) -\delta (\omega - \omega_0)]  
11aμ(t) \pi \delta (\omega ) +\frac{1}{j \omega }  
11bμ(-t) \pi \delta (\omega ) - \frac{1}{j \omega }  
12sgn (t)\frac{2}{j \omega}  
13cos (ω0 t) μ(t)\frac{\pi}{2} [\delta (\omega - \omega_0) +\delta (\omega + \omega_0)] + \frac{j \omega}{\omega_0^2 - \omega ^2}
14sin (ω0 t) μ(t)\frac{\pi}{2j} [\delta (\omega - \omega_0) - \delta (\omega + \omega_0)] + \frac{\omega_0}{\omega_0^2 - \omega ^2}
15e-at sin (ω0 t) μ(t) \frac{\omega_0}{(a+j\omega)^2 + \omega_0^2} a>0
16e-at cos (ω0 t) μ(t) \frac{a + j\omega}{(a+j\omega)^2 + \omega_0^2} a>0
17 rect \Big(\frac{1}{\tau}\Big) \tau sinc \Big( \frac{\omega \tau}{2} \Big)  
18 \frac{W}{\pi} sinc (Wt) rect \Big(\frac{\omega}{2W} \Big) 
19 \Delta \Big( \frac{t}{\tau} \Big) \frac{\tau}{2}sinc ^2 \Big( \frac{\omega \tau}{4} \Big) 
20 \frac{W}{2\pi} sinc ^2 \Big(\frac{Wt}{2} \Big) \Delta \Big(\frac{\omega}{2W} \Big) 
21 \sum_{n=- \infty}^{\infty} \delta(t-nT) \omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega-n \omega_0) \omega_0 = \frac{2 \pi}{T}
22 \frac{e^{-t^2}}{2 \sigma ^2} \sigma \sqrt{2 \pi} e^{-\sigma^2 \omega^2 /2} 
23 \frac{1}{a^2 + t^2} e ^{-a|\omega|} 
24 e ^{-at^2} \sqrt{\frac{\pi}{a}}e ^{-\omega^2 /4a}a>0
25 p_a(t) = \begin{cases} 1 & |t|<a \\ 0 & |t|>a \end{cases} 2a\frac{\sin (\omega a)}{(\omega a)} 

Transformada Fourier - Propiedades

Series de Fourier de señales periódicas con Python


Unidades SS